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Abstract. A method is developed to construct and analyse a wide class of graphs embedded in Euclidean
3D space, including multiply-connected and entangled examples. The graphs are derived via embeddings of
infinite families of trees (forests) in the hyperbolic plane, and subsequent folding into triply periodic minimal
surfaces, including the P,D, gyroid and H surfaces. Some of these graphs are natural generalisations
of bicontinuous topologies to bi-, tri-, quadra- and octa-continuous forms. Interwoven layer graphs and
periodic sets of finite clusters also emerge from the algorithm. Many of the graphs are chiral. The generated
graphs are compared with some organo-metallic molecular crystals with multiple frameworks and molecular
mesophases found in copolymer melts.

PACS. 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling – 61.25.Hq
Macromolecular and polymer solutions; polymer melts; swelling – 61.30.Cz Theory and models of liquid
crystal structure

1 Introduction

Infinite crystalline 3D graphs, consisting of translation-
ally ordered arrangements of points (vertices) and lines
joining them (edges), are relevant to crystalline condensed
materials, including “hard” atomic and molecular crystals
and soft liquid crystals. Yet systematic derivation of these
graphs remains surprisingly undeveloped, with some no-
table exceptions [1–7]. There are many possible graphs in
3D Euclidean space, E3, not all of which are relevant to
condensed matter. In order to decide the controlling fac-
tors governing atomic or molecular assembly, it is useful
to have at hand a fuller catalogue of 3D graphs, including
networks of disjoint graphs. Here we discuss one route to-
wards denumeration of translationally symmetric graphs
in E3, introduced in [8]. The technique delivers a vari-
ety of non-trivial topological and geometric solutions, in-
cluding interwoven infinite graphs that are generalisations
of the pairs of interwoven 3D graphs found in molecular
crystals [9] and bicontinuous (meso)phases [10–13]. These
structures are applicable to novel polycontinuous molec-
ular crystal and liquid crystal phases. 3D arrays of inter-
woven disjoint 2D (mesh) structures, and arrays of finite
graphs (or clusters) are also generated by the process.

Two general features constraining possible graphs will
be imposed here. 1) Spatial homogeneity under its most
stringent form. All the patterns studied here are peri-
odic in the three independent directions of space. 2) Lo-
cal regularity, which is a loose way to demand a natural
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cutoff at short length scales. Depending on the system
at hand, this UV limit is due to e.g. stability limits of
the (meso)phase under study, bonding, hard-core or other
microscopic interactions, effective contributions involving
the curvatures, bending or other geometric parameters.
Ultimately, of course, these constraints will not guarantee
the physical relevance of a graph. But they do afford a sen-
sible starting point for the search for physically relevant
graphs.

We accordingly confine our geometric analysis to very
symmetric graphs, generated by particular decorations of
triply periodic minimal surfaces (TPMS) with 2D hyper-
bolic networks. We choose four TPMS of genus three (per
unit cell): Schoen’s gyroid (G), Schwarz’ P and D surfaces
(all three cubic) and the H surface (hexagonal) [13–15].
A fifth TPMS, the (cubic) I-WP surface of genus four [16],
is also mentioned briefly, to demonstrate the broader
applicability of the technique. The graphs are mostly
“Platonic” or “regular”, in that all vertices are identi-
cally disposed with respect to arrangements of edges and
neighbouring vertices and all vertex angles and edges are
equal. We control some aspects of the graphs by design
within the hyperbolic plane (H2); their final geometry and
topology is dependent on the embedding of the (slightly
distorted) 2D structure in E3. Within H2, the structure
consists of disjoint close-packed trees, that we call a for-
est. Once a forest is embedded in E3, branches of the
trees fuse, forming 3D crystalline nets that remain close-
packed in a specific sense we make clear in the paper. We
call these 3D arrangements thickets. The analysis does al-
low for generalisation to regular graphs on non-minimal
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surfaces, though minimal surfaces have a number of
interesting features: balance (mean curvature H =
0), hyperbolicity, homogeneous embedding in space,
smoothness and explicit parametrisation through the
Weierstrass-Enneper formula [14,15].

The paper is organised as follows. First we recall some
basic geometry of 2D hyperbolic space. We then outline
properties of graphs embedded in H2. We focus our at-
tention on regular graphs and show how to embed an un-
limited number of trees in H2. A mapping from H2 to E3

is introduced, that derives from analysis of the simpler
TPMS in E3. That mapping is used to generate examples
of thickets in E3, that are arrays of disjoint three-, four-
and six-coordinated graphs. In closing the paper, we dis-
cuss the relevance of the examples generated to condensed
atomic and molecular systems.

2 The hyperbolic plane, H2

There are a number of models of 2D hyperbolic geometry.
For convenience we use Poincaré’s conformal model of H2

in the unit disc (D2, whose boundary is the unit circle,
S1) [17]. The metric is radially symmetric about the ori-
gin of D2. The hyperbolic arc length ds is related to the
Euclidean arc length dr in the disc by

|ds| = 2|dr|
1− r2

where r is the radial coordinate. There is severe nonlin-
earity in the metric of the Poincaré disc model, so that S1

represents the points at infinity of H2.

2.1 Geodesics

Geodesics of H2 are represented in the Poincaré disc by
circular arcs that intersect S1 orthogonally. They can be
intersecting or parallel but they can also be ultraparal-
lel. Within the model, the parallel geodesics meet on
S1, while ultraparallel ones do not intersect anywhere on
D2 (Fig. 1).

2.2 Rotations and translations

The set of hyperbolic motions (transformations preserving
the metrics of H2) forms a continuous and non-commuta-
tive group. The operations preserving the orientation of
H2 include rotations (characterised by a single fixed point,
the centre of rotation) and translations (leaving two points
of the unit circle fixed in the Poincaré representation). The
improper motions (reversing orientation) are mirror reflec-
tions composed with any orientation preserving transfor-
mation.

The rotations around a fixed centre form a continuous
subgroup of H2. The trajectory of any point under this
group is a circle, or cycle. The set of translations with two
given fixed points at infinity also form a one-parameter
subgroup. The trajectory of a point x under this group is
a geodesic only if x lies in the (unique) geodesic connecting

(a) (b) (c)

Fig. 1. (a) Intersecting, (b) parallel and (c) ultraparallel
geodesics in H2.

the two fixed points. This guiding geodesic, as we call it,
is the only one left globally invariant by the translation.
Otherwise (that is, generically), the trajectory is an arc
of circle (in the Poincaré model) called a hypercycle. The
intermediate case, when the transformation leaves a single
point fixed at infinity, is a horocycle.

Contrary to E2, homogeneous dilatation is not a simi-
larity in H2. The vertex angles of regular polygons are not
fixed, but shrink as the polygon grows; indeed, the deficit
of vertex angles, compared with those of their Euclidean
counterparts, scales linearly with the (hyperbolic) area of
the polygon.

2.3 Regular tilings

The hyperbolic group contains a large variety of discrete
subgroups. Among the most tractable examples are the
so-called kaleidoscopic (or Coxeter) groups, generated by
pure mirror reflections [18]. These groups are labelled
here by their Conway orbifold symbol, ∗ab . . . [19]. (The
∗ prefix indicates that the fundamental domain of the
symmetry group is bounded by mirrors, and the digits
following that prefix refer to the order of centres of rota-
tional symmetry, ab . . . at vertices of the (polygonal) fun-
damental domain. The notation is explained in Ref. [19].)
Coxeter’s regular tessellations, or honeycombs, usually de-
noted {n, z}, are regular z-coordinated networks of poly-
gons with n-sides, where the vertices of each polygon lie
on cycles. Honeycombs are kaleidoscopes, with symmetries
∗nz2. They can also be seen as symmetric arrangements
of orthoschemes with all edges lying on mirrors of the pat-
tern.

The edge length a is determined by n and z; the
length required to form an {n, z} honeycomb is given by
hyperbolic trigonometry:

a = 2 cosh−1

(
cos(πn )
sin(πz )

)
. (1)

According to hyperbolic geometry, the area of a single
triangular orthoscheme is π(1/2− 1/z − 1/n). The union
of 2z of those triangles form a (Voronoi) cell of the dual
tiling {z, n} surrounding each vertex; the area of this
dual cell is the area of H2 per vertex, the inverse of the
density ρ of vertices in the hyperbolic plane. It follows that

ρ−1 = π

(
z − 2− 2z

n

)
. (2)

Honeycombs {n, z} are realisable in H2 for all val-
ues of n and z satisfying (n − 2)(z − 2) > 4. Consider
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(a) (b)

Fig. 2. Tilings of H2 by triply asymptotic triangles (with
vertex angles of zero) with kaleidoscopic ∗23∞ (a) and 2223
(b) symmetries.

the compact surfacesM , built as quotients ofH2 by trans-
lation subgroups of {n, z}. The Euler-Poincaré character-
istic χ(M), the number of vertices and the Gauss-Bonnet
integral (integral of the Gaussian curvature K over M) all
scale linearly with the index of the subgroup, so that we
can speak of an effective Euler characteristic per vertex (or
fractional Euler characteristic) χv = χ/V . Indeed, Euler’s
Theorem asserts that the Euler-Poincaré characteristic of
a surface (χ) is determined by the number of vertices (V ),
edges (E) and faces (F ) found in any network decorating
the surface, χ = V − E + F . Moreover, the {n, z} tiling
projected onto M satisfies 2E = zV = nF , so that:

χv = 1− z

2
+
z

n
· (3)

Notice that ρ−1 = −2πχv is consistent with the
(global) Gauss-Bonnet Theorem and the constant value
of the Gaussian curvature K(H2) = −1.

By duality (replacing faces by vertices, and vice versa,
as for {n, z} and {z, n}), ρ also describes the density of
faces of the duals.

2.4 Asymptotic tilings

For fixed n, as the edge length a grows, so does z. The an-
gles between adjacent edges shrink until they eventually
vanish. In this case, the edges become parallel and infinite
(although the polygonal area remains finite). The entire
hyperbolic plane can be tiled by copies of such “asymp-
totic” polygons. The most symmetric asymptotic trian-
gular tiling is shown in Figure 2a. As all adjacent edges
are parallel, the tiles can be translated relative to their
neighbours an arbitrary length along their edges, so that
a variety of other, less symmetric, tessellations are possible
(e.g. Fig. 2b).

The duals of asymptotic tilings are trees; in particular
the dual of the asymptotic ∗23∞ triangular tiling is a
Platonic three-coordinated Bethe lattice with equivalent
edges and vertices (Fig. 3a).

The dual construction can also be extended to the less
symmetric asymptotic tilings. In those cases, the dual con-
sists of an infinite collection of disjoint trees, a “forest”,
discussed in more detail below (Sect. 3.2).

(a) (b)

Fig. 3. (a) The Bethe lattice superimposed on its dual (the
asymptotic tiling in Fig. 2a). (b) The dual of the asymptotic
tiling of Figure 2b consists of an infinite number of disjoint
trees.

2φ

(a) (b)

Fig. 4. (a) A supercritical three-connected tree in H2, with
some of the vacant sectors indicated (bounded by the dashed
edges). (b) The convex hull of a tree (bounded by dotted
geodesics).

3 Forests in H2

3.1 Regular trees

A Platonic, or “regular” tree is entirely characterised by
its connectivity, z = 3, 4, ... and edge length a, a > at,
where at > 0 is a threshold value. The tree is regularly
embedded in H2 with maximal symmetry: all edges are
geodesic arcs of equal lengths and the angle between bran-
ches at each vertex is a multiple of 2π/z. We call it an
(a, z) tree, or T (a, z).

The threshold value at depends on z; its value is de-
rived in Section 3.1.1. If edges are shrunk to a < at, the
regular z-coordinated graph is generally self-intersecting
in H2 and its vertices densely fill H2. For a countable set
of values a < at (Eq. 1), the loops close up to form regular
polygons, yielding a hyperbolic {n, z} honeycomb, as de-
scribed in Section 2.3. For a = at, the vertices of T (a, z)
lie on horocycles, a marginal case that has been called a
“critical tree” [21].

If a > at, we get a regular (supercritical) tree, whose
vertices lie on hypercycles and are distributed inhomo-
geneously on H2 (Fig. 4), in contrast to the case of the
critical tree (Fig. 3a). So embedded in H2, a tree divides
the hyperbolic plane into several connected components,
or vacant regions. Each of them is bounded by an open
polygonal line, part of the tree. It contains radial sectors
which are cones emanating from all vertices and spanning
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the same part of the horizon as their including region. By
symmetry, they are all similar. For a z-coordinated tree, z
empty radial sectors emanate from every vertex (Fig. 4a).
The angular divergence 2φ of the sectors depends only on
the edge length a (> at) and the connectivity z of the
supercritical tree:

cos(φ) =
cos(πz )

tanh(a2 )
· (4)

From elementary geometry, the convex hull of a tree
may be defined in any of the following ways. i) As the
smallest convex set containing the tree. ii) As the sub-
set of H2 spanned by all the (geodesic) lines joining two
points of the tree. iii) As the complement of the union of
the sub-domains common to all the sectors within every
definite vacant region. That hull is an asymptotic poly-
gon, bounded by an unlimited number of parallel geodesic
edges (Fig. 4b). Following ii), above, the geodesics bound-
ing the convex hull form the envelope of the geodesics
linking all pairs of points in the tree. There is one bound-
ing geodesic in every vacant region; it is the line that ap-
proaches the tree most closely among all the geodesics
included in the same vacant region. This is discussed in
more detail in Section 3.2.1.

3.1.1 Tree group

A regular tree T is equivalent to a discrete hyperbolic
group GT , the stabiliser of T in H2, namely the subgroup
of hyperbolic motions leaving the tree globally invariant.
Depending on whether we consider H2 as the complete
hyperbolic group, or only as the group of proper (orienta-
tion preserving) hyperbolic motions, GT includes mirror
reflections, or not.

The complete tree group is kaleidoscopic, and gener-
ated by three mirrors A,B,C. These generators are best
described starting with a pair of edges e1, e2 forming an
angle of 2π/z at a shared vertex: mirror A lies along e1,
mirror B bisects the angle (e1, e2) and mirror C is on the
perpendicular bisector of e1. (Note that for odd values of z,
mirrorB also contains a pointwise invariant edge) (Fig. 5).

The proper group GT is generated by a z-fold rotation
R = AB centred on a vertex and a 2-fold rotation S = AC
centred at the midpoint of an edge ending at the same
vertex.

The combinations tk = SRk, k = 1, ..., z − 1, generate
the translation group TT of T ; it is a subgroup ofGT which
turns out to be the free group generated by t1, ..., tz−1.

Written as a Moebius transformation [22], the product
SR corresponds to a matrix whose trace has magnitude:

|trace(SR)| = 2 cosh(a/2) sin(π/z).

The threshold value occurs when SR is a horocyclic mo-
tion, that is when |trace(SR)| = 2, or

cosh(at/2) sin(π/z) = 1. (5)

e1

e2
A

B C

Fig. 5. Generators of the reflection group of arbitrary tree,
here with z = 5.

When a > at (|trace(SR)| > 2), the product t1 = RS is a
genuine hyperbolic translation.

The orbit of a vertex containing the centre of rotation
R (together with the adjacent edge) under the cyclic sub-
group tn1 , n = ...,−1, 0, 1, ... is one of the polygonal lines
of T (bounding a vacant region). The unique invariant
geodesic of t1 — the guiding geodesic of t1 — is the bound-
ing geodesic closest to the polygonal line. All the bounding
geodesics of the tree, defining its convex hull, can be ob-
tained similarly.

3.2 Close packed forests

We have seen that H2 can be planted with an infinite
collection of congruent trees, without overlaps, contacts or
intersections. That is possible provided there are regions
left vacant by a single T (a, z), in which case the angular
divergence of T (a, z) given in equation (4) exceeds zero.
Thus φ = 0 implies another expression for the critical edge
length:

at = 2 tanh−1(cos(π/z)), (6)

equivalent to that of equation (5).
Clearly, the density of these T (a, z) trees is maximised

when the bounding geodesics of pairs of neighbouring
trees coincide with each other, so that their convex hulls
share a common edge and the whole set covers H2 with-
out overlaps. We call this arrangement a “close-packed”
or “dense forest”, F (a, z) (mathematically speaking, our
forests would only be “relatively dense” inH2). This forest
is indeed dense: when trapped in such a forest, there are
only two escape directions: forward and backwards along
the geodesic separating the pair of closest trees which sur-
round you...

3.2.1 Distance

To quantify this notion of close-packing, we require a
measure of distance. The distance between two points is
the hyperbolic length of the (unique) geodesic arc join-
ing those points. The distance between a point x and a
tree T is the distance to the point y on T (a, z) closest
to x: d(x, T ) = miny∈T d(x, y). One could similarly de-
fine a distance between trees as the minimum d(x, y) over
{x ∈ T1, y ∈ T2}, however, this is an inappropriate mea-
sure for evaluation of densities. So we choose a different
convention.
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Fig. 6. A three-coordinated forest, showing three separating
geodesics (dashed), and a single linking quadrilateral.

If the trees have non-empty intersection, we set
d(T1, T2) to zero. If the trees do not overlap, first notice
that each of them is entirely contained in a vacant con-
nected domain of the other (both being infinite, see Fig. 4).
The polygonal boundary (in T1) of the region containing
T2 is designated as the polygon p1 of T1 facing T2 (or vis-
ible from T2, as we also say); reciprocally, T2 contains a
polygon p2 facing T1. For any x in the polygonal region
enclosing T2, the minimising y ∈ T1 lies in the polygo-
nal boundary p1; in other words, d(x, T1) coincides with
the distance to the polygonal line p1. We define the dis-
tance between two trees as the average of d(x, T1) over the
polygon p2 of T2 facing T1:

d(T1, T2) = lim
L→∞

1
L

∫
p2∩BL

d(x, T1) dx,

where BL denotes a hyperbolic disc of diameter L.
When the trees belong to a regular close packed forest,

the mutually facing polygons are parallel, in the sense that
the distance d(x, T1), is uniformly bounded as x runs along
p2; in fact, it is a periodic function of the abscissa x along
p2. Define a linking quadrilateral (q) as a quadrilateral
obtained by joining a pair of neighbour vertices of p1 to
a pair in p2 by geodesic arcs, the two pairs facing each
other (Fig. 6). Since both pairs are separated by an edge
of length a, and successive vertices lie at the same distance
from their partners in the other tree, the quadrilateral
q is a parallelogram (Appendix A). By periodicity, the
distance d(x, T1) is proportional to the area of a joining
quadrilateral q divided by the edge length a.

3.2.2 Density

Given a close-packed forest, F (a, z), linking quadrilaterals
q, introduced in the previous section, can be defined be-
tween all pairs of mutually facing edges. Globally, this de-
fines a tiling of H2 by quadrilaterals, with 2z tiles meeting
at every vertex. This tiling resembles the regular tessella-
tion, {4, 2z}, though the tiles are parallelograms rather
than regular squares.

The density of the forest, ρ, is the average number of
vertices per unit area. For a close-packed forest of regular

trees, T (a, z), it is equal to the density of vertices of the
tiling by q’s, since both sets of vertices coincide, viz.

ρ =
4

2z area(q)
· (7)

It turns out that there are a multitude of distinct reg-
ular close-packed forests. Any part of the forest, lying on
one side of a bounding geodesic, can be translated rela-
tive the rest (on the other side of the geodesic) by an ar-
bitrary translation along this geodesic. This gives regular
forests an infinite number of degrees of freedom. However,
such translations do not change the inter trees distance.
Further, a stronger result holds: all regular close-packed
forests of common tree coordination, z, have equal density,
and the maximal density of a (non overlapping) F (a, z)-
forest is independent of a.

A proof of these two statements is postponed to the
Appendix.

Given these results, we are free to shift the trees along
separating geodesics so as to bring symmetry operations
of neighbouring trees to coincidence without changing the
density of the tree packing. For example, shift T2 until
an A mirror of T2 (transversal to the guiding geodesics)
coincides with an A (or B or C) mirror of T1. The regu-
larity of the trees implies a set of coincidences, sufficient
to enlarge the symmetry group of the pattern to a full
discrete subgroup GF of H2, with compact fundamental
domain. The guiding geodesics (already supporting trans-
lational symmetries of neighbouring trees) may then also
become mirrors or glide reflections. In particular, we are
free to choose the particular geometric setting in which the
quadrilaterals q are regular hyperbolic squares, so that the
symmetry group of the forest becomes that of the honey-
comb group, ∗24(2z). Thus the density of any close-packed
forest F (z) is:

ρ =
1

π(z − 2)
, (8)

as follows at once from equation (2).

3.3 Examples

3.3.1 Three-coordinated forests, z = 3

The kaleidoscopic group relevant to the P/D/G surfaces
is ∗246, (to be discussed in Sect. 4.2), characteristic of the
{4, 6} honeycomb [23]. We derive forests commensurate
with this example first. Recall the parametrisation of the
tree by its edge length a. It follows from equations (5, 6)
that the shortest edge length that leads to a supercritical
tree commensurate with {4, 6} is that of an edge of the
regular 4-gon formed under the orbit of the 2 ∗ 32 symme-
try group, namely a = cosh−1(3). The orbit of the edge
under this group forms a close-packed forest, shown in
Figure 7a. The regular 4-gon of {4, 6} plays the role of a
linking quadrilateral (Sect. 3.2.1) for this forest of densely
packed (a, 3)-trees. Moreover the set of tree nodes coin-
cides with the set of 6-fold vertices of the tiling. It follows
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(a) (b)

Fig. 7. Forests of three-coordinated trees of symmetry 2 ∗ 23,
superimposed on the {4, 6} tiling. (a) Edges along an edge of
the {4, 6} tiling (length cosh−1(3)) and (b) edges along a square
diagonal (length cosh−1(5)).

(a) (b)

Fig. 8. Two forests of symmetry 2323. (a) Three-coordinated
forest with all edges equal to a double square diagonal,
cosh−1(15). (b) Limit case forest of three-fold trees in H2. Each
“tree” is made of just three lines meeting at a single vertex,
and is a three-fold star.

from equation 8 that the density of this forest — whence
of any close-packed three-connected forest — is π−1.

A sequence of forests can be generated that are com-
mensurate with the {4, 6} honeycomb, with successively
longer edge lengths, a (Figs. 7b, 8a). A slightly less diver-
gent tree results if a diagonal of the regular 4-gon is used
(a = cosh−1(5)), also of symmetry 2 ∗ 32 (Fig. 7b). Fur-
ther members in the sequence can be formed by “leapfrog-
ging” from previous members, using the rule that emerges
from the first pair. All members whose edge lengths exceed
cosh−1(5) have slightly lower symmetry than the first pair
of forests, viz. 2322. (This is also the relevant symmetry
for the first two members, if we restrict elements to proper
operations). The generators of this group are R,S, S1, S2

where R,S are the symmetry generators of the first tree
(described in Sect. 3.1.1) and S1, S2 are two-fold rotations
located at the centres of two 4-gons sharing a common
edge.

The limiting case of this sequence (initiated by Figs. 7,
8a) differs from finite members, in that each tree degen-
erates to a star-like graph, with a single vertex, and three
infinite edges (Fig. 8b).

There is an interesting connection between the first
and limit members of this sequence of forests. The edges of

Fig. 9. Four-fold forest of symmetry ∗2224, with edges of
length cosh−1(5) on {4, 6}.

the stars of the latter accumulate around specific geodesics
which are bounding geodesics of the former (boundary
lines of the convex hulls of the trees, Figs. 4b, 6). It is
also worth noting that the convex hulls of the degenerate
trees in the limit case are asymptotic triangles. The close-
packed nature of the limit forest implies that the triangles
tile H2; this is precisely the tiling shown in Figure 2b.

3.3.2 Four-coordinated forests

Forests consisting of trees of connectivity four are readily
built within the {4, 6} kaleidoscopic tiling characteristic
of the P,D, G family of surfaces. The density of these
forests is a half that of the z = 3 cases (cf. Eq. (8)), ρ =
(2π)−1. (An alternative derivation of the density follows
from recognition that the parallelogram q separating two
trees contains 12 orthoschemes and 4/8 = 1/2 vertices,
implying an area per vertex equal to 24 orthoschemes.)

An infinite sequence of four-connected forests can be
constructed, analogous to the three-connected case. The
first member has edges equal to diagonals of the {6,4}
tiling. This forest, F (cosh−1(5), 4), with symmetry ∗2224,
is shown in Figure 9, with vertices at the centres of some
of the regular 4-gons of the kaleidoscopic net. Higher order
members of the sequence are generated by joining next-
nearest neighbouring vertices, . . .

3.3.3 Six-coordinated forests

In order to derive graphs on other TPMS, we choose dec-
orations commensurate with symmetries other than the
∗246 symmetry characteristic of the cubic P,D and gyroid
G TPMS. Choose, for example, the ∗2226 kaleidoscopic
group, that is characteristic of the hexagonal H TPMS.
(cf. Sect. 4.2). A subset of the mirror lines of that group
leads to a semi-regular {4, 12} tessellation of H2 by hy-
perbolic parallelograms, with equivalent vertices, but two
distinct edge lengths. Those 4-gons can be taken as the ba-
sis for a family of six-coordinated forests joining nearest
vertices, diagonals, ...; as for the three- and four-connected
forests. The simplest six-coordinated trees contain edges
coincident with those of the 4-gon that contain a ∗6 junc-
tion of mirrors, and lengths exceeding the critical length
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(a) (b)

Fig. 10. Dense regular forests with symmetries (a) ∗2226 and
(b) 2226, commensurate with the ∗2226 kaleidoscopic group of
the H surface.

Fig. 11. A dense irregular forest commensurate with the kalei-
doscopic tiling of the H surface, of symmetry 22 ∗ 3.

for trees, at (Eq. (6)). In general, two possible edges can be
chosen, as the 4-gons are irregular. The resulting forests, of
symmetry ∗2226, illustrated in Figure 10, are dense, with a
vertex density of (4π)−1 (Eq. (8)). That is readily verified,
noting that there is a one-to-one correspondence between
vertices of the {4, 12} network, and invoking equation (2).
The second member of the sequence, with edges along di-
agonals of the {4, 12} tiles, has symmetry 2226 (and is
evidently also close-packed).

Other less symmetric six-coordinated trees can be su-
perimposed on the kaleidoscopic tiling of the H surface.
For example, a forest of symmetry 22 ∗ 3 whose edges are
the same length as in the 2226 forest, can be readily con-
structed, shown in Figure 11.

4 Mapping forests to graphs on TPMS

4.1 Mapping H2 into E3: coverings

Our ultimate goal here is to derive examples of packings
of disjoint regular graphs in E3. So far, we have seen how
to embed regular trees in a compact manner in H2.

The idea is to use TPMS and the theory of cover-
ings [24]. As H2 is the universal covering of all the sur-
faces of genus g > 1, there is a projection p mapping
the hyperbolic plane onto the surface M , in a way which
is locally faithful (one-to-one) but globally several-to-one;

each point x in the surface M is the projection of an in-
finite set of pre-images. This set, p−1(x), is the orbit of a
single member y0 under the fundamental group π1(M) of
the surface lifted as a translation subgroup of H2. (This
is analogous to a lattice in Euclidean geometry; the plane
E2 is the universal covering of the torus T 2, or any sur-
face of genus one, and the covering group is a 2D lattice.)
Through the projection p, a pattern in H2 will project
into M in a well defined way, provided this pattern is
symmetric under the translations of π1(M).

Moreover, when dealing with periodic surfaces, such as
the TPMS, we may require the final pattern in M ⊂ E3 to
have the same (translational) symmetry L(M) as the bare
surface. The lattice L(M) can also be lifted to H2, so that
there is a translation group T (M) representing both the
loops π1(M) and the symmetries L(M) of M . (Actually,
T (M) is the lift of the loop group of M/L(M), a compact
surface.)

4.2 Kaleidoscopic groups

The symmetry group of TPMS often contains symmetries
in addition to translations. For example, the P,D,G sur-
faces have cubic symmetry involving 24 proper rotations,
or 48 O(3) operations belonging of the full kaleidoscopic
group. Then the fundamental domain is a triangular or-
thoscheme which lifts, together with the point group, to an
orthoscheme in H2 [18,23]. Through the projective map,
and its (local) inverse, the universal cover of the TPMS
now contains a representation of the point group as a hy-
perbolic kaleidoscopic group, that may be derived from the
symmetry group of the Gauss map (whose range is in S2)
[25]. by “symmetry editing” [25], from S2 to H2 Note that
the resulting symmetries in H2 are precisely the in-surface
symmetries of the TPMS. Of course, this does not imply
that the graph has all the symmetries of the surface; in all
the examples of Section 3.3, the forest is invariant under a
subgroup strictly smaller than the symmetry group of M .

The tiling by orthoschemes offers a convenient refer-
ence frame to locate graphs in both H2 and the surface.
This allows us to perform the mapping from H2 to the
surface M even if, in general, we do not have an explicit
formula for this mapping. (Note that p can be made con-
formal if the surface is minimal.) In neighbourhoods of
special points (e.g. vertices of the tiling, Wyckoff posi-
tions, or flat points of the surface), the mapping is easier
to handle, because of symmetry or other properties, such
as vanishing of curvature.

The algorithm to determine the relevant symmetry of
the universal covering from that of the Gauss map of M
is simple for the surfaces we choose here: the locally iso-
metric family of genus three cubic TPMS’, the P,D and
G(yroid) surfaces, the genus three (hexagonal) H surface
and the genus four (cubic) I-WP surface. The fundamental
domains for the kaleidoscopic groups of the Gauss maps
of those TPMS can be found in [26]. Those domains are
spherical polygons, whose vertices are branch points of
known order b (possibly zero) [26]. The symmetry edits
of the corresponding hyperbolic orbifolds are obtained as
follows. Vertex angles of intersecting mirrors in H2 are
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Table 1. Kaleidoscopic symmetry groups characterising the
Gauss maps of some simpler TPMS in S2 (or, in the case of the
I-WP surface, a triple covering of S2), and corresponding sym-
metries of the representations of the TPMS in H2, the surface
genus per translational unit cell and space group symmetry
in E3.

Symmetry in

Surface S2 H2 E3 Genus

P ∗243 ∗246 Im3̄m 3

D ∗243 ∗246 Pn3̄m 3

G ∗243 ∗246 Ia3̄d 3

H ∗2223 ∗2226 P63/mmc 3

I-WP ∗ 4
32 4

32 ∗4242 Im3̄m 4

(a) (b)

Fig. 12. Picture of a square patch enclosing 8 fundamen-
tal orthoschemes of the kaleidoscopic group for the P , D and
Gyroid surfaces, viewed (a) in S2 by the Gauss map (or in E2

by additional stereographic projection) and (b) in H2 (with
axes showing relative orientations).

shrunk by a factor of 1
b+1 relative to those on S2. (Genus

three examples – the P , D, G and H surfaces – have first
order and the genus four example – the I-WP surface – has
second order branch points.) The relevant kaleidoscopic
groups are listed in Table 1; the P,D,G example is drawn
in Figure 12. Note that the members of an isometry class,
or Bonnet family, admit a common covering [27]. This is
the case for the three TPMS P,D and G which are Bon-
net transforms of each other; therefore the settings are
common to all three.

For the P,D,G examples, the kaleidoscopic group is
∗246, that allows a kaleidoscopic net of H2 containing only
triangles, each with vertex angles of π2 , π4 and π

6 (Coxeter’s
“orthoscheme” [28]). A regular subgraph of that tessella-
tion is the regular {4, 6} honeycomb, originally used by
Sadoc and Charvolin to characterise the P,D and G sur-
faces in H2 [23].

The kaleidoscopic nets of the H and I-WP surfaces
are less regular, with symmetries ∗2226 and ∗2424 respec-
tively. In both cases, the relevant fundamental domains
are geodesic quadrilaterals, with vertex angles of π

2 , π
2 , π2

and π
6 for the H surface, and π

2 , π
4 , π

2 and π
4 for I-WP

surface. Those angles alone are not sufficient to determine
the shape of the quadrilaterals (in contrast to the rigid-
ity of hyperbolic triangles with fixed vertex angles). The
domain for the I-WP surface consists of six adjoining hy-
perbolic triangles with vertex angles π

12 , π
3 and π

2 (joined

(a) (b)

Fig. 13. (a) The translation group of H lifted in H2, together
with a possible fundamental domain with 18 sides. (b) Another
fundamental region (dodecagonal) for T (H) and gluing vectors
of π1(H); the dotted lines marked by arrows become closed
loops in the projection mapping to surface H.

according to the scheme of Fig. 2a, Ref. [26]). The domain
for the H surface is a one-parameter family of quadri-
laterals, parametrised, for example, by an internal angle,
that defines the triangular decomposition of the quadrilat-
eral (Fig. 13). That one-dimensional continuum of kalei-
doscopic nets corresponds to the one-parameter family of
H surfaces, of variable ratio between their lattice param-
eters, c/a.

4.3 E3 embeddings of forests: thickets

We seek regular graphs in E3, derived from coverings of
the P , D, G and H surfaces. To maintain the regularity
of the trees in H2, we must ensure the scaling and place-
ment of the trees is compatible with the covering; namely
all vertices are located on identical points on the surface
and all edges are located on identical trajectories on the
TPMS. That implies that the trees in H2 must be “com-
mensurate” with the underlying kaleidoscopic group. In
the examples to be seen, the forest group GF will be a
subgroup of the kaleidoscopic group of the TPMS which
contains the translation group T (M), thereby fulfilling the
conditions required by the covering map.

The mapping introduced above leads to a multiple cov-
ering of the TPMS. To generate the E3 embeddings of
forests, we force to identity the translations of the hy-
perbolic kaleidoscopic group belonging to π1(M). For ex-
ample, in the case of P,D,G, the hyperbolic translation
groups contain six generators which project to six lattice
vectors in R6. The loop groups of those 3 surfaces have
a common subgroup which represents the loops of a sur-
face embedded in R6 and which is a covering common to
P,D,G. Indeed, the E3 embeddings of the TPMS can be
considered as linear projections, to E3, of the surface in
6D space (in fact, C3) [27]. In each case, a set of three
lattice vectors (whence a whole 3D sublattice) projects to
0 to form a Triply Periodic MS embedded in E3.

Those relations define the gluing pattern of the hyper-
bolic domain, and are specific to the particular TPMS,
distinguishing it from its isometric relatives. We consider
only forests that share translational symmetries with their
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(a)

(b)

Fig. 14. Projection, onto the D surface, of the sequence
of forests commensurate with the ∗246 orbifold group (char-
acterising the D/P/G surfaces): The forest in Figures 7a, b
map, respectively, onto (a), (b). The {4, 6} tiling is shown in
black. The (yellow) edges of the thicket link vertices which are
nearest-neighbours in (a), next-nearest neighbours in (b).

underlying surface (with one exception in Sect. 4.7.2), so
that the analysis of global gluings can be confined to a
single unit cell of the pattern.

The gluing patterns for the P,D,G surfaces can be
found in [23]. The gluings for the H surface are shown
in Figure 13b. These operations, required to form the
TPMS, also act on the forest. The gluings induce non-
contractible loops (“collar rings”) on the surfaces, so that
the embeddings of the ring-free hyperbolic forests in E3

are 3D thickets, often containing entangled networks. The
global structure of these thickets is discussed below.

The local form of projections of forests from H2 to
E3 is illustrated by projections of the first four members
of the sequence of forests illustrated in Figures 7, 8 onto
a portion of the D surface. The thicket edges shown in
Figures 14, 15 are geodesics on the D surface connecting
vertices of the {4,6} kaleidoscopic tiling (flat points on the
surface).

We occasionally admit some geometric deformation of
the thickets: curved edges are “rectified” with fixed end-
points, i.e. all vertex positions are frozen in E3. Some
examples are presented in the following sections.

(c)

(d)

Fig. 15. Projection of forests onto D (continued from Fig. 14).
Network (c) is the map of Figure 8a. Thickets (c) and (d) con-
tain edges of lengths cosh−1(15) and cosh−1(111.66 . . . ) respec-
tively (length measured in H2).

Fig. 16. The forest with a = cosh−1(3) — an edge of the
regular {4,6} tiling — folds on the P surface to form an array
of disconnected cubic clusters. The edges have been rectified.

4.4 Forests on Schwarz’ P surface

4.4.1 a = cosh−1(3)

Consider first the sequence of forests on {4, 6}, intro-
duced in Section 3.3.1. The simplest member, with edges
along an edge of the {4,6} tiling, F (cosh−1(3), 3) (Fig. 7),
folds on the P surface to form a disconnected lattice of
finite clusters, each of them equal to the set of edges



622 The European Physical Journal B

t1

t2

t3

t4

t5

t6

Fig. 17. Generators and dodecagonal fundamental domain of
the translation group T in H2 for the P,D,G minimal surfaces.

(and vertices) of an isolated cube (Fig. 16). The symmetry
of the whole graph is simple cubic (SC), identical to that
of the oriented P surface itself.

We can take, as fundamental domain (for translations
L(P ) = SC), the dodecagonal patch of the surface shown
on Figure 16. This patch (conformally) lifts into the semi-
regular dodecagon of Figure 17 in H2. The surface modulo
SC, in the 3D torus, is equivalent to the quotient of the hy-
perbolic plane by the (hyperbolic) translation group whose
fundamental cell is the dodecagon [23,27]. Once the op-
posite edges of the dodecagonal region are properly iden-
tified, there remains only a single connected component
in the graph (compare with Fig. 7a), which implies that
there is one component (in this case, cubic cluster) per
cubic unit cell. The side of the cluster is half of that of the
fundamental cell.

4.4.2 a = cosh−1(5)

Next, set a equal to the 4-gon diagonal in {4, 6}. This
forest, F (cosh−1(5), 3) (Fig. 7b), folded on the P sur-
face yields a multiply-connected graph with eight con-
nected components, all identical up to global transla-
tions (Fig. 20). All edges are face diagonals of the form
(± 1

2 ,±
1
2 , 0).

The translation lattice of the graph L(P ) is body-
centred cubic (BCC), corresponding to the translation
group of the P surface extended to include operations in-
verting the orientation of the surface. The P surface is
indeed a so-called balanced minimal surface [29] dividing
space onto two congruent components (congruence being
by translations of the type 1

2 (1, 1, 1)). L(P ) contains the
orientation preserving translations L(P ) = SC as a sub-
group of index two and the orientation reversing transla-
tion by 1

2 (1, 1, 1). A convenient fundamental cell for L(P )
is the dodecagon of Figure 18, with a half the area of the
dodecagon introduced above. We take the cubic edge of
L(P ) as the unit length.

The translation lattice of each component is 2BCC
(i.e. BCC with cubic edge of length two). Each compo-
nent is identical to a single chiral labyrinth graph of the
gyroid: the (10, 3)− a graph of Wells [1], also called +Y *

(a) (b)

Fig. 18. Small dodecagonal fundamental piece of the extended
translation group L for both the (a) P and (b) D surfaces.

1

23

4

5 6

1

2345
6

12
3

4 56

1234

5
6

1

23

4

5 6

1 234
5

6

12
34

56

1234

5
6

(a) (b)

Fig. 19. Generators and small dodecagonal fundamental do-
main of the extended translation group in H2 for the P and
D surfaces. The numbers label some of the vertices of the 12-
gon. (a) The generators of T (P ) (for the P surface) are re-
flections (through mirrors defined by the small edges of the
orthoschemes of {6,4}) composed with translations along the
arrows. (b) The arrows indicate glide reflections generating the
group T (D) for the D surface.

(right-handed) or−Y * (left-handed) [5]. When everything
is reduced modulo L(P ) (equivalent to projecting down to
the non-oriented torus), there is just a single component.
So, in E3, the number of components is just the index of
2BCC in L(P ) =BCC, which is indeed eight.

That the number of components modulo the lattice is
one can be readily seen in H2. Indeed, the semi-regular
dodecagon (Fig. 19a) is again conformally related to a
fundamental piece of the surface (Fig. 18a). The surface
in the (non-oriented) torus is equivalent to the quotient of
the hyperbolic plane by the (hyperbolic) glide reflections
shown on Figure 19a. Once the opposite edges of the do-
decagonal region are properly identified, one component
remains in the graph. In principle, the symmetry lattice
of the components (lift of 2BCC) could also be inferred by
taking the quotient of the forest group by the fundamental
group π1(P ) of the P surface. Then any residual transla-
tion of P (mapping graph vertices onto graph vertices by
construction) is a symmetry of the component provided
the two vertices (origin and image) can be joined by a
path within the graph. (Notice that the forest in the pre-
vious example, with shorter a, is not symmetric under the
extended group L(P ) of P .)
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(a)

(b)

Fig. 20. (a) 3-fold forest, with edge length cosh−1(5) on the
P surface. (b) The same graph, with its eight connected com-
ponents coloured distinctly.

4.4.3 Coordination z = 4

The covering projection p maps the four-coordinated for-
est of Figure 9 onto the P surface to form a graph with a
laminar structure, containing an infinite number of paral-
lel connected components. It consists of a stack of regular
2D square grids (edge = 2−1/2 in the former units), with
a spacing of 1/2 between the layers.

4.5 Forests on Schwarz’ D surface

4.5.1 a = cosh−1(3)

The shortest forest, F (cosh−1 3, 3), yields an entangled
graph in E3 consisting of four connected +Y * (or −Y *)
components, with 2BCC internal symmetry (Fig. 21). The
presence of four components can be established as follows.

(a)

(b)

Fig. 21. (a) 3-fold forest, with edge length cosh−1(3) on the
D surface. (b) The same graph, with its four connected com-
ponents coloured distinctly.

The translation symmetry of both the surface and the
graph in E3 is L(D) = SC. The SC translations do not
preserve the orientation of theD surface, therefore the sur-
face modulo SC is a non-orientable surface in the torus T 3

(as for the P surface). The orientation-preserving transla-
tions form a sublattice L(D) = 2 FCC (face-centred cubic)
of index two in L(D). The index of 2BCC in SC is four,
corresponding to the four components of the graph. (In-
deed, as can be checked in E3, there is just one component
in the graph modulo all the translations L(D)).

Note that the orbits of each component under either
SC or 2FCC yield the same pattern, namely the union of
four (all + or all −) Y * nets.

A possible fundamental patch of the surface for the
(orientation breaking) SC lattice is the small dodecagon
SDo (Fig. 18b). Its counterpart in H2 is shown in Fig-
ure 19b, together with a set of lifted mirror-translations
generating the extended translation group T (D). Com-
pared with Figure 7, it appears that the forest modulo
T (D) reduces to a single component in H2/T (D), leaving
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only one component in D/L(D). (This would not be the
case if the generators did not include (glide) reflections.)

4.5.2 a = cosh−1(5)

The next 3-forest, with a lying on diagonals of the regular
4-gons of the {4, 6} tiling of H2, folds in the D surface
to form a lattice of disjoint {3, 3} tetrahedra (displayed
in [30]). The tetrahedra enclose the nodes of only one of
the labyrinths of D, a diamond structure. The lattice of
translational symmetry is FCC.

4.5.3 Coordination z = 4

Our last example of a forest on the D surface is a well-
known bicontinuous structure. The 4-coordinated forest
F (a, 4), with a = cosh−1(5), folds on the D surface to
form a pair of identical entangled nets that are topologi-
cally equivalent to that of the diamond network (see [30]).
The edges lie along principal directions of the TPMS, and
are accordingly curved. We can straighten those edges in
E3 without moving graph vertices. The resulting regular
graph describes the labyrinth structure of the D surface
itself.

4.6 Forests on Schoen’s G surface

4.6.1 a = cosh−1(3)

When folded on the G surface, the forest F (cosh−1(3), 3)
becomes an entangled subgraph of the regular diamond
network, with two components, of the same chirality. All
the graph edges point along (111) directions (Fig. 24). The
symmetry group of the whole pattern is L(G) = BCC,
however, each of the two components has only SC trans-
lation symmetry (SC is a sublattice of index two in BCC).
This is consistent with the fact that the two components
are mapped onto each other by translations from L(G),
leaving only one component in T 3.

The covering of a fundamental patch of the G surface is
the dodecagon of Figure 17. (Only orientation-preserving
translations need be considered since the G surface is un-
balanced, at least by pure translations, ruling out glide
reflections). As already noticed, the forest F (cosh−1(3), 3)
consists of one component, modulo this translation group.
This confirms that there is only one component in T 3.

The coordination sequence [31–33] for either of the two
components is identical to that of the Y * graph, support-
ing the contention that each component is a deformation
of that network. The full graph thus consists of a pair of
entangled (and distorted) +Y * or a pair of −Y * nets.

4.6.2 a = cosh−1(5)

We turn next to the forest F (cosh−1(5), 3). Like the previ-
ous example, this folds in the G surface to form a network
subdivided into two connected components (Fig. 24c). The
translational symmetry of the pattern is BCC, as is the
symmetry of each component. The number of components
modulo the BCC lattice is also two, in agreement with the

(a) (b)

Fig. 22. (a) One of the two chiral components of the net in
fig. 24(c) after straightening of edges in E3. (b) A continuous
deformation, preserving periodicity, transforms it into the (+
or−) Y * net. The dots, forming a BCC lattice, are fixed points.

Fig. 23. The six-coordinated regular forest of Figure 10b
folds on the H surface to form a trio of identical rhombohedral
graphs, each isomorphic to the six-coordinated simple cubic
network.

result obtained in H2 for the forest, modulo the lattice
T (PDG) (compare Figs. 7b and 17). The set of flat points
on the G surface forms a BCC lattice (with parameter half
of the previous one). Since the unit cell of each component
is a three-coordinated star, containing four vertices (and
9/2 edges), only a half of the flat points are visited by a
single component. This confirms that there are two com-
ponents in the graph.

In this graph, all the edges (after straightening in E3)
are just cubic edges (1

2 , 0, 0) (and equivalent ones under
the cubic point group). Each component is, once again,
a deformation of a chiral Y * net, (Fig. 22). An explicit
possible interpolation scheme (isotopy, in mathematical
parlance) is to let the bonds equal

(e1, .., e6) =
1
4

 x x− 2 0 2− x 0 x

2− x 0 −x 0 −x x− 2
0 x x− 2 x 2− x 0


with x varying from zero (each component of the forest
on G) to unity (the cubic Y * net). At all stages during
the isotopy (x ∈ [0, 1]), the graph retains its connectivity
and its BCC translational symmetry (e.g. e1 − e3 + e4 =
(1

2 ,
1
2 ,

1
2 )).

4.7 Forests on Schwarz’ H surface

A unit cell of the H surface is projected from H2 as
shown in Figure 13b (by identifying origin and end
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(a)

(b)

(c)

Fig. 24. (a) 3-fold forest, with edge length cosh−1(3) on
the G surface. (b) The resulting pair of distorted chiral Y *
graphs, formed by straightening all edges while fixing vertices.
(c) 3-fold forest, with edge length cosh−1(5) on the G surface.

Fig. 25. Two views of a trio of three-coordinated nets in
the H surface generated from the transformation of Figure 27
applied to the forest shown in Figure 11.

Fig. 26. Two views of the triple graphite network embedded
in the H surface.
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of the loop translations). Embeddings of forests derived
from the irregular {4, 12} tessellation of H2 lead to a
variety of graphs, including novel three-component en-
tangled networks. The simplest forests in the z = 6 se-
quence of forests, with edges coincident with edges of the
4-gons (Fig. 10a), fold in the H surface to form two differ-
ent structures, corresponding to the pair of non-equivalent
edges in the rectangular 4-gon (cf. Sect. 3.3.3): one is a
lamellar stack of planar {3, 6} networks, the other is a 2D
lattice of infinite 6-coordinated chains. Each component
chain is a string of vertex-connected {2, 3} polyhedra.

The next member of the sequence contains edges span-
ning diagonals of the 4-gons (Fig. 10b). Three identical
entangled components result in E3, each a rhombohedral
deformation of the six-coordinated simple cubic graph,
Figure 23. (The latter is a single labyrinth of the P sur-
face.) In a way similar to the pair of labyrinths of P , re-
lated to each other by a translation along half a body
diagonal, the three entangled components of the trio are
mutually shifted by 1/3 of a body diagonal along the
ternary axis.

4.7.1 An irregular forest on the H surface

Another example of a trio of equivalent interwoven nets re-
sults from a distortion of the semi-regular six-coordinated
forest shown in Figure 11. Each vertex is replaced by a
symmetric three-armed star (Fig. 27), so that the coordi-
nation of all trees in the forest is reduced to three. Fold-
ing that irregular forest in the H-surface leads to a two-
parameter family of graphs: one parameter is related to
the axial ratio of the surface, and the other to the length
of the arms in the stars. One member of that family is –
after straightening of the edges – a regular embedding in
E3, giving a trio of entangled three-coordinated (8, 3)− c
graphs in E3 [1], with vertex angles of 2π/3, shown in
Figure 25.

4.7.2 Triple graphite

Our last example is a pattern of entangled 2D graphs,
composed of structures analogous to that described in Sec-
tion 4.4.3. Each component is doubly periodic and planar,
and the components are periodically stacked in directions
normal to each plane. In contrast to the previous exam-
ples, this final example has three replicas of this layered
pattern, disposed at 120 degrees to each other and mutu-
ally entangled to form an inter-growth of three graphite-
like networks (Fig. 26).

To build such a structure in E3, take a periodic stack-
ing (in the y direction) of hexagonal networks in the
x, z plane (either honeycombs or staggered edge-sharing
quadrilaterals, as in brick walls). Place a vertical ternary
axis (parallel to Oz) at distance a/

√
12 from the plane of

any component, and take the orbit of the laminar struc-
ture so that rotation around the axis induces a three-fold
symmetry axis. None of the resulting components intersect

Fig. 27. Transformation of (left) a six-coordinated vertex into
(right) four three-coordinated vertices.

Table 2. Summary of 3D thickets formed by decorating triply
periodic minimal surfaces (TPMS) with forests of coordination
(z) three, four and six. The right-hand columns show the num-
ber and type of the component nets, derived from projections
of the first two members of the sequence of forests (tree edges a
equal to, respectively, edges and diagonals of the 4-gons in the
relevant {4, z} tilings). 2D nets are labelled by their Schlaefli
symbol, {n, z}. (“def.” refers to geometric deformations of the
graphs that reduce their symmetries, with no change in graph
topology.)

TP Forest 1: a = edge Forest 2: a = diag.

z MS # component nets # component nets

3 P ∞ cubes {4,3} 8 Y * (Fig. 20)

D 4 Y * (Fig. 21) ∞ tetrahedra {3,3}
G 2 def. Y * (Fig. 24) 2 def. Y * (Fig. 22)

H 3 def. (8,3)-c (Fig. 25)

H ∞ stacks of {6,3}
(Fig. 26)

4 P ∞ stacks of {4,4}
D 2 diamond

6 H ∞ 6-strings, {2,6} 3 rhomb. net (Fig. 23)

H ∞ stacks of {3,6}

each other, and each 6-gon of one component is interlaced
by an edge of another component.

As shown in Figure 26, this network can be embedded
in the H surface; then, it is a projection, into that sur-
face, of a three-coordinated forest. Notice however that
the symmetry group of the periodic net is lower than that
of the naked surface. Indeed, in the horizontal x, y plane,
the generators of the lattice of the net are twice larger
than those of surface H. As a consequence, to lift the pat-
tern in the universal covering of H, one needs to consider
a translational domain made of, at least, four fundamental
cells of the H domains (Fig. 13).

5 Thickets in condensed matter – discussion

A variety of novel thickets, sometimes entangled or inter-
penetrating, have been generated by projection into E3

of regular forests in H2. The connectivity and dimension-
ality of these thickets ranges from entangled 3-periodic
crystalline graphs, layered stackings of 2-periodic nets, 2D
lattices of 1-periodic graphs and lattices of finite graphs.
We summarise the graphs generated in Table 2.
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The aim of this work was to look for generalisations
of bicontinuous topologies – characterised by a pair of in-
terwoven 3D nets – to generic multicontinuous structures.
One characteristic of such entangled structures is “maxi-
mal interpenetration” of interwoven nets, in the sense of
Wells [1], with all rings punctured by a graph edge. Our ar-
ticle deals exclusively with forests of close-packed trees in
H2. This restriction is not unreasonable. Were the graphs
to contain finite rings in H2, those rings would appear in
E3 as (contractible) loops, bounding a patch of the em-
bedding surface. But such rings cannot be threaded by
edges of the same (or any other) graph in E3. In other
words, contractible loops are not compatible with max-
imal interpenetration, or entanglement, and regular en-
tangled thickets must derive from projections of arrays of
hyperbolic trees.

A further convenient reason for starting with regular
trees is to allow formation of very symmetric thickets in
E3. Since regular finite-ring-size graphs in H2 necessar-
ily cover H2 uniformly and are connected, the resulting
graphs in E3 contain only a single component [20]. Dis-
connected graphs with loops can be constructed in H2,
but these are necessarily irregular, and require more com-
plicated motifs with symmetrically distinct vertices.

The emergence of chirality in many of these graphs
is an interesting feature, that is related to the mapping
from H2 to the TPMS. The choice of enantiomer depends
on the direction of tilt of the forest edges with respect to
the “gluing vectors” (involved in the map from H2 into
E3). If that tilt vanishes, the resulting graphs are achi-
ral, and chiral otherwise. (Notice that it seems impossible
to embed trees, without crossings of edges, in H2 that
would yield both left-handed and right-handed patterns
in E3, see Sect. 5.2.) The technique thus offers a conve-
nient recipe for generating a variety of chiral graphs in E3.
Such structures are of fundamental and commercial inter-
est, given the need to synthesise chemical sieves capable of
resolving racemic mixtures in to their enantiomeric com-
ponents. We know of no other route to generation of such
a wealth of chiral graphs.

Evidently, there remain an infinite number of other
possible constructions. We have derived only embeddings
in E3 of the lower order forests, whose edges link closely
neighbouring vertices of the kaleidoscopic tilings charac-
teristic of the TPMS. In addition to the higher order mem-
bers of the families of forests described above, we have
not considered more highly-coordinated forests. Further,
our analysis has been confined to the simpler genus-three
TPMS, though the technique is readily generalisable to
higher genus surfaces. We note, however, that the exam-
ples presented here are the simplest regular thickets, of
coordination three, four and six.

5.1 Liquid crystals

It remains to discuss the possible relevance of these struc-
tures to condensed chemical systems. It is now well estab-
lished that triply-periodic hyperbolic surfaces, specially

the P,D and G TPMS, describe well the structure of sur-
factant and lipid bilayers formed in amphiphile-water mix-
tures, and the arrangement of microdomains in copolymer
melts (for an overview, see [34]). These so-called bicon-
tinuous phases contain two maximally inter-penetrating
entangled network, or thickets, defined by the pair of
labyrinth graphs of the TPMS. The thicket defining the D
surface topology has been derived in Section 4.5.3. The P
surface thicket is readily derived as a projection onto the
surface of the regular ∗2626 forest, F (2 cosh−1(3), 6). (The
G thicket, with an enantiomeric pair of components, is a
projection of a forest with overlapping edges.) A number
of other regular entangled structures, that are maximally
interpenetrating, also emerge from our constructions.

The pair of identical enantiomers of distorted Y *
graphs in the G surface (Sect. 4.6) offers a novel chiral
bicontinuous morphology. Similarly, the maximally inter-
penetrating graphs consisting of four and eight identical
enantiomers of Y * graphs on theD and P surfaces are can-
didates for chiral quadra- and octa-continuous morpholo-
gies respectively. The possibility of such mixtures forming
chiral meso-structures is an interesting one, that deserves
serious attention.

Two novel (achiral) tricontinuous morphologies have
also been generated by projections of six- and
three-coordinated forests onto the hexagonal H sur-
face (Sect. 4.7). One is an attractive generalisation of
the bicontinuous P morphology, leading to three six-
coordinated component nets. The other has no bicontin-
uous analogue: it consists of three entangled hexagonal
(8, 3) − c nets (using the notation of Wells, [1]). These
offer promising candidates for novel mesophases.

In fact, this search for entangled nets was motivated by
reports of novel morphologies in molten condensed “star”
or “mikto-arm”copolymers, consisting of three immisci-
ble polymer blocks grafted to a common centre [35–37].
These molecules are known to assemble into three dis-
tinct micro-domains, driven by the enthalpic constraint of
micro-phase separation. Clearly, the two three-component
thickets described here offer feasible structural models
(with appropriate tuning of the volume fractions within
each continuous domain). It is worth noting that accord-
ing to transmission electron micrographs, the symmetry of
these three-arm copolymer assemblies is most likely rhom-
bohedral or hexagonal, though the reported structure of
Sioula et al. [37], based on electron micrographs, differs
from our tricontinuous ones, and is, in our opinion, less
attractive than the models derived here.

5.2 A complex molecular crystal: overlapping forests
and 3D thickets

These entangled thickets also offer novel models for crys-
tals containing multiple frameworks, found, for exam-
ple, in molecular crystals [38]. Indeed, the thicket con-
sisting of four interwoven identical enantiomers of Y *
on the D surface (Sect. 4.5) has been found recently in
a metallo-organic molecular crystal [39]. The molecular
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(a) (b)

Fig. 28. (a) The right handed part of the Melbourne struc-
ture embedded in D. (b) Slight deformation of (a), produced
by moving the vertices away from the surface along surface
normals.

crystal discussed here is indicative of the possible impor-
tance of these periodic thickets to condensed materials.

Abrahams et al. [40] have reported a fascinating exam-
ple related to this structure in the (organo-metallic) solid
state, consisting of eight interwoven networks (that we call
here the Melbourne structure). That structure too can be
derived from forests in H2, provided we extend somewhat
our algorithm. So far we have reticulated H2 with a sin-
gle net, we now start with a pair of overlapping nets on
the surface, then split them apart by pulling the nodes in
directions normal to the surface.

Each of the eight components of the Melbourne struc-
ture are, to a first approximation, Y * graphs. A half of
the components are left-handed, the remaining half right-
handed. The first group of four (Fig. 2 in [40]) exactly
coincides with the network described in Section 4.5.1 as a
regular three-coordinated net embedded in the D surface.
The same method generates a right-handed net: it suffices
to take the image of Figure 7a under a centre of inversion
located at any of the vertices of the forest. When folded in
the D surface, this forest provides a second group of four
three-coordinated networks, enantiomorphic to the first.

At this stage the vertices of the two groups coincide
in E3 (on the D surface), as they do in H2. We next
remove this coincidence, forming eight disconnected nets
with four left-handed and four right-handed components.
The surface normal provides a naturally balanced direc-
tion along which to translate vertices (Fig. 28). More pre-
cisely, impose an orientation on the surface; this specifies
a sign to the normal vector everywhere on the surface in a
manner preserving continuity along the surface. Then shift
the vertices of, say, the left-handed group along the pos-
itive normal and those of the right-handed group in the
opposite (negative) direction, both by the same amount
x. This, of course, induces some distortion of the graphs
(clearly visible in Fig. 4 of [40]), but all the vertices are
now distinct and separated by a distance at least 2x (for
some small x) (Figs. 29 and 30). This is precisely the Mel-
bourne structure [40].

STH thanks CO and Cergy-Pontoise University for hospitality
and financial support. CO thanks STH and Australian Na-

Fig. 29. Left- and right-handed parts of the Melbourne struc-
ture seen along a 4-fold axis. Top: the net as it lies in the D
surface. Bottom: the deformed net, forming left- and right-
handed components of the Melbourne structure.

Fig. 30. Template for the Melbourne structure.

tional University for the same. Both authors thank Stuart
Ramsden (Applied Maths, Canberra) for generating some of
the figures and discussions.

Appendix A

A few facts on the geometry of close-packed forests of reg-
ular trees are proven here. The notation is the same as in
Section 3.2.1. Let g be the geodesic separating two near-
est neighbour trees. Recall that g is the guiding geodesic
of t1.
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c

g

m1 m2

Fig. 31. A quadrilateral joining two trees and the mirror lines
(dashed) entering the decomposition of the motion mapping
one tree onto the other.

A1 The area of the linking quadrilateral q is invariant
when one tree is shifted with respect to the other by
any translation along the guiding geodesic.

A2 The area of the linking quadrilateral q is the same for
all regular close-packed forests F (a, z) (a varying, z
fixed).

A.1 Independent of shift

By construction, the polygonal line p1 is periodic, that
is invariant under the translations tk1, k = ±1,±2, ... The
same is true for p2, the polygonal line part of T2.

Moreover, the tree T2 is the image of T1 by a glide re-
flection along g and the same operation maps the polygo-
nal line p1 onto p2. Now the glide reflection can be decom-
posed into a product of three reflections, mgm1m2, where
m1 and m2 are reflections through mirrors both perpen-
dicular to g; m2 can, freely, be chosen to coincide with
a symmetry mirror of the first tree T1 (still perpendicu-
lar to g, of course). Then m1 is fixed at distance half the
translation amplitude of the glide along g (not necessar-
ily commensurate with any symmetry of the tree). Finally
mg is reflection through the geodesic g (Fig. 31).

Taking into account the symmetries of the regular
trees, there is a point c on g which is the centre of a
rotation by π mapping T1 onto T2. Indeed the glide reflec-
tion of T1 is mg m1 m2 T1 = mg m1 T1, because m2 is a
symmetry of T1. Now R2 = mg m1 is a two-fold rotation
centred at the intersection c of the lines m1 and g.

Taking m2 to be the perpendicular bisector of the edge
common to q and T1, it follows that the joining quadrilat-
eral q is a parallelogram (its symmetry group is {1, R2}).
We can use this symmetry to split q, along geodesic g, into
two congruent parts so that its area is twice the area of
any of those half parts.

When the tree T2 is shifted (along g) with respect to
T1, the quadrilateral is deformed (by a kind of hyperbolic
shear), but its area does not change. This is proved in
Figure 32: The deformed quadrilateral q̃ (or, rather, its
fundamental half) can be transformed into q by cut and
paste of a triangle leaned against g. This proves A1.

Fig. 32. Shifting one tree with respect to its neighbour induces
a shear of the joining quadrilateral. Considering the half parts
below the separating geodesic g, the difference between the two
(deformed and undeformed quadrilaterals) appears to be a pair
of triangles clearly translates of each other (by t1).

A.2 Independent of edge length

To prove A2, we can take A1 into account (to shift the
trees if necessary) and assume that the forest has maxi-
mal symmetry: the mirrors m1,m2 coincide. In this case,
the half quadrilateral q (which is still a quadrilateral) has
angles π/2, π/2, π/z, π/z at the vertices. So its area is

area(q) = 2π
(

1− 2
z

)
(A.1)

(to check this, cut the half q into two triangles by one of
its diagonals; the angles are, respectively, (α, β, π/z) and
(π/z−α, π/2−β, π/2); this yields areas equal to π/2−α−β
and π(1/2−2/z)+α+β whose sum gives area(q)/2). This
expression is indeed independent of a.

With equation (7), equation (A.1) provides an alter-
nate derivation of equation (8).
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