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Models of complex systems can capture much useful information
but can be difficult to apply to real-world decision-making because
the type of information they contain is often inconsistent with that
required for traditional decision analysis. New approaches, which
use inductive reasoning over large ensembles of computational
experiments, now make possible systematic comparison of alter-
native policy options using models of complex systems. This article
describes Computer-Assisted Reasoning, an approach to decision-
making under conditions of deep uncertainty that is ideally suited
to applying complex systems to policy analysis. The article dem-
onstrates the approach on the policy problem of global climate
change, with a particular focus on the role of technology policies
in a robust, adaptive strategy for greenhouse gas abatement.
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he study of complex systems provides powerful tools and

concepts for capturing useful information about the world.
For instance, the process of technology innovation and diffusion,
crucial to many of today’s most important policy decisions,
displays emergence and a dynamics shaped by self-referential
expectations in the face of imperfect information. Such prop-
erties are difficult to represent with traditional analytic ap-
proaches but spring naturally from the mathematics of complex-
ity. Unfortunately, it has often proved difficult to apply this
mathematics to policy problems. Complex systems often are
characterized by uncertainty of a type that strains the traditional
methods of decision analysis, vital to the systematic examination
of policy alternatives.

Traditional decision analysis rests on key assumptions about
the types of information available to the decision-maker. Pow-
erful Bayesian methods produce a ranking of alternative strat-
egies, and in particular, identify the optimum strategy, assuming
the decision-maker has a well characterized system model and
can represent uncertainty with probability distributions over the
input parameters to that model. Such methods have proved
extraordinarily useful for many problems because they help
structure the extensive information decision-makers often have,
offer a systematic, nonbiased treatment, and expose the numer-
ous logical fallacies to which human reasoning is prone (1).

However, we often have information about complex systems
different from that assumed by traditional decision analysis. For
instance, complex systems often display regions of extreme
sensitivity to the particular assumptions, while at the same time
exhibit important regularities of macroscopic behavior. Such
systems display one example of deep uncertainty, a situation
where the system model and the input parameters to the system
model are not known or widely agreed on by the stakeholders to
the decision. Under such deep uncertainty, the standard tools of
decision analysis are difficult to apply and may not accurately
represent the goals of decision-makers. For instance, traditional
decision analysis cannot easily address the types of adaptive,
evolving strategies that decision-makers often employ when
confronted by deep uncertainty.
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As an alternative to systematic policy analysis, practitioners
have often used a “flight simulator” approach to apply the
mathematics of complex systems to policy problems. Decision-
makers build insight by watching a variety of interesting model
runs unfold. Such approaches are characteristic of the narrative,
scenario-based methods of decision support which in recent
years have come into vogue (2, 3). Scenario-based planning can
help individuals recognize that the future may not be an extrap-
olation of the past and can help groups reach consensus on
strategies even when the members cannot agree on the most
likely future. However, scenario approaches do not offer two key
benefits of quantitative decision analysis, particularly when
applied to complex systems. They do not systematically use
quantitative information to correct fallacies in human reasoning
nor do they provide any systematic way to rank the desirability
of alternative policy choices.

A New Decision Sciences for Complex Systems

In recent years, we have been developing new methods for
assisting decision-making under conditions of deep uncertainty
that are ideally suited to applying complex systems to policy
problems. Called Computer-Assisted Reasoning (CAR; ref. 4),
and previously, “exploratory modeling” (5), these methods
exploit the qualitatively new capabilities of modern computa-
tion—pervasive computation, low-cost memory, and powerful,
interactive visualizations—to combine the best features of tra-
ditional quantitative decision analysis with those of narrative,
scenario-based planning. CAR is a general and powerful exam-
ple of the emerging school of multiscenario simulation methods
that are becoming increasingly common in the literature on
decision-making under conditions of deep uncertainty (6-9).
CAR rests on the claim that, under conditions of deep
uncertainty, an ensemble of plausible models, rather than any
single model, best represents the available information about the
future. Users can exploit the information in these ensembles with
computer visualization and search. Visualizations, often gener-
ated by some algorithm or experimental design strategy, help
users to generate hypotheses about desirable strategies. Com-
puter search can then help test these hypotheses. CAR combines
the human ability to intuit patterns and abstract a big-picture
view with the computer’s ability to test detailed implications of
facts over a huge number of cases. The approach facilitates the
assessment of alternative strategies with criteria such as robust-
ness and satisficing rather than optimality. The former are
particularly appropriate for situations of deep uncertainty.
Fig. 1 shows a typical flow of computational steps within CAR
analysis. We begin by grouping the inputs into the analysis into
policy levers, the various actions that the decision-maker can take
to affect the world, and exogenous uncertainties, the major
variables outside the control of the decision-maker, that could
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Fig. 1. Schematic of a CAR analysis.

affect outcomes of interest. By using these uncertainties and
levers, we create a large ensemble of scenarios where each
scenario is one guess about how the world works and one choice
of actions to take. (Note that this is different from the common
definition of scenario which is generally one unfolding of the
external world, without consideration of the decision-makers’
actions.)

This scenario ensemble becomes a computer-based object that
we can view and manipulate to help inform our decisions, often
employing a series of interactive computer visualizations, either
individually or to support group processes. First, we create what
we call Landscapes of Plausible Futures, visualizations which
show a wide range of potential outcomes. Such visualizations
help decision-makers to understand better the range of possi-
bilities that confront them, to recognize the key driving forces
that may cause the future to head in different directions, and to
achieve buy-in to the analysis from stakeholders with different
views of the future. Next, we compare the performance of
alternative strategies across the landscape of plausible futures
using Robust Regions, which is related to the policy region
analysis of Watson and Buede (10). The Robust Regions help
identify key strategies that perform relatively well compared
with the alternatives over a wide range of scenarios. Under
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figure 1 of ref. 18 (Copyright 2000, Kluwer Academic Publishers).]
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conditions of deep uncertainty, decision-makers often seek such
robust strategies (11). Often, such strategies are adaptive; that is,
they evolve over time in response to new information.

The key to this CAR approach is an inductive, rather than
deductive, approach to quantitative reasoning. In traditional
decision analysis, users begin with specific assumptions about the
system model and the likelihood of alternative input parameters
to that model. Once specified, these assumptions propagate
through the computer to produce a definitive ranking of alter-
native strategies. In contrast, CAR emphasizes the computer as
an interactive tool to help users form and then examine hypoth-
eses about the best actions to take in those situations poorly
described by well known probability distributions and models. In
the CAR approach, analysts and decision-makers begin with a
wide range of plausible assumptions that capture the available
information about a deeply uncertain future. Then, they use
computer search and visualization to systematically apply this
information to the comparison of policy options. For instance,
they can identify strategies that are robust in the face of this deep
uncertainty, find the scenarios most stressing for alternative
robust strategies, and define any key tradeoffs among strategies.

These methods have been successfully used to illuminate a
variety of notoriously intractable problems of strategic choice
under deep uncertainty. These include procurement decisions
for the U.S. Air Force (12) military strategy (13-15), science and
technology planning decisions for Defense Advanced Research
Projects Agency (DARPA; ref. 16), robust strategies for re-
sponding to global climate change (7, 17-19), long-range finan-
cial planning for the public university systems in several states
(20), and in product planning, technology investment, and
market-entry problems for the private sector (unpublished
work). Here, we present an example application of these meth-
ods to the problem of climate change.

Fig. 2 shows an agent-based model of technology diffusion
used to compare alternative climate change-abatement strate-
gies. Economic agents choose among alternative technologies on
the basis of forecasts of cost and performance, which, in turn, are
influenced by learning among the agents and potential price
decreases caused by increasing returns to scale. The agents have
heterogeneous initial expectations about technology perfor-
mance and heterogeneous preferences for technology cost/per-
formance tradeoffs. The agents’ choices influence the level of
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energy prices and of greenhouse gas (GHG) emissions, which
both influence the rate of economic growth. Policy decisions
about the level of carbon taxes and technology incentives, which
depend on observations of economic growth, damages and
technology diffusion, also influence the agents’ technology
choices.

Robust Strategies for Climate Change

Global climate change is perhaps our most intractable environ-
mental problem. Most economic activities, and in particular, the
burning of fossil fuels, increase the concentration of long-lived
GHGs in the atmosphere. The scientific evidence has become
compelling that such emissions over the last 100 years have
altered the earth’s climate system. But, deep uncertainty remains
about the future costs and benefits of any potential action to
address the problem. It is clear, however, that if climate change
is indeed a serious problem, society will have to make significant
reductions in its GHG emissions, on the order of 80% below
extrapolations of current trends, by the end of the 21st century.
Technology innovation will likely play a major role in any
changes of this scale.

This fact raises a key question: what should policy-makers do
in the near-term to encourage such innovation? In practice,
governments pursue a wide range of technology policies
designed to improve the technology options for emissions re-
ductions in the future. There is widespread agreement that
government research and development can enhance future emis-
sions-reducing innovations (although public-sector, energy-
related research among most developed countries has been
dropping in recent years). Research also supports the observa-
tion that private-sector firms will invest in new technologies
when faced with the expectation of future regulations on GHG
emissions. In addition, governments often pursue a wide range
of technology incentive programs, such as tax credits, subsidies
for low-emitting technologies, or market creation programs such
as government procurements. These programs often appear
attractive on both substantive and political grounds, but their
record in practice is mixed. In addition, economic theory sug-
gests that such policies often are inefficient compared with
policies designed to “get the prices right,” such as carbon taxes
or tradable permits.

In our work, we have addressed the role of these technology
incentives within the context of a robust response to climate
change (18). The performance of alternative policies depends
critically on the deeply uncertain characteristics of the dynamics
of technology diffusion. Thus, we have used our CAR methods
and an agent-based model of technology diffusion that focuses
on the social and economic factors that influence how economic
actors choose to adopt, or not to adopt, new emissions-reducing
technologies. We link this agent model to a simple macro model
of economic growth. The agent-based representation is partic-
ularly useful because it conveniently represents key factors
influencing technology diffusion and, thus, policy choices such as
the heterogeneity of technology preferences among economic
actors and the flows of imperfect information that influence
their decisions.

As shown in Fig. 2, each agent in our model represents a
producer of a composite good that is aggregated as total Gross
Domestic Product (GDP), using energy as one key input. During
each time period, the agents first choose among several energy-
generation technologies, and second, given their chosen tech-
nology, choose how much energy to consume. (That is, agents
choose a production function and where to operate on that
production function.) We assume that agents pick a technology
to maximize their utility, which depends on each agent’s expec-
tations about the cost and performance of each technology. The
agents have imperfect information about the current perfor-
mance of new technologies but can improve their information
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based on their own past experience, if any, with the technology
and by querying other agents who have used it. The agents also
are uncertain about the future costs of new technologies, which
may or may not decline significantly because of increasing
returns to scale. Agents estimate these future costs based on
observations of the past rates of adoption and cost declines.
Thus, the diffusion rate can depend reflexively on itself, because
each user generates new information that can influence the
adoption decisions of other potential users.

We use this model to compare the performance of alternative
climate strategies. We posit two types of adaptive-decision
strategies, “Limits-Only” and “Combined Strategy”, both of
which can evolve over time in response to new information. (We
also considered no response and a strategy using only technology
subsidies. Neither of these proved very attractive compared with
the other two.) Our description of both strategies, shown in Fig.
3, is consistent with both the theoretical literature and qualita-
tive understanding of the political conditions under which the
policies would operate.

The “Limits-Only” strategy employs only a carbon tax (the
arguments here also apply to emissions trading), whose level can
change over time in response to observations of the rate of
economic growth and the damages caused by climate change.
The tax begins at some initial level per ton of emitted carbon and
subsequently grows, remains constant, or returns to its initial
level depending on observations of the damages caused by
climate change and the economic growth rate. The “Combined
Strategy” uses both the carbon tax and a technology subsidy,
which can change over time in response to observations of the
market share of low-emitting technologies. The subsidy begins at
some initial level, expressed as a percent of the cost of the
subsidized technology, and stays at a constant level over time
until either the market share for low-emitting technologies goes
above a threshold value or the market share fails to reach a
minimum level after a certain number of years. If either of these
conditions is met, the subsidy is permanently terminated.

The agent model of the effects of the alternative policies on
the climate and economic systems presents deep uncertainty in
over 30 different input parameters that represent a wide range
of factors, including the macroeconomic effects of alternative
policies on economic growth, the microeconomic preferences
economic actors use to weigh the cost and performance of
alternative technologies, the characteristics of new technologies,
and the dynamics of the climate system. To compare policy
choices in the face of this deep uncertainty, we use the process
sketched in Fig. 1.

First, we generate a landscape of plausible futures by searching
for the most diverse set of model inputs that plausibly represents
the microlevel data and that gives plausible, macroscopic model
outputs. In particular, we compare model outputs to constraints
based on current market shares for energy technologies and
aggregate levels of carbon emissions. We also constrain future
technology diffusion rates to be no faster than the maximum
historically observed rates for energy technologies. By using a
genetic search algorithm, we generated a diverse ensemble of
1,611 different vectors of model inputs whose outputs meet these
constraints. When used to project the model into the future, this
ensemble gives forecasts of future GHG emissions that differ by
over an order of magnitude, as shown in Fig. 4, a landscape of
plausible futures. Combined with our alternative strategies, these
futures give the scenario ensemble shown in Fig. 1.

Next, we use this scenario ensemble to generate hypotheses
about robust strategies. There are too many dimensions of
uncertainty in this model for an exhaustive search, so we first
used statistical techniques (importance sampling) to find the
input parameters most strongly correlated with a key model
output of interest (GHG emissions after 50 years). These
decisive uncertainties are the rate of cost reductions caused by
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increasing returns to scale for the nonemitting technologies, the
rate at which agents learn from one another about the perfor-
mance of new technologies, the agents’ risk aversion, and the
heterogeneity of the agents’ price-performance preferences for
new technologies. Then, we viewed a series of interactive com
puter visualizations using different combinations of these four
key uncertain inputs as independent variables (as well as a fifth
uncertainty, the damages caused by climate change), each one
comparing the performance of the “Limits-Only” and “Com-
bined Strategy.” Each visualization showed the performance of
the two strategies as surface plots, measured as the present value
of the GDP over the 21st century (reflecting both the costs and
benefits of each strategy) as a function of two of the uncertain-
ties, with the other inputs held constant at fixed values. A clear
pattern emerged: the Limits-Only strategy is preferable in a
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world where the agents’ technology preferences are homoge-
neous, imperfect information effects are small, and the damages
caused by climate change emerge slowly. When these conditions
do not hold, the Combined (tax and subsidy) Strategy quickly
becomes more attractive.

The robust region map in Fig. 5 summarizes these results. The
figure shows the expectations about the future that should cause
a decision-maker to prefer the Limits-Only strategy to the
Combined Strategy. The horizontal axis represents the range of
expectations a decision-maker might have for how likely it
is—from very unlikely (Left) to very likely (Right)—that factors
such as the potential number of early adopters and the amount
of increasing returns to scale will significantly influence the
diffusion of new technologies. The vertical axis represents the
range of expectations a decision-maker might have that there
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[Reproduced with kind permission from figure 3 of ref. 18 (Copyright 2000, Kluwer Academic Publishers).]
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Fig. 5. A Robust Regions visualization showing regions in probability space
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egy is greater than that for the Combined Strategy as a function of the
probability of high climate damages and of the potential for significant cost
reductions for new technologies because of increasing returns to scale, re-
duction of uncertainty about the performance of new technologies because
of learning among agents, and heterogeneity in the cost/performance pref-
erences for new technologies among agents (“‘non-classical world"). [Repro-
duced with kind permission from figure 7 of ref. 18 (Copyright 2000, Kluwer
Academic Publishers).]

will be significant impacts because of climate change (greater
than 0.3% of the global economic product). The map shows that
the Combined Strategy dominates even if decision-makers have
only modest expectations that impacts from climate change will
be significant and that information exchange and heterogeneity
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among economic actors will be important to the diffusion of new,
emissions-reducing technologies.

Testing the Hypotheses

Fig. 5 is based on an examination of only 6 of the 30 dimensions
of uncertainty in the model. As a key final step, we tested the
policy recommendations based on this reduced set of scenarios
by launching a genetic search algorithm across the previously
unexamined dimensions looking for counter examples to the
conclusions summarized in Fig. 5. In this case, we found no
plausible breaking scenarios. This analysis thus suggests that if
decision-makers hold even modest expectations that market
imperfections are likely to inhibit the diffusion of new, emis-
sions-reducing technologies or that the impacts of climate
change will turn out to be serious, then technology incentive
programs may be a promising component of a robust response
to climate change.

Conclusions

Models of complex systems capture much useful information
about the world. However, such models can be difficult to apply
to policy problems because the type of information they contain
is often not that assumed by traditional methods of deductive
decision analysis. New approaches, using inductive reasoning
based on large ensembles of computational experiments, now
make it possible to systematically compare policy alternatives
using models of complex systems. The CAR methods shown here
are widely applicable to policy problems characterized by com-
plexity and deep uncertainty. These methods make it possible to
capture more fully available information about complex systems,
find policy responses that are robust against uncertainty, and
bridge the gap between quantitative and qualitative approaches
to decision-making.
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