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Abstract

Many crystalline networks can be viewed as decorations
of triply periodic minimal surfaces. Such surfaces are
covered by the hyperbolic plane in the same way that
the euclidean plane covers a cylinder. Thus, a symmet-
ric hyperbolic network can be wrapped onto an appro-
priate minimal surface to obtain a 3d periodic net. This
requires symmetries of the hyperbolic net to match the
symmetries of the minimal surface. We describe a sys-
tematic algorithm to find all the hyperbolic symmetries
that are commensurate with a given minimal surface,
and the generation of simple 3d nets from these symme-
try groups.
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groups

PACS: 61.50.Ah, 89.75.Hc, 02.20.-a, 02.40.-k

1 Introduction

Network, or reticular, models are widely used descrip-
tions of three-dimensional structure in chemistry. Na-
ture provides a rich set of examples for us to study,
e.g. the covalent bonding structure of crystalline miner-
als, the alumino-silicate backbone of zeolites, and metal-
organic frameworks. Chemists interested in synthesiz-
ing materials with particular properties need to know
what structures are possible, and which are the most
likely to form. Systematic techniques for generating 3D
periodic networks are still being developed and are yet
to provide a complete enumeration of possible network
structures[1, 2, 3, 4, 5]. Our approach generates 3D eu-
clidean networks by wrapping 2D hyperbolic nets onto
triply periodic minimal surfaces (TPMS). Formally this
is done by constructing a covering map from the hyper-
bolic plane onto the minimal surface. Periodic 3D nets
are obtained only when the symmetries of the hyperbolic
net and the covering map are commensurate with the

symmetries of the surface. This paper focusses on group
theoretic aspects of the projection from 2D hyperbolic
space into 3D euclidean space. The work follows a num-
ber of earlier explorations of the route to 3D structure
from 2D curved space; a brief overview follows.

We view 3D crystalline reticulations as decorations of
TPMS — a concept that was recognised first by solid
state chemists 20 years ago as a clue to understand-
ing complex covalent frameworks, particularly alumino-
silicate zeolites and related materials [6, 7]. More recent
advances in the differential geometry of TPMS [8] and in
tiling theory [9, 10, 11, 12] are proving indispensable to
progress. The euclidean geometry of a TPMS is governed
by the property that its Gauss map (the map of surface
normal vectors) is a tiling of the 2-sphere. Indeed, an
enumeration of simple “regular” TPMS arises by deriv-
ing all discrete tilings of the 2-sphere [13]. The sym-
metries of the Gauss map are readily “mutated” to de-
duce the in-surface 2D hyperbolic group of the resulting
TPMS. The advent of orbifold theory by Macbeath and
Thurston[14], and its later simple description using the
notation invented by Conway[15, 16] allows for efficient
numerical coding of 2D hyperbolic groups as well as ex-
haustive enumeration of allowed hyperbolic tilings with
specified orbifold symmetry[11]. We combine tiling the-
ory with the intrinsic geometry of TPMS to build tilings
of TPMS and use the tiling topology to define embedded
crystalline reticulations of 3D space. Some results have
been described earlier [17, 18, 19].

The work described here continues the above investi-
gations, with an emphasis on the group theoretic aspects
of the problem. The prime motivation is to enumerate
all allowed symmetries of tilings or reticulations on a
particular TPMS that retain the translational symme-
tries of the oriented surface. This relies on identifying
the full group structure of the TPMS (its “hyperbolic
crystallography”), derived previously for the primitive
(P ), diamond (D), and gyroid (G) surfaces by Sadoc and
Charvolin[20]. The examples below are limited to these
simplest cubic genus-three TPMS [8]. The approach
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is generic, however, and can be extended to arbitrarily
complex TPMS, once their hyperbolic crystallography is
known.

2 Covering maps for TPMS

The fundamental tool in our generation of 3D nets is a
map that wraps up the hyperbolic plane onto the peri-
odic minimal surface, f : H2 → M . The pairing of the
hyperbolic plane with this map is called a cover. (The
existence of this map is guaranteed by fundamental re-
sults from topology[21].) A cover is a useful tool for many
reasons — the covering space, H2, has simpler topology
than the original surface, M , and properties of M can
be determined from the action of the covering map, f .
Specifically, it is much simpler to study symmetry groups
and generate nets in the hyperbolic plane than in 3D eu-
clidean space. The complexity is shifted to finding an
appropriate covering map. The next few paragraphs de-
scribe this process.

There are many possible ways to define the covering
map f : H2 → M . We require that the cover respect
the symmetries of the given minimal surface, i.e., the
intrinsic local surface symmetry and the euclidean three-
dimensional translational symmetry. In essence, we de-
fine f using an “orbifold chart” that maps a patch of
the hyperbolic plane onto the related surface asymmet-
ric unit patch. This map of a single orbifold patch ex-
tends to a map of the whole hyperbolic plane onto the
whole TPMS via a correspondence of the symmetry op-
erations, i.e. via a group homomorphism. Importantly,
the euclidean translational symmetries of the TPMS pull
back to hyperbolic translations. Thus, the definition of
f is made almost entirely by reference to the symmetry
group action. This process is best elaborated using an
example.

The P,D, and G surfaces (illustrated in Figure 1)
each have intrinsic surface symmetry related to the *246
hyperbolic reflection group. This relationship has a
mathematical basis in the complex analytic Weierstrass-
Enneper formula used to define these minimal surfaces —
they are related via a Bonnet transformation. The im-
plications of this for the crystallography of the P,D,G
surfaces is explored in [22]. The *246 hyperbolic group
is generated by three reflections, R1, R2, and R3 whose
mirror lines bound a triangle in H2 with corner an-
gles of π/2, π/4, and π/6. By applying these opera-
tions in all possible combinations, images of the initial
triangle cover the entire hyperbolic plane. Of course,
not every word over {R1, R2, R3} gives a unique image,
there is a set of relations for the group generated by
the following: R2

1 = R2
2 = R2

3 = I (the identity) and
(R1R2)2 = (R2R3)4 = (R1R3)6 = I.

Sadoc and Charvolin[20] found that these three

closely-related surfaces each have a disk-like translational
patch in E3, and that these pull back to the same do-
decagon in the hyperbolic plane, as illustrated in Fig-
ure 2. There are six hyperbolic translations that pair
opposite edges of the dodecagon, and generate a normal
subgroup of *246 with orbifold symbol ooo. The transla-
tions were defined in [20] and are rewritten here in terms
of the *246 reflections:

t1 = (R3R1R3R1R3R2)2 (1)
t2 = R3R1R3t1R3R1R3

t3 = (R1R3)2t1(R3R1)2

τ1 = (R3R1R2)2(R3R1)2R2R3R2R1R3R1

τ2 = R1R3R1τ1R1R3R1

τ3 = R3τ1R3.

These translations satisfy the following identity in H2:

τ1t2τ
−1
3 t−1

1 τ2t3τ
−1
1 t−1

2 τ3t1τ
−1
2 t−1

3 = I. (2)

Each surface has a different covering map that can
be compactly described by defining how the hyperbolic
translations above map to euclidean translations. For
the P -surface, fP (t1), fP (t2), and fP (t3) are linearly in-
dependent in E3 and commute, with

fP (τ1) = fP (t−1
2 t3), (3)

fP (τ2) = fP (t−1
3 t1), and

fP (τ3) = fP (t−1
1 t2).

For the D-surface fD(t1), fD(t2), and fD(τ3) are a com-
muting linearly independent set, with

fD(t3) = fD(t−1
3 t−1

2 ), (4)
fD(τ2) = fD(t1τ3), and

fD(τ1) = fD(t−1
2 τ3).

Lastly, for the Gyroid, fG(t1), fG(t2), and fG(t3) are
again independent with

fG(τ1) = fG(t−1
1 t−1

2 ), (5)

fG(τ2) = fG(t−1
2 t−1

3 ), and

fG(τ3) = fG(t−1
3 t−1

1 ).

In the following section we explain how these hyperbolic
groups and covering maps are used to find all symmetry
groups commensurate with a given surface.

3 Enumeration of commensurate
symmetries

Our goal is to find all sub-symmetries, G, that are com-
mensurate with the intrinsic symmetry, S, of a given

2



Figure 1: Anticlockwise from bottom left: A tiling of the hyperbolic plane by dodecagons, twelve around each vertex;
the P, G, and D minimal surfaces built from the translational units in Figure 2.

minimal surface. Algebraically, G must be a subgroup of
S and a supergroup of the euclidean translation group,
T . An elementary result from group theory[23] tells us
that such groups G satisfying T ⊂ G ⊂ S are in one-
to-one correspondence with subgroups of the quotient
group: G̃ ⊂ S/T .

The covering maps defined in the previous section al-
low us to work with hyperbolic groups rather than the
more complex surface groups. For the P,D and G sur-
faces, we must enumerate all subgroups of

∗246/[t1 = t2 = · · · = τ3 = I].

Although the hyperbolic group *246 is infinite, the
quotient group is finite, so enumerating these sub-
groups is a simple matter for the computational dis-
crete algebra package, GAP (Groups, Algorithms and
Programming)[24]. The result from GAP is a list of
finitely presented groups, with generators in the quo-
tient group. Adding back in the hyperbolic translation
subgroup generators, {t1, . . . , τ3} and using GAPs group
isomorphism tools, gives us a list of finitely presented
subgroups of *246.

There is no unique way to represent such groups, and
we encounter the perpetual problem of group theory:

finding an isomorphism from a given group to a canon-
ical form. In this context, however, there is a solution
— discrete groups of isometries of the sphere, euclidean,
and hyperbolic plane are characterised by their orbifold
(the “orbit manifold” defined by Thurston[14]). Con-
way devised an elegant symbolic notation that encodes
the orbifold structure[15, 16]. We give a brief synopsis
of this notation in appendix A. The orbifold symbol is
easily computed from any tiling with the given group
symmetry[12]. Therefore, we construct a tiling for each
subgroup and then compute the orbifold symbol from
this tiling.

We start by building the fundamental tiling for the hy-
perbolic surface group *246. This tiling consists of the
black and white triangles illustrated in Figure 2. Each
triangle is labelled by the element of *246 that maps
a fixed initial triangle onto this new triangle. We ob-
tain a unique minimal word for each group element using
word enumeration and reduction algorithms (for exam-
ple via the KBMAG package [25] which is an extension
to GAP). The adjacency information for the triangles is
induced from the initial triangle neighbours as follows.
Recall that the initial triangle is bounded by the mirror
lines for the three reflections R1, R2, and R3 so the three
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Figure 2: Anticlockwise from bottom left: The dodecagonal translational patch in the hyperbolic plane; correspond-
ing surface patches for the P, G, and D minimal surfaces. The black and grey triangles are *246 fundamental
domains — there are 96 such triangles in the dodecagonal translation unit, corresponding to the 96 elements of
*246/ooo.

neighbouring triangles will have the labels R1, R2, and
R3. We then map this adjacency pattern to each image
of the initial triangle: the triangle R1 will therefore have
the neighbours R2

1 = I,R2R1, R3R1, and so on.
For a given subgroup, we use coset word enumeration

algorithms from KBMAG to determine which elements of
*246 are equivalent under the subgroup action. (The tri-
angles in the original fundamental tiling are all equivalent
under *246, so the subgroup action breaks this symme-
try.) The subgroup fundamental domain is a grouping
of non-equivalent *246 triangles. The grouping is not
unique (except for kaleidoscopic groups where the orb-
ifold symbol has the form *abc. . .) but KBMAG always
gives an initial subgroup domain corresponding to the
non-equivalent words of minimal length. Any particu-
lar choice of subgroup domain generates a new tiling of
H2, with tile adjacency induced by the original *246 tri-
angle adjacencies. Finally we use combinatorial tiling
algorithms[12] to compute the orbifold symbol. The re-
sults of this process are presented in Table 1 of Ap-
pendix B. Further information is available online [26]
where we present a graph of the relationships between

subgroups and illustrations of each subgroup symmetry
in the hyperbolic plane.

4 From subgroup domains to pe-
riodic nets

Once we know the subgroup domains and their adja-
cency pattern it is straightforward to generate a vertex-
transitive net with the symmetry of the subgroup. This
is achieved by putting a single vertex in each subgroup
domain, then joining vertices by an edge if the two do-
mains are adjacent. The result is a periodic net in the
hyperbolic plane. Note that this net is not unique for a
given subgroup because the choice of subgroup domain
is non-unique.

Careful use of word reduction with respect to the
translation subgroup T gives us explicit knowledge of the
translational unit for the hyperbolic net and the connec-
tions between nodes in successive translational cells. For
example, the following hyperbolic net comes from the
22222222 (28) orbifold, with vertex 1 being in the iden-
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tity domain, I, and vertex 2 in (R1R3)3:

1 1 τ1, 1 2 I,

1 2 t−1
1 , 1 2 t2,

1 2 t3, 1 2 τ−1
2 ,

1 2 τ3, 2 2 τ1.

Each triple above represents an edge: the first entry de-
notes one vertex in the initial translational cell and the
other two entries denote the second vertex type and its
cell location.

The hyperbolic net topology is easily translated into a
three-dimensional euclidean net topology via the cover-
ing map. To map the above net onto the P surface we can
set fP (t1), fP (t2), fP (t3) to the unit x, y, z-translations
respectively, with the τi defined as in (3). The euclidean
net topology is then

1 1 (0,−1, 1) 1 2 (0, 0, 0)
1 2 (−1, 0, 0) 1 2 (0, 1, 0)
1 2 (0, 0, 1) 1 2 (−1, 0, 1)
1 2 (−1, 1, 0) 2 2 (0,−1, 1)

Now that we have the net topology, we need to as-
sign coordinates to the vertices. This can be done in a
number of ways including (i) a direct map from the hy-
perbolic plane onto the periodic minimal surface[17, 27],
(ii) equilibrium (or barycentric) placements[28], or (iii)
relaxation according to an energy potential that is min-
imized by equal edge-lengths and angles[13].

5 Isomorphic subgroups

A close examination of Table 1 shows that many sub-
groups occur as conjugate families, and that the same
orbifold symbol can appear more than once. Two sub-
groups with the same orbifold symbol are isomorphic so
are different representations of the same abstract sym-
metry. A net with a given symmetry which is mapped
into two isomorphic subgroups gives two hyperbolic nets
that are necessarily isomorphic in H2, but this isomor-
phism may be broken once they are projected into E3.
Whether or not the subgroup isomorphism is preserved
can be determined by studying the action of the isomor-
phism on the surface relations induced by the covering
map.

First consider the case of conjugate subgroups, A,B ⊂
S, the surface-intrinsic symmetry group. Geometrically,
conjugate subgroups appear as exactly the same pattern
in H2 only shifted with respect to the original iden-
tity element of S. Algebraically it means that there
is a fixed group element, r ∈ S such that for every

a ∈ A, there is a b ∈ B with a = rbr−1. Now con-
sider the subgroup of A generated by the surface re-
lations RA = {rA1, rA2, . . . rAn}, these elements of A
map to the identity in E3 under the covering map:
f(rAi) = I. Under the conjugacy operation this sub-
group of A maps to a subgroup of B, with generating ele-
ments RB = {rrA1r

−1, . . . , rrAnr−1}. Then the covering
map acts as follows: f(rrAir

−1) = f(r)f(rAi)f(r−1) =
f(r)If(r)−1 = I. It follows that RB defines the same
surface relations as RA, and therefore conjugate sub-
groups give rise to isomorphic patterns in E3.

Next we examine the case of isomorphic, non-
conjugate subgroups, G and H ⊂ S. Although G and H
have the same orbifold symbol, they sit inside the parent
group S differently and the patterns of their subgroup
domains in H2 are not isometric. Let the isomorphism
between the groups be φ : G → H, and let RG, RH de-
note the surface-relation subgroups expressed in G- and
H-elements respectively. Then the covering map pre-
serves the isomorphism of G and H only in the case that
φ(RG) = RH .

As an example, we present vertex-transitive nets de-
rived from two subgroups with orbifold *2244 (numbers
103 and 107 in Table 1). The pattern of the subgroup do-
mains and corresponding 3D nets are illustrated in Fig-
ure 3. We can see directly from the pattern of subgroup
domains that there is no isomorphism from one group to
the other that preserves the translational unit. In sub-
group 107, a long edge of the dodecagon passes along the
π/4−π/4 edge of a subgroup domain, but this is not the
case in the other subgroup, 103. The four-coordinated
vertex-transitive nets that arise from these subgroups
have 4-rings and 8-rings in the hyperbolic plane, and the
projection into E3 produces 4-rings in one case, and 6-
rings in the other. We recognize the net from subgroup
107 as being the alumino-silicate backbone of the zeo-
lite ACO [29] and the net derived from subgroup 103 as
ATN [30].

Finally, we study what happens when a given sub-
group is mapped onto two different surfaces. This sit-
uation is analogous to the previous one, except that we
must study an automorphism of the subgroup onto itself,
rather than an isomorphism between two different ver-
sions of the same symmetry. If there is an automorphism
of the subgroup that maps one set of surface relations
onto the other surface relations (e.g. the P onto the D)
then we will get isomorphic patterns in E3, otherwise
not.

We finish with a simple example of three different nets
obtained from the same hyperbolic pattern of four reg-
ular hexagonal tiles meeting at each vertex (illustrated
in Figure 4). The hyperbolic net can arise as the vertex-
transitive fundamental net for the 6222 group (number
93 in Table 1), and also from non-fundamental tilings
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Figure 3: Top: Two subgroup domain patterns with orbifold symbol *2244 (left image is from subgroup 107, right
from 103 in Table 1). These kaleidoscopic subgroup domains are fixed by mirror lines that bound a quadrilateral
with corner angles π/2, π/2, π/4, π/4. Each subgroup domain is assigned a different colour (seen in the electronic
version). In each case the coloured region is a single translation domain of the subgroup T , and has the same area
as the original dodecagon (shown as the black outline). Bottom: The corresponding vertex-transitive nets projected
onto the P surface and then relaxed to equalize edge lengths and angles.

of higher symmetry. When mapped onto the P ,D, and
G surfaces respectively, we obtain frameworks familiar
to solid state chemists as the aluminosilicate backbone
of sodalite (the zeolite SOD)[31, p.315], niobium oxide,
NbO [31, p.316], and S* (a lattice complex derived from
an 8-coordinated sphere packing)[31, p.320] and [32, Ta-
ble 14.3].

6 Conclusions

The output of this approach — 3D crystalline reticu-
lations — is similar to that of the program of O’Keeffe,
Friedrichs et al.[3, 4, 5]. The latter use tiling theory in 3D
euclidean space, we confine tiling aspects to 2D hyper-
bolic space. Both approaches have relative advantages

and disadvantages. The 3D euclidean approach is intu-
itively more clear, at the (considerable!) expense of hav-
ing to work in three flat instead of two curved dimensions.
Our technique is limited by the choice of TPMS, but ex-
tends to include multiple interwoven networks as well
as rod and helical packings[33]. Most importantly, both
techniques produce very large lists of examples once the
allowed symmetries of reticulations in 3D are decreased
(Friedrichs’ approach) or TPMS genus increases (our ap-
proach). Sensible filters must be applied for practical
purposes. Those filters result in complementary results
for both approaches, with significant overlap for the sim-
plest examples. These reasons encourage us to continue
on our path.
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Figure 4: The hyperbolic net with Schläfli symbol 6.6.6.6 is projected onto the P,D, and G surfaces to give 3D
euclidean nets sodalite, NbO, and S*.
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A Conway’s orbifold notation for
2D discrete groups

Every discrete group of symmetries, S, acting on a
2D space of constant curvature K (i.e. H2, E2, S2) is
uniquely characterised by its “orbit manifold” or orb-
ifold — a quotient of K by the action of S. Two-
dimensional symmetries are rotations about a point, re-
flections in (possibly intersecting) mirror lines, transla-
tions, and glide reflections. These induce cone points,
boundaries, handles and cross-caps in the orbifold. An
orbifold is therefore a compact connected 2d manifold
with boundary. Any such manifold is described by start-
ing with a sphere, removing discs to generate boundary
components, then adjoining handles or cross-caps. The
orbifold symbol is a compact encoding of this topology
and has the general form: o...oABC...*ab...*st...x...x.
The special symbols o,*, and x represent the topological
features of a handle, boundary component, and cross-cap
respectively. An orbifold has a metric induced from its
parent space, K, so it can also have distinguished points.
In particular, the upper-case letters represent cone points
where the total surface angle is 2π/A, rather than 2π.
The lower-case letters following each star, *ab..., list cor-
ner angles π/a, π/b, as they occur in cyclic order around
a boundary component. For example, o** is a torus with
two smooth boundary components; *22*22 is a cylinder
for which both boundary components have two corners
of π/2; 22xx has two cone points of order 2 (angle π) and
two cross-caps.

B The commensurate subgroups

In this appendix we present the subgroups commensu-
rate with the P,D, and G surfaces. In Table 1 we list
each subgroup orbifold, its index in *246, the number
of conjugate subgroups of this symmetry, and genera-
tors for the subgroup in the quotient group *246/T (the
translations in (1) must be added to obtain generators
for the full group). There is a complex set of relations
between these subgroups which is illustrated by a graph
of the maximal subgroup lattice shown in Figure 5. This
lattice is also available in a large high-resolution format
via the online supplementary material [26]. In the on-
line material each node of the lattice links to a subgroup
record. We include four sets of example images from
these subgroup records in Figure 6. These examples il-
lustrate the variety of symmetry operations that occur
in the subgroups from translations to glide reflections,
rotations and reflections of orders 2,3,4,and 6.
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Figure 5: The lattice of maximal subgroup relations for the 131 conjugacy classes of Table 1.
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Figure 6: Each frame above shows a Poincaré disc with a coloured region of 96 *246 triangles — an area equal to
that of the translation unit dodecagon. In the top row the colours are assigned so that each subgroup domain has a
different colour. In the bottom row the colours are assigned so that *246 triangles have the same colour when they
are equivalent under the subgroup symmetry action.
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Table 1: Subgroups of *246 commensurate with the P,D,G surfaces.

orbifold
symbol index conjugacy

class size subgroup generators in *246/T

1 ooo 96 1 identity
2 22222222 48 1 R3R1R3R1R3R1

3 xxxx . . R1R2R3R2R3R1R3R2R3

4 xxxx . . R1R2R3R1R2R3R2R1R3

5 xxxx 48 3 R1R2R3R1R3R1R3

6 o** . . R2

7 o2222 . . R3R2R3R2

8 oo . . R2R3R1R3R2R1R3R1

9 **xx 48 6 R1

10 **xx . . R3

11 o2222 . . R2R1

12 oo . . R3R1R3R1R3R2

13 o33 32 4 R3R1R3R1

14 222222 24 1 R3R2R3R2, R1R3R2R3R2R1

15 2222x . . R3R1R3R1R3R1, R1R2R3R1R2R3R2R1R3

16 222222 24 3 R2R1, R3R1R3R2R3R2R1R3

17 4444 . . R3R2

18 o22 . . R3R2R3R2, R1R3R1R3R2R1

19 22xx . . R3R2R3R2, R1R2R3R1R2R3R1

20 22** . . R1, R3R1R3R2R3R2R1R3

21 o22 . . R3R2R3R2, R3R1R3R2R3R1

22 22** . . R2, R3R1R3R2R3R2R1R3

23 2222* . . R2, R3R1R3R1R3R1

24 o22 . . R3R2R3R2, R2R3R1R3R2R1R3R1

25 *22*22 . . R2, R3R2R3

26 22xx . . R3R2R3R2, R1R2R3R2R3R1R3

27 222222 . . R3R2R3R2, R3R1R3R1R3R1

28 *22*22 . . R3, R2R3R2

29 22xx . . R3R2R3R2, R1R2R3R1R3R1R3

30 o* . . R2, R3R1R2R3R2R1R3R1

31 xxx . . R1R2R3R1R3R1R3, R3R1R2R3R2R1R3R1

32 22xx . . R3R2R3R2, R1R3R1R2R3R1R3

33 **x 24 6 R1, R3R1R3R1R3R2

34 *2222x . . R1, R2

35 22*x . . R2R1, R3R1R3R1R3

36 22*2222 . . R1, R3R1R3R1R3

37 22*x . . R1, R3R2R3R1R3R2R3R2

38 *** . . R1, R3R1R2R3R2R1R3

39 **x . . R2, R3R1R3R1R3

40 *xx . . R1, R3R1R2R3R2R1R3R2

41 *xx . . R2, R1R3R1R2R3R1R3

42 22*x . . R2R1, R3R1R2R3R2R1R3

43 o22 . . R2R1, R3R1R2R3R2R1R3R1

44 222222 . . R2R1, R3R1R3R1R3R1

45 *xx . . R3, R2R3R1R2R3R2R3R1

46 3xx 16 4 R3R1R3R1, R1R2R3R1R2R3R2

47 *3*3 . . R1, R3R1R3

48 *3*3 . . R3, R1R3R1

49 32222 . . R3R1R3R1, R2R3R2R1R3R2

50 6226 . . R3R1
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Table 1: Subgroups of *246 commensurate with the P,D,G surfaces.

orbifold
symbol index conjugacy

class size subgroup generators in *246/T

51 o3 . . R3R1R3R1, R2R3R1R2R3R2R3R1

52 3xx . . R3R1R3R1, R2R3R1R2R3R2R3

53 222x 12 1 R3R2R3R2, R1R3R2R3R2R1, R1R2R3R1R3R1R3

54 22222 . . R3R2R3R2, R1R3R2R3R2R1, R3R1R3R1R3R1

55 *222222 . . R2, R3R2R3, R1R3R2R3R1

56 2xx 12 3 R3R2R3R2, R1R3R1R3R2R1, R1R2R3R2R3R1R3

57 2*2222 . . R1, R2, R3R1R3R2R3R2R1R3

58 222x . . R3R2R3R2, R3R1R3R1R3R1, R1R2R3R1R2R3R1

59 2** . . R1, R3R1R3R1R3R2, R3R1R2R3R2R1R3R2

60 **22 . . R1, R3R2R3

61 o2 . . R3R2R3R2, R1R3R1R3R2R1, R3R1R3R2R3R1

62 44* . . R1, R3R1R3R2R1R3

63 2*x . . R1, R2R3R1R2R3R1R3

64 *4444 . . R2, R3

65 222* . . R1, R3R2R3R2

66 22*22 . . R2, R3R2R3, R1R3R2R1R3R1

67 22*22 . . R2, R3R2R3, R3R1R3R1R3R1

68 *2*2 . . R2, R3R2R3, R3R1R3R2R3R1

69 *22x . . R2, R3R2R3, R1R3R1R2R3R1R3

70 **22 . . R2, R3R1R3R1R3, R3R1R2R3R2R1R3

71 222* . . R2, R3R1R3R1R3R1, R3R1R2R3R2R1R3R1

72 2*x . . R2, R1R3R1R2R3R1R3, R1R3R1R3R2R1R3

73 2** . . R2, R3R2R3R1

74 44* . . R2, R3R1R3R2R1R3

75 22*22 . . R2R1, R3R1R3R1R3, R3R1R2R3R2R1R3

76 22222 . . R2R1, R3R1R3R1R3R1, R3R1R2R3R2R1R3R1

77 22222 . . R2R1, R3R2R3R1

78 2442 . . R2R1, R3R1R3R2R1R3

79 222x . . R2R1, R1R3R1R2R3R1R3

80 *2*2 . . R3, R2R3R2, R1R3R1R3R2R1

81 22*22 . . R3, R2R3R2, R1R3R2R3R2R1

82 *22x . . R3, R2R3R2, R1R2R3R1R2R3R1

83 *222222 . . R1, R3R1R3R1R3, R3R1R2R3R2R1R3

84 44x . . R3R2, R1R2R3R1R2R3R1

85 2xx . . R3R2R3R2, R3R1R3R2R3R1, R1R2R3R1R2R3R1

86 4224 . . R3R2, R1R3R2R3R2R1

87 4224 . . R3R2, R1R3R1R3R2R1

88 2** 12 6 R1, R3R1R3R1R3R2, R3R1R2R3R2R1R3

89 22*22 . . R1, R3R1R3R1R3, R3R1R2R3R2R1R3R2

90 2*2222 . . R1, R2, R3R1R3R1R3

91 *22* . . R1, R2, R3R1R2R3R2R1R3

92 2323 8 1 R3R1R3R1, R3R2R3R2

93 6222 8 4 R3R1, R2R3R2R1R3R2

94 62x . . R3R1, R1R2R3R1R2R3R2

95 *3x . . R3, R1R3R1, R1R2R3R1R2R3R2

96 *6262 . . R1, R3

97 22*3 . . R1, R3R1R3, R2R3R2R1R3R2

98 *3x . . R1, R3R1R3, R2R3R1R2R3R2R3

99 22*3 . . R3, R1R3R1, R2R3R2R1R3R2

100 2*222 6 1 R2, R3R2R3, R1R3R2R3R1, R3R1R3R1R3R1
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Table 1: Subgroups of *246 commensurate with the P,D,G surfaces.

orbifold
symbol index conjugacy

class size subgroup generators in *246/T

101 *22222 6 3 R1, R2, R3R1R3R1R3, R3R1R2R3R2R1R3

102 *22222 . . R1, R2, R3R2R3

103 *2442 . . R1, R3R2R3, R3R1R3R1R3

104 2*222 . . R1, R3R2R3R2, R3R1R3R1R3

105 **2 . . R1, R3R2R3, R3R1R3R1R3R2

106 4*22 . . R1, R2, R3R1R3R2R1R3

107 *4422 . . R2, R3, R1R3R2R3R1

108 2*44 . . R2, R3, R1R3R2R1R3R1

109 24* . . R2, R3R2R3R1, R3R1R3R1R3R1

110 24* . . R1, R3R2R3R2, R3R1R3R1R3R2

111 22*2 . . R2, R3R2R3, R1R3R2R1R3R1, R3R1R3R1R3R1

112 **2 . . R2, R3R2R3R1, R3R1R3R1R3

113 22*2 . . R2R1, R3R2R3R1, R3R1R3R1R3

114 2224 . . R2R1, R3R2R3R1, R3R1R3R1R3R1

115 3*22 4 1 R2, R3R1R3R1

116 434 . . R3R2, R1R3R2R1

117 2*33 . . R1, R3R1R3, R3R2R3R2

118 2322 . . R2R1, R3R1R3R1

119 *3232 . . R3, R1R3R1, R2R3R2

120 266 . . R3R1, R2R3R2R1

121 23x . . R1R2R3, R1R3R2

122 2*62 4 4 R1, R3, R2R3R2R1R3R2

123 *2422 3 3 R1, R2, R3R2R3, R3R1R3R1R3

124 *2232 2 1 R1, R2, R3R1R3

125 *434 . . R2, R3, R1R3R1

126 6*2 . . R2, R3R1

127 *662 . . R1, R3, R2R3R2

128 4*3 . . R1, R3R2

129 2*32 . . R2R1, R3, R1R3R1

130 462 . . R2R1, R3R1

131 *642 1 1 R1, R2, R3
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