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Introduction
Almost 80 years have elapsed since Bernal and Fowler explored the 
notion of structure at the atomic scale in liquid water.1 While not the 
earliest attempt to explain the physical anomalies of liquid water, the 
ZRUN�UHPDLQV�D�¿UP�VWDUWLQJ�SRLQW�WR�UDWLRQDOLVH�WKH�VWUXFWXUH�RI�OLTXLG�
water as a function of temperature. At last count, these number more 
than sixty distinct anomalies,2 e.g. melting and boiling temperature, 
GHQVLW\��FRPSUHVVLELOLW\�DQG�VSHFL¿F�KHDW�YDULDWLRQV with temperature.3 
Two related principles, both deduced from relatively SULPLWLYH�;�UD\�
scattering studies of water, were articulated in Bernal and Fowler’s 
paper. First, water has a tendency to form networks with tetrahedral 
V\PPHWU\��7KH�QHW�HGJHV�DUH�K\GURJHQ�ERQGHG�2�· · · h í�O units, 
branched at oxygen vertices (the net nodes), with four edges at each 
vertex. second, liquid water is a mixture of two distinct structural 
forms of low and high density, whose proportions vary on heating 
or cooling. The lower density form was related to silica polymorphs, 
namely tridymite (structurally equivalent to the Ice Ih, the most 
common form of ice at ambient pressure) and quartz. (later, following 
the discovery of a new intermediate silicate phase (keatite), Bernal 
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suggested this silicate phase as a better water analogue.4) he proposed 
that on heating, liquid water approaches the structure of more common 
ideal liquids (such as PHWDOOLF� PHOWV��� DQG� DGRSWHG� D� FXELF� FORVH�
SDFNHG�PRGHO�IRU�WKH�KLJK�GHQVLW\ form. eventually, Bernal rejected 
WKDW� ³WZR�VWDWH´�PRGHO� DV� EHLQJ� WRR� FU\VWDOORJUDSKLF�� DQG� IRFXVVHG�
instead on structural features of random networks, or “heaps”,4 whose 
local coordination was approximately tetrahedral, initiating WKH�¿HOG�
of statistical geometry. In this model, he assumed that liquid water is 
a single homogeneous “continuum” material rather than a mixture, 
similar to more recent descriptions of packed granular materials such 
as sand piles. like conventional covalently bonded crystals, heaps 
can be described as nets, albeit geometrically disordered, given 
some criterion for the presence of edges linking pairs of grains (e.g. 
minimum separation).

since Bernal’s time, the rise of numerical simulations, and the 
development of synchrotron and neutron scattering as well as other 
experimental techniques, has seeded newer models. Variants of the 
WZR�VWDWH� PRGHO� KDYH� EHHQ� UHSHDWHGO\ proposed, characterised by 
states of relatively lower and higher density, (see, for example,2,5) and 
the putative presence of smaller polymolecular water FOXVWHUV��ÀRDWLQJ�
in a sea of more or less disconnected molecular species. Further, the 
formation of water “strings” in the liquid state has been proposed 
on the basis of absorption spectroscopy data,6 since disputed.7 It is 
somewhat sobering to realise that despite the central importance of 
water structure, our picture of the structure of liquid water remains 
unresolved. evidence supporting these structurally distinct models: 
PXOWL�VWDWH��VWULQJ�DQG continuum are still inconclusive.

A part of that apparent confusion surely lies in the various techniques 
used WR�SUREH�³ZDWHU�VWUXFWXUH´��'LVWLQFW�WHFKQLTXHV�IURP�;�UD\�DQG�
neutron VFDWWHULQJ�� WR�;�UD\�5DPDQ��;56���[�UD\�DEVRUSWLRQ� �;$6��
and [�UD\�HPLVVLRQ�VSHFWURVFRS\��;(6��VDPSOH�ZLGHO\�GLVSDUDWH�WLPH�
and length VFDOHV��,W� LV�DJUHHG�WKDW�ÀXFWXDWLRQV�LQ�ORFDO�VWUXFWXUH�DUH�
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very rapid. For example, protons freely shuttle back and forth between 
adjacent oxygen atoms, ÀLSSLQJ�K\GURJHQ�ERQGV�IURP�2�· · · h í�O 
to O í�h · · · O, probably occurring at the picosecond time scale. In 
WKH�DQDO\VLV�EHORZ��ZH�LJQRUH�WKRVH�VPDOO�VFDOH temporal and spatial 
ÀXFWXDWLRQV��WR�FRQVWUXFW�D�³]HURWK�RUGHU´�PRGHO��WKDW averages over 
macroscopic volumes and very short time scales, corresponding 
to the effective structure sensed by scattering studies (that probe a 
macroscopic water sample at attosecond time scales). The model is 
strictly topological in scope, without appeal to physics or chemistry. I 
am interested in exploring what can be concluded about liquid water 
in the absence of any underlying hypotheses of geometric, chemical or 
physical nature. We shall see that this bold mission is in fact impossible. 
To arrive at some structural predictions then, I introduce some (and as 
little as possible) metric data, namely O · · · h í�O distance data and 
surface to volume ratios of tessellating surfaces.

here I revisit Bernal’s original hypothesis in the light of more recent 
data. My primary goal is to construct as simple a model as possible 
that is consistent with current data. I emphasise that this analysis 
cannot clarify the “higher order” models guiding debates around local 
VSDWLDO�DQG�WHPSRUDO�ÀXFWXDWLRQV in bulk water. hopefully, however, 
it can afford a simple foundation on which PRUH�UH¿QHG�GHFRUDWLRQV�
must rest.

how does this analysis relate to the topic of the celebrated debate 
between Galileo Galilei and his adversary ludovico delle Colombe? 
I will not address the central issue of the debate: why these densities 
adopt their relative values in crystalline and amorphous states. rather, 
the analysis outlined in this article relies on accurate density data 
as an input to deducing the network structure of liquid water. In my 
YLHZ�� LW� LV�FUXFLDO� WR�GHGXFH�D�¿UP�SLFWXUH�RI� WKH�VWUXFWXUH of liquid 
water before engaging in the original debate topic. Therefore, this 
FRQWULEXWLRQ�ZUHVWOHV�ZLWK�WKDW��GLI¿FXOW��SUHDPEOH�WR�WKH�GHEDWH�RQO\�
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2 Current best data on local structure of water
scattering studies of liquid water are useful probes of bulk water 
liquid structure. The technique differs little from the earliest efforts to 
understand liquid water YLD�;�UD\�GLIIUDFWLRQ�E\�%HUQDO��D�SLRQHHULQJ�
crystallographer without peer. scattering methods cannot tell us the 
actual geometry of the arrangement of water molecules in the liquid 
VWDWH�� GXH� WR� WKH� DEVHQFH� RI� ORQJ�UDQJH� JHRPHWULF order. however, 
WKH\� DOORZ� UHFRQVWUXFWLRQ� RI� WKH� DWRPLF� WZR�SRLQW� FRUUHODWLRQ 
function (or radial density function, “rdf”) between pairs of hydrogen 
and oxygen atoms in the sample – a coarse, but somewhat helpful 
structural measure.

Most recently, skinner and colleagues have collected and analysed 
an impressive suite of scattering data collected from synchrotron 
radiation.8�5HFRQVWUXFWLRQ�RI�WKH�ZDWHU�UGI�LV�VLJQL¿FDQWO\�EHWWHU�WKDQ�
previous efforts, due to instrumental advances. data was analysed 
IURP�D�UDQJH�RI�GLIIHUHQW�ZDWHU�VDPSOHV��ERWK�FRQ¿QHG�DQG�XQFRQ¿QHG��
IURP� ���ƕ����ƕC.9 In order to obtain g(r)Oí2 between oxygen atoms 
alone, the h í�h and O í�h contributions must be subtracted. here, 
additional data is required, as direct probes of O and h contributions 
to the synchrotron scattering are impossible. skinner et al. use neutron 
scattering data, arriving at a concise estimate of g(r)OíO . The analyses 
reveal a linear dependence of the (spatially average) O · · · h í�O 
distance in OLTXLG�ZDWHU�� EHWZHHQ������c� DW� �ƕ� DQG� �����c� DW� ���ƕ, 
viz.:9 

                        d(O í�2�� ��������T + 2.7954                            (1) 
where d(O í� O)� LV� WKH� LQWHU�R[\JHQ� VSDFLQJ� LQ� c� and T is the 
temperature (ƕC).

Integration of g(r)OíO , to give the number of O atoms coordinated 
to a central O, revealed an isosbestic crossover at d(O í�2�� �����c�
at all temperatures, with a coordination number of 4.3.9 They propose 
this distance then DV� FKDUDFWHULVWLF� RI� WKH�¿UVW� FRRUGLQDWLRQ� VKHOO� RI�
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O atoms in the average water liquid structure, whose dimensions are 
¿[HG� EHWZHHQ� PHOWLQJ� DQG� IUHH]LQJ�� 7KLV assumption is arguable, 
JLYHQ� WKDW� WKH�YDQ�GHU�:DDOV� UDGLXV�RI�2�DWRPV� LV�����c� implying 
WKDW�2�DWRPV�WKDW�DUH�QRW�+�ERQGHG�DUH�DOVR�FRXQWHG�ZLWKLQ�WKH�¿UVW 
coordination shell (also going some way to explain the fact that the 
coordination number exceeds 4, that of an ideal tetrahedral liquid). It 
is however a useful working assumption for further analysis. Indeed, 
IURP� DGGLWLRQDO� LGHQWL¿FDWLRQ of the second “coordination shell”, 
the authors deduce OíOíO angles that are very close to the ideal 
tetrahedral angle (109.5ƕ), varying between 108 í�112ƕ.9

7KLV� GDWD� RIIHUV� ¿UP� VXSSRUW� WKHQ� IRU� %HUQDO¶V� RULJLQDO� VWUXFWXUDO�
hypothesis: that liquid water is a tetrahedral network, at least averaged 

Aqua Reticulata: topology of liquid water networks

Figure VI.1.  The C60 net (tic in ref. 11) drawn as a schlegel diagram in the 
WZR�GLPHQVLRQDO�HXFOLGHDQ�SODQH��YLD��IRU�H[DPSOH��VWHUHRJUDSKLF�SURMHFWLRQ�
from WKH�QHW�RQ�WKH�VSKHUH�WR�WKH�FRPSOH[�SODQH��7KH�WZR�GLPHQVLRQDO�ULQJV�
of C60 DUH����DQG���ULQJV�RQO\�
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over macroscopic volumes. In our topological analysis that follows, 
we adopt the simpler assumption that liquid (and crystalline) water 
is a network with (on average) four +�ERQGHG� QHLJKERXUV� DURXQG�
each O atom. From a topological perspective, a network is a spatial 
embedding (in our case in three euclidean dimensions) of a graph, 
a suite of connected edges and vertices with neither placement in 
space nor metric extent. Further, the location of the h atom between 
+�ERQGHG�2 atoms (i.e. O · · · h í�O) assigns a direction to each 
edge, so the water network is a directed graph at any instant, with, 
at least on average, two incoming and two outgoing edges linked to 
each O vertex within the graph. The edge directions are relevant to 
liquid water physics, but we ignore them here, and consider only the 
XQGLUHFWHG�JUDSK��ZKLFK�ZH�DVVXPH�LV�D�GHJUHH�IRXU�JUDSK��DYHUDJHG�
over all vertices), corresponding to the four edges emanating from 
each vertex. here I use the term “graph” to denote the topological 
structure of a network and “net” the spatial embedding of the graph 
(adopting, loosely the terminology in ref. 10, with the exception 
that “nets” here can be geometrically ordered and crystalline, or 
disordered).

2.1 Two and three-dimensional rings in a net embedded in three-
dimensional space
The graph topology is captured, in part, by its ring structure. In an 
LQ¿QLWH network (e.g. the ideal network of Ice I), cycles with arbitrarily 
large numbers of vertices are formed. There is, however, a minimal 
set of smallest rings whose XQLRQ�GH¿QHV�WKH�HQWLUH�QHW��³6WURQJ�ULQJV´�
KDYH� EHHQ� GH¿QHG� IRU� SHULRGLF graphs embedded in three spatial 
dimensions via tilings, by O’Keeffe and colleagues.10 however, this 
VHW�RI�F\FOHV��ZKLFK�DUH�WKH�WKUHH�GLPHQVLRQDO�ULQJV� includes strong 
rings whose edges are also contained in more than one other ring, 
JLYLQJ� FORVHG�� SRO\KHGUDO� WKUHH�GLPHQVLRQDO� ³WLOHV´�� :H� SUHIHU� WR�



151

exclude those redundant rings, giving a minimal set of rings, such 
that each edge is common to only two rings. One way to detect those 
ULQJV� LV� WR� ¿QG� DQ� RULHQWHG� ��PDQLIROG� �D WZR�GLPHQVLRQDO� VXUIDFH��
able to support a reticulation whose topological structure is that of 
WKH�JUDSK��7KLV�FRQVWUXFWLRQ�LV�FOHDU�LQ�WKH�FDVH�RI�VLPSOHU�¿QLWH nets 
WKDW� IRUP� UHWLFXODWLRQV� RI� WKH� ��VSKHUH�� 7KLQN�� IRU� H[DPSOH�� RI� WKH�
GHJUHH�� net of sp2 carbon atoms in the fullerene C60. Cycles can be 
found in the net with XS� WR����YHUWLFHV��EXW� WKH�QHW� VLWV� LQ� WKH� WZR�
dimensional sphere such that all cycles can be made up of sums of 
HGJHV�RI�WKH�HOHPHQWDO����DQG���ULQJV�LQ�WKH net (see Figure VI.1). We 
LQWXLW�D���VSKHUH�HPEHGGLQJ�RI�WKH�EXFNPLQVWHUIXOOHUHQH net, since the 
VPDOOHVW�F\FOHV�LQ�WKH�QHW�IRUP�D�UHWLFXODWLRQ�RI�WKDW���PDQLIROG� An 
underlying manifold for more complex nets is often less evident, and 
WZR�GLPHQVLRQDO� JHRPHWU\�� ZKLFK� FODVVL¿HV� ��PDQLIROGV� DFFRUGLQJ�
to its topological genus and underlying Gaussian curvature, offers a 
useful guide.

For example, the graphene net (pbz) is often described as planar, 
since it reticulates WKH� XVXDO� WZR�GLPHQVLRQDO� HXFOLGHDQ� SODQH�� �)RU�
convenience, I label nets and their underlying topological graphs by 
D�WKUHH�OHWWHU�FRGH�LQ�bold script from the rCsr catalogue)11 since 
this net has three hexagons around each vertex, we describe it by the 
WZR�GLPHQVLRQDO�YHUWH[�V\PERO��������� 7KH�WZR�GLPHQVLRQDO�YHUWH[�
V\PERO�HQFRGHV�LQ�F\FOLF�RUGHU�WKH�ULQJ�VL]HV�RI�DOO the faces that share 
a vertex in the net. In contrast, the fullerene C60 net (tic), with vertex 
V\PERO����������UHWLFXODWHV�WKH�WZR�GLPHQVLRQDO�VSKHUH��,I���ULQJV are 
inserted into the graphite network, giving a net with vertex symbol 
(6.8.8), WKH� UHVXOWLQJ� QHW� UHWLFXODWHV� K\SHUEROLF� ��PDQLIROGV�� ZLWK�
negative Gaussian curvature (in place of the zero and positive Gaussian 
curvature characteristic of WKH� SODQH� DQG� WZR�GLPHQVLRQDO� sphere 
respectively). examples, reticulating the G, d and P triply periodic 
PLQLPDO�VXUIDFHV��FDQ�EH�IRXQG�RQ�OLQH��DW epinet.anu.edu.au/sqc12886, 
epinet.anu.edu.au/sqc9271 and epinet.anu.edu.au/sqc9265 respectively. 

Aqua Reticulata: topology of liquid water networks
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All three crystalline nets are derived from a single underlying 
hyperbolic (6.8.8) net (epinet.anu.edu.au/UQC19). This hyperbolic, 
WZR�GLPHQVLRQDO�SLFWXUH RI�FU\VWDOOLQH�QHWV�LV�DW�¿UVW�HQFRXQWHU�DQ�RGG�
ZD\�WR�GHVFULEH�WKHVH�VWUXFWXUHV��WKDW�DUH��DIWHU�DOO��WKUHH�GLPHQVLRQDO�
crystals. For example, the pbz net (see rcsr.anu.edu.au/nets/pbz), a 
novel form of graphite, is more conventionally described as a cubic 
DUUD\�RI�WZLVWHG���ULQJV��DUUDQJHG�LQ�D�WKUHH�GLPHQVLRQDO�ODWWLFH��%XW�
this net topology is exactly reproduced by the (6.8.8) reticulation of 
WKH�'�VXUIDFH��PHQWLRQHG�DERYH�

/LNH� WKH� SODQH� DQG� VSKHUH�� WKH� '�VXUIDFH� LV� D� WZR�GLPHQVLRQDO�
space, or a ��PDQLIROG��.|QLJ¶V�7KHRUHP�JXDUDQWHHV�WKDW�ZH�FDQ�¿QG�
D���PDQLIROG� IRU� DQ\ net. More accurately, the theorem asserts that 
any connected graph may be embedded in an orientable surface to 
form the edges and vertices of a map.12 $�PDS� LV� D� VHW� RI� VLPSO\�
connected regions (faces on the surface), bounded by the edges and 
vertices of the graph. Note that a face may have a single edge that 
appears more than once on its boundary, in which case the face winds 
surrounds a channel of the surface. Given that possibility, the theorem 
is almost trivial, since for any graph we can form a map simply by 
LQÀDWLQJ all edges to tubes, and merging the tubes smoothly, to give a 
VSRQJH�OLNH��DQG almost inevitably hyperbolic) surface, with one tube 
per graph edge. That HPEHGGLQJ�KDV�MXVW�RQH�IDFH��ZLWK�ULQJ�VL]H�HTXDO�
to the total number of edges on the graph. In general, however, this is 
a redundant embedding, with far more tubes, and far larger faces, than 
necessary. Among the various possible WZR�GLPHQVLRQDO�HPEHGGLQJV�
for the net, we choose the minimal embedding,13 with the simplest 
topology among all oriented surfaces. (Note that here the term 
“minimal” refers to the surface genus, and is unrelated to “minimal 
surfaces”, discussed below.) This topological constraint is a sensible 
one, since it implies �YLD�(XOHU¶V�IRUPXOD��EHORZ��WKDW�ZH�¿QG�WKH�VHW�RI�
VPDOOHVW�IDFHV��RU�WZR�GLPHQVLRQDO�ULQJV��7KDW�FKRLFH�LV�HTXLYDOHQW�WR�
¿WWLQJ�DQ�RULHQWHG���PDQLIROG WKURXJK�WKH�WKUHH�GLPHQVLRQDO�QHW�VXFK�
that it passes through all net nodes DQG�HGJHV��DQG�PD[LPLVHV�WKH�WZR�
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dimensional density of nodes in the manifold (the number of nodes per 
XQLW�DUHD��� �7KLV� WZR�GLPHQVLRQDO�GHQVLW\� LV�GLVWLQFW IURP�WKH� WKUHH�
dimensional density.) For example, a graph of edges of the tetrahedron 
can be embedded on a tubular surface with three channels emerging 
from all four distinct nodes, and meeting up to form a tubular surface 
whose tubes lie on edges of the tetrahedron. That embedding (which 
is maximal) LV�RQ�D�JHQXV�WZR�VXUIDFH��ZLWK�RQH�IDFH�RI�ULQJ�VL]H�HTXDO�
to the number of HGJHV��VL[��DQG�WZR�GLPHQVLRQDO�YHUWH[�V\PERO�������
In contrast, the minimal embedding is on the genus zero sphere, with 
IRXU�WULDQJXODU�IDFHV��ZLWK�WZR�GLPHQVLRQDO�ULQJ�VL]H�HTXDO�WR�WKUHH��
DQG�WZR�GLPHQVLRQDO�YHUWH[�V\PERO���������� In general, the detection 
RI� WKH� �PLQLPDO�� RULHQWHG�� ��PDQLIROGV� IRU� DQ� DUELWUDU\� LQ¿QLWH� QHW��
FU\VWDOOLQH�RU�GLVRUGHUHG��LV�D�GLI¿FXOW�SUREOHP���7KH�LQYHUVH problem, 
WR�HQXPHUDWH�LQ¿QLWH�FU\VWDOOLQH�QHWV�DV�UHWLFXODWLRQV�RI���PDQLIROGV� 
forms the basis of the (SLQHW project.14) The net topology software 
Topos FDQ�� LQ� PDQ\� FDVHV�� GHWHFW� ��PDQLIROGV� WKDW� VXSSRUW� LQ¿QLWH�
crystalline nets and offers a useful route,15 though the full power 
of this numerical approach requires further exploration. In general, 
the minimal manifold is not unique. however, in some cases, we do 
NQRZ� WKH� ��PDQLIROG� PLQLPDO� HPEHGGLQJ�� $� IXOOHU� GHVFULSWLRQ� RI�
some known examples can be found elsewhere.16 In general, WKH�WZR�
dimensional rings are a subset of the rings described by the extended 
WKUHH�GLPHQVLRQDO�YHUWH[�V\PERO�17 They are also a subset of the rings 
that GHVFULEH� IDFHV� RI� WKH� WKUHH�GLPHQVLRQDO� WLOLQJ�� LQWURGXFHG� E\�
O’Keeffe (ref. 10 DQG�OLVWHG�RQ�OLQH�DW�rcsr.anu.edu.au/nets).

7KH�UHODWLRQVKLS�EHWZHHQ�WZR�DQG�WKUHH�GLPHQVLRQDO�ULQJV�LV�FOHDU�
IRU� VLPSOHU� LQ¿QLWH� QHWV� For example, in the sod� QHW� �WKH� DOXPLQR�
silicate skeleton of the zeolite sodalite, rcsr.anu.edu.au/nets/sod) a 
VXEVHW�RI� WKH� WKUHH�GLPHQVLRQDO� ULQJV� OLH LQ� WKH���PDQLIROG�� IRUPLQJ�
WKH� WZR�GLPHQVLRQDO� ULQJV�� ZKLOH� WKH� UHPDLQLQJ� WKUHH�GLPHQVLRQDO�
ULQJV� IRUP� ³FROODUV´� DURXQG� FKDQQHOV� RI� WKH� PDQLIROG�� 7KH� WKUHH�
dimensional ring symbol (the vertex symbol) for sod is (4.4.6.6.6.6).17 
If a pair RI���ULQJV�VKDULQJ�D�FRPPRQ�YHUWH[��DQG�QR�HGJHV��LV�VHOHFWHG�

Aqua Reticulata: topology of liquid water networks
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as collar rings, the P surface emerges as the support surface, and the 
WZR�GLPHQVLRQDO�ULQJV�DUH WKH�UHPDLQLQJ�ULQJV��JLYLQJ�WZR�GLPHQVLRQDO�
symbol (6.6.6.6) (as illustrated at epinet.anu.edu.au/UQC3); selection 
RI�D�SDLU�RI���ULQJV�DV� WKH�FROODUV� UHVXOWV� LQ the minimal embedding 
RQ�WKH�'�VXUIDFH��ZLWK�WZR�GLPHQVLRQDO�V\PERO���������� (illustrated 
at epinet.anu.edu.au/UQC4). (here just one symbol describes all 
vertices, since they are topologically equivalent in the sod net.). In 
fact, a number of embeddings of hyperbolic nets on minimal surfaces 
give the sod net, as shown at epinet.anu.edu.au/sqc970. The minimal 
embedding for sod is WKH�����������UHWLFXODWLRQ�RI�WKH�'�VXUIDFH��VLQFH�
this has the smallest average WZR�GLPHQVLRQDO� ULQJ�VL]H� A more 
detailed discussion of this issue can be found at ref. 18.

,W�LV�XVHIXO�WR�LQWURGXFH�DQ�DYHUDJH�WZR�GLPHQVLRQDO�ULQJ�VL]H�

                                     

where     denotes the sum over all net vertices, and      the sum over all 

� �

zi 
WZR�GLPHQVLRQDO�ULQJV�WKDW�VKDUH�YHUWH[�i��6R��LI�WKH�WZR�GLPHQVLRQDO�
vertex symbol IRU�D�GHJUHH�IRXU�QHW�LV��n1, n2, n3, n4),

                             

(so that, for example,  <n(2)> ������IRU�WKH�����������PLQLPDO�HPEHGGLQJ�
of sod discussed above. Values of <n2)> for various silicates can be 
taken from earlier work.16 Note that the estimated values of <n(2)> for 
keatite (lon) and coesite (coe) are unknown, however, they can be 
bounded above and EHORZ�IURP�WKH�IDFH�VL]HV�LQ�WKH�WLOLQJV�RI�WKHVH�
nets.11 Keatite (kea, described at rcsr.anu.edu.au/nets/kea��KDV�WKUHH�
dimensional rings (5.5.5.7.8.8) (4 x multiplicity per unit cell) and 
(5.7.5.7.5.7) (8x PXOWLSOLFLW\���/LNHO\�WZR�GLPHQVLRQDO�ULQJ�V\PEROV�
are therefore ((5.5.5.7) (4x) DQG�������������[���ZKHUH�WKH�¿UVW�YHUWH[�
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W\SH� LV�DVVXPHG� WR�KDYH� ODUJHU���ULQJV surrounding channels (collar 
ULQJV���7KH�WZR�GLPHQVLRQDO�ULQJ�VL]H�LV�WKHQ�

        

6LPLODUO\��WKH�WKUHH�GLPHQVLRQDO�ULQJV�RI�WKH�ULQJV�RI�WKH�coe net (rcsr.
anu.edu.au/nets/coe) have symbol (4.8.4.9.6.8) and (4.6.4.6.8.9). The 
WZR�GLPHQVLRQDO�ULQJ�VL]HV�DUH�WKHUHIRUH�ERXQGHG�EHORZ�E\�����������
and (4.6.4.6) and above by (4.9.6.8) and (4.6.8.9), corresponding to 
DQ�DYHUDJH�WZR�GLPHQVLRQDO�ULQJ�VL]H��<n2)>, within the interval [5.12, 
6.13].  (I have used the notation <n2)> to emphasise that this refers to 
WKH� WZR�GLPHQVLRQDO�PHDVXUH� RI� ULQJ�VL]H��ZKLFK� H[FOXGHV� DOO� ULQJV�
except those that bound IDFHV�WKDW�WLOH�WKH�XQGHUO\LQJ���PDQLIROG��7KLV�
LV�GLVWLQFW�IURP�WKH�XVXDO�WKUHH�GLPHQVLRQDO�ULQJ�VL]H��ZKLFK�LQFOXGHV�
FROODU�ULQJV� DQG� RWKHU� F\FOHV� ZKRVH� KRPRWRSLHV� DUH�PRUH� FRPSOH[�
than the (null homotopic) cycles contributing to <n2)>). 

3 silicate network polymorphism
Water and silica are the dominant chemical species on the earth’s 
surface. They share structural features: for example, both typically form 
tetrahedral networks. It is often stated that – like framework silicates 
±�ZDWHU�H[KLELWV�DQ�XQXVXDO�GHJUHH�RI�VWUXFWXUDO�ÀH[LELOLW\��HYLGHQFHG�
by the wealth of ice phases formed at low temperature under pressure. 
however, its polymorphism pales in comparison to silicates. While less 
than twenty phases of ice are known, over a hundred distinct crystalline 
�DOXPLQR��VLOLFDWH�IUDPHZRUNV�DUH�UHFRJQLVHG�DQG�FDWDORJXHG�19

6LOLFDWHV� FDQ� IRUP� ]HUR��� RQH��� WZR��� RU� WKUHH�GLPHQVLRQDO� QHWV��
according to the number of independent translations vectors that 
GH¿QH� WKHLU� VWUXFWXUH� 7KUHH�GLPHQVLRQDO� ³IUDPHZRUN´� �RU� ³WHFWR´��
silicates are conveniently sorted into three classes, according to their 
WKUHH�GLPHQVLRQDO� IUDPHZRUN� GHQVLW\�� ³GHQVH´�� ³LQWHUPHGLDWH´� DQG�
“rare” (Table 1).

Aqua Reticulata: topology of liquid water networks
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Table 1: Tetrahedral silicate networks, listed according to their 
idealised density, from GHQVH� VLOLFDWHV� WR� ORZ�GHQVLW\� ]HROLWH�
frameworks (all assumed to have stoichiometry siO2). density and 
ULQJ�VL]H�SDUDPHWHUV�DUH�GH¿QHG�LQ�WKH�PDLQ�WH[W�

class examples net Id density, 
ȡg

topological 
density, 

Td10

2d ring 
size, 

<n(2) >

dense coesite coe 869 1318 ���������

Į�TXDUW] Į-qtz 790 1231 6

keatite kea 746 1225 5.68

ȕ�quartz ȕ�TW] 686 1231 6

tridymite lon 666 1027 6

amorphous 
silica

660

intermediate
(clathrasils)

melanophlogite mep 580 1058 5

rare 
(zeolites)

sodalite sod 530 791 4.80

analcime ana 570 933 4.80

gmelinite gme 450 694 4.57

]HROLWH�=.�� N¿ 450 681 4.57

/LQGH�7\SH�$ lta 430 641 4.80

zeolite rho rho 430 641 4.36

faujasite fau 380 579 4.36

The physical density of framework silicates is a measure that often 
depends RQ�WKH�SUHVHQFH�RI�LQWHUVWLWLDO�RU�LQWUD�IUDPHZRUN�VSHFLHV�DQG�
partial substitution of silicon atoms by aluminium or other cations 
in the framework, as well as variable degrees of framework collapse 
on dehydration. In order to compare silica with water polymorphs, 
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consider an idealised silicate net, with silicon atoms at net nodes, and 
R[\JHQ�DQLRQV�DW�PLG�HGJHV��:H�WKHUHIRUH�FRQVLGHU the hypothetical 
net, containing only tetrahedral atoms at nodes, in its fully expanded 
form, realised by the most symmetric, barycentric embedding of the 
net topology.20 A dimensionless measure of the geometric net density, 

ȡȖ is ȡȖ:  103vl3/V where v is the number of tetrahedral nodes in the 

volume V, and l is the length of net edges (which are generally all 
equal in the maximally symmetric and least dense form).

7DEOH� �� VKRZV� D� JHQHUDO� WUHQG� RI� LQFUHDVLQJ� �WKUHH�GLPHQVLRQDO��
density with LQFUHDVLQJ� ULQJ�VL]H�� 7KLV� FRUUHODWLRQ�� DW� ¿UVW� JODQFH�
FRXQWHU�LQWXLWLYH�� QHYHUWKHOHVV� HPHUJHV� QDWXUDOO\� ZLWKLQ� D� WZR�

Aqua Reticulata: topology of liquid water networks

Figure VI.2. �D�� $� IUDJPHQW� RI� D� GHJUHH�WKUHH� WUHH�� 9HUWLFHV� RI� WKH� WUHH�
are labelled with integers corresponding to the number of edges between 
the central (origin) node of the tree and those vertices. shells within the 
tree fragment are formed by the set of all vertices with equal indices. (b) 
(PEHGGLQJ�RI�WKH�GHJUHH�WKUHH tree in the (Poincaré model of the) hyperbolic 
plane, such that all edges are of equal length, and the tree is regular with 
symmetrically identical vertices and edges. Vertices in equivalent shells now 
lie on the perimeters of hyperbolic circles. (One shell is indicated by the 
dashed circle.) (c) Formation of a WKUHH�ULQJ�LQ�WKH�WUHH�E\�IXVLQJ�WKH�DUURZHG�
tree vertices. Closure of an n�VLGHG ring is accompanied by pruning of all 
vertices in one branch beyond one vertex in shell ]n/2[ (where ] [ denotes the 
integer part of the fraction).
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dimensional perspective by the following argument (adapted from the 
original discussion of Bukowinski et al.21). )LUVW��ZH�GH¿QH�D�PHDVXUH�
RI� WKUHH�GLPHQVLRQDO� GHQVLW\� WKDW� LV� LQGHSHQGHQW� RI the geometry 
of the net: the topological density. This number is formed from a 
decomposition of the net into topological “shells”, formed as follows. 
each vertex is labelled with an index, 

� �

vi, equal to the number of edges 
in a shortest path traversed from that vertex back to a vertex (

� �

v0) 
assigned as the origin. The net is thus layered into concentric shells 
containing the set of vertices with 

� �

vi� ��������������DQG�WKH�QXPEHU�RI�
vertices in each successive shell, 

� �

Ni, forms an integer coordination 
sequence.22 Figure VI.2(a) LOOXVWUDWHV� WKLV� FRQVWUXFWLRQ� IRU� D�GHJUHH�
WKUHH�WUHH��:H�GH¿QH�WKH�WRSRORJLFDO�GHQVLW\�DV�

                                       

The maximum possible topological density results from a 
�GHJUHH�]��QHW�WKDW is a tree, i.e. with no closed cycles, since then each 
node in the net acts a source for z í�1 nodes in the next shell, giving a 
topological density,

                         

which grows exponentially fast with the maximum shell number S.
exponential growth is consistent with the growth of shell perimeter 

with radius, itself exponential if the shells form a series of concentric 
circles of linearly increasing radius in the hyperbolic plane (h2). This 
FRQÀDWLRQ� RI� D� WRSRORJLFDO� IHDWXUH�� QDPHO\� WKH� WRSRORJLFDO� GHQVLW\��
with metric dimensions is a loose one, but qualitatively exact if one 
embeds the net such that all edges have equal length, in which case a 
tree indeed reticulates h2 (Figure VI.2(b)).23

The formation of a cycle in the tree involves the pruning of all 
vertices from the tree due to a root vertex in the cycle, since that root 
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vertex is “grafted” onto another vertex to form the closed cycle (Figure 
VI.2(c)). The smaller the ring, the closer to the origin of the net the root 
vertex lies, so the larger the number of vertices pruned from the tree 
to form the net. Conversely, large rings lose fewer vertices during this 
pruning and grafting operation. This argument explains qualitatively 
the paradoxical direct correlation of topological density with ring size 
in a net.

In order to derive a quantitative correlation, consider the embedding 
of the QHW�LQ�D���PDQLIROG��VXFK�WKDW�HDFK�YHUWH[�RFFXSLHV�DQ��DVVXPHG�
constant for simplicity) area of ȍ in the surface. From differential 
geometry, we can express the geometric density, ȡg�� GH¿QHG� DERYH��
in terms of the net topology, via the degree of the vertices (the bond 
valency), z�DQG�WKH� WZR�GLPHQVLRQDO�ULQJ�VL]H of the net, <n2)>. The 

geometric density               ) where A�LV�WKH�DUHD�RI�WKH���PDQLIROG�

ZLWKLQ�YROXPH�9��7KH�*DXVV�%RQQHW�7KHRUHP�DOORZV�XV� WR� H[SUHVV�
A LQ� WHUPV� RI� WKH� VXUIDFH�DYHUDJH� RI� WKH�*DXVVLDQ� FXUYDWXUH� RI� WKH�

manifold over area A contained within the volume V,                       

namely  $ �pc   , where Ȥ� LV�WKH�(XOHU�3RLQFDUé characteristic of the 

portion of the surface contained within volume V. The geometric 
density can then be rewritten in terms of a dimensionless VXUIDFH�WR�

area measure, the “homogeneity index”,                                             . 

The geometric density is then: 

7KH�¿QDO�IRUP�RI�WKH�GHQVLW\�UHODWLRQ�IROORZV�IURP�(XOHU¶V�IRUPXOD��

Aqua Reticulata: topology of liquid water networks
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which relates the characteristic Ȥ to the net topology as follows. The 

usual form of euler’s formula is                              where v, e and f  

denote the number of vertices, edges and faces (bounded by the WZR�
dimensional rings with size <Ȟ2)>) of the net in the volume V. But    , 
the number of edges emanating from a single vertex, is equal to     
since each edge is associated with a pair of vertices. likewise,     is 
equal to ȗ/<Ȟ2)    since each vertex contains 1/<Ȟ2)    of each of the z rings 

around that vertex. euler’s formula can then be rewritten in terms of 
the net topology only, viz.:16

                            

In keeping with the paper’s focus on topology to the exclusion of 
geometry (as far as possible), we prefer to discuss topological density 
(TD10) in preference to the geometric density measure ȡg. This measure 
of density correlates well with geometric density as shown in Figure 
VI.3. Indeed, the correlation holds from the least dense framework 
silicate (faujasite, fau) to the densest tetrahedral silicate polymorph, 
coesite (coe), with an approximate relation:

  TD10� �Nȡg and  k §�1.58 for the silicate data of Figure VI.3.
It makes sense, then, to recast the issue of geometric structure, 

and derivative quantities, including geometric density, in terms of 
topological measures alone. We can write a “normalised” topological 
density as:

   
                                                                                                     (2)

Stephen Hyde
z/2,
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This equation describes surprisingly well the variation of 
topological density ZLWK� WZR�GLPHQVLRQDO� ULQJ�VL]HV�� ZLWK� D� VLQJOH�

parameter, Ȥ� �NȘ/ȍ3/2  ����� � � � � ,  as shown in Figure VI.4. Though 

possibly treasonable, it is nevertheless not unreasonable to claim that 
WKH�YHU\�VLPSOH�SLFWXUH�VNHWFKHG�KHUH��RI�WKUHH�GLPHQVLRQDO�FKHPLFDO�
QHWZRUNV�DV�WZR�GLPHQVLRQDO�UHWLFXODWLRQV�RI�K\SHUEROLF�PDQLIROGV�LV�
a valid ¿UVW�RUGHU�DSSUR[LPDWLRQ�

7KUHH� SDUDPHWHUV� LQÀXHQFH� WKH� PDJQLWXGH� RI� WKH� WRSRORJLFDO�
density: the scaling between topological and geometric densities, k, 
QRUPDOLVHG�VXUIDFH�WR�YROXPH�UDWLR��h��DQG�WKH�DUHD�LQ�WKH���PDQLIROG�
occupied by each vertex (i.e. siO2 group), ȍ. The silicate density 
data suggests that k is constant. The fraction h/ȍ3/2 is therefore also 

Aqua Reticulata: topology of liquid water networks

Figure VI.3.  Topological vs��JHRPHWULF�GHQVLW\�IRU�D�QXPEHU�RI�GHJUHH�IRXU�
�WHWUDKHGUDO�� VLOLFDWH�QHWV��3RO\PRUSKV� DUH� ODEHOOHG�E\� WKHLU� WKUHH�OHWWHU�QHW�
code from ref. 11 and split into three regions: zeolites, clathrates and dense 
silicates, listed in Table 1.
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approximately constant for the range of silicates, from rare zeolites to 
the dense frameworks. The value of h is dependent on the geometry 
RI� WKH� ��PDQLIROG� DQG� LWV� HPEHGGLQJ� LQ� WKUHH�VSDFH� The simplest 
K\SRWKHVLV�LV�WKDW�WKHVH���PDQLIROGV��OLNH�WKRVH�IRU�PDQ\�]HROLWHV��DUH�
LQ�IDFW���SHULRGLF�PLQLPDO�VXUIDFHV��RU��VLPSOHU�VWLOO��HPEHGGLQJV�RI 
the canonical hyperbolic manifold, one of uniform negative Gaussian 
curvature LQ� WKUHH�VSDFH�� ZLWK� ]HUR� PHDQ� FXUYDWXUH�� 'LIIHUHQWLDO�
geometric arguments then imply that         .24 If we assume that this 
holds for the tetrahedral silicates, the area per silica node, ȍ, must 
DOVR� EH� ¿[HG�� UHJDUGOHVV� RI� WKUHH�GLPHQVLRQDO� GHQVLW\�� ,Q� RWKHU�
ZRUGV�� DOWKRXJK� WKH� WKUHH�GLPHQVLRQDO� GHQVLW\� RI WHWUDKHGUDO� WHFWR�
silicates varies from very porous zeolites to dense coesite, their WZR�
GLPHQVLRQDO� GHQVLW\� UHPDLQV�¿[HG��7KDW�PXVW� IROORZ� LI�h is indeed 
¿[HG�IRU WKH���PDQLIROGV�LQ�ZKLFK�WKH�WHWUDKHGUDO�QHWV�DUH�HPEHGGHG��
and close to its value known for some zeolites from their reticulation 
RQ� WKUHH�SHULRGLF� PLQLPDO surfaces (3/4). This question cannot be 
UHVROYHG�GH¿QLWLYHO\�DW�SUHVHQW�� VLQFH�we QRW�NQRZ� WKH���PDQLIROGV�
that give minimal embeddings of denser silicates than the zeolites. In 
fact, it is certain that melanophlogite (the mep net) cannot reticulate 
DQ� LQWHUVHFWLRQ�IUHH hyperbolic surface via a subset of its strong 
rings.25 This may also be a feature of other dense nets, particularly 
WKRVH�ZLWK�HGJHV�O\LQJ�DORQJ�D[HV�RI�WKUHH�IROG�URWDWLRQDO�V\PPHWU\�
LQ�WKHLU�PRVW�V\PPHWULF�HPEHGGLQJV�LQ�WKUHH�VSDFH��VXFK�DV�dia and 
lon nets. In those cases, eq. 3 fails, since the embedding is in surfaces 
with GHJUHH�WKUHH� EUDQFK� OLQHV�� IRUPLQJ� FHOOXODU� FRPSOH[HV� UDWKHU�
WKDQ���PDQLIROGV� Alternatively, we could insist the embedding be in 
D���PDQLIROG�� LQ�ZKLFK�FDVH the embedding may be a map, but one 
whose faces have edges appearing more than once in their bounding 
WZR�GLPHQVLRQDO�ULQJV��DQDORJRXV�WR�WKH�PD[LPDO embedding of the 
tetrahedral graph mentioned on p. 150). For example, the dia net 
HPEHGV�LQ�WKH�'�VXUIDFH�DV�D�WUHH��ZLWK�D�VLQJOH�IDFH�DQG�XQERXQGHG�
WZR�GLPHQVLRQDO�ULQJ�VL]H��VR�WKDW�IRUPDOO\��Ȟ2)>� ��24,26 In that case, 
euler’s formula fails, and so eq. 3 no longer holds.
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4 Amorphous silica
:H� FDQ� XVH� WKHVH� ¿WV� WR� LQIHU� WKH� VLPSOHVW� WRSRORJLFDO� IHDWXUH� RI�
amorphous or fused silica as follows. Though it is clearly simplistic 
WR� VXSSRVH� WKDW� ³DPRUSKRXV� VLOLFD´� LV� D�ZHOO�GH¿QHG� SRO\PRUSK� RI�
silica, like the zeolites, clathrates and dense silicates, this assumption 
is a reasonable one in silicate science, given the characteristic physical 
properties of amorphous silica. since it has no JHRPHWULFDOO\�GH¿QHG�
crystalline structure, this may seem naïve. however, lack of crystalline 
(and hence geometric) order, need not imply lack of topological order, 
to some degree. And the topological analysis developed above can 
in principle allow us to probe the topological order of fused silica, 
knowing only its density. recall, that the analysis is predicated on the 
notion of a reticulation of a ��PDQLIROG��7KDW�SLFWXUH�H[SODLQV�a priori 
WKH�FRXQWHU�LQWXLWLYH�UHODWLRQ�RI�LQFUHDVLQJ�WKUHH�GLPHQVLRQDO�GHQVLW\�

Aqua Reticulata: topology of liquid water networks

Figure VI.4. 7RSRORJLFDO� GHQVLW\� DV� D� IXQFWLRQ� RI� WZR�GLPHQVLRQDO� ULQJ�
size for a QXPEHU�RI�GHJUHH�IRXU��WHWUDKHGUDO��VLOLFDWH�QHWV��7KH�DUURZ�PDUNV�
tridymite GDWD��7KH�FXUYH�LV�D�EHVW�¿W�WR�WKH�GDWD�YLD�HTXDWLRQ���
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ZLWK� LQFUHDVLQJ� ULQJ�VL]H� LQIHUUHG� IURP� WKH� IXOO range of crystalline 
WHWUDKHGUDO�SRO\PRUSKV�RI�VLOLFD�� IURP�ORZ�GHQVLW\�]HROLWHV to dense 
tectosilicates. limited simulations of fused silica, inspired by studies 
RI�VKRFN�LQGXFHG�GHQVL¿FDWLRQ�RI�IXVHG�VLOLFD��DUH�FRQVLVWHQW�ZLWK�WKLV�
WZR�GLPHQVLRQDO�YLHZ��,Q�FRPPRQ�ZLWK�WKH�UHODWLRQ�EHWZHHQ�ULQJ�VL]H�
and density H[SODLQHG�KHUH�LQ�WHUPV�RI���PDQLIROGV��WKRVH�VLPXODWLRQV�
also show increasing ULQJ�VL]H� RQ� GHQVL¿FDWLRQ�27 Those studies 
UHSRUW� D� �WKUHH�GLPHQVLRQDO��� DYHUDJH� ULQJ�VL]H�GLVWULEXWLRQ�EHWZHHQ�
���DQG����ULQJV��DQG�D�VLJQL¿FDQW�FKDQJH�LQ the network topology on 
GHQVL¿FDWLRQ�� ,Q� WKH� DEVHQFH�RI� D� IXOO� GLVFXVVLRQ�RI WKHLU� ULQJ�VL]H�
detection algorithm, quantitative comparisons between n(2)   and the 
ring distributions reported from these simulations are uncertain. 
Kubota et al�� ZULWH� WKDW� ODVHU�LQGXFHG� GHQVL¿FDWLRQ� RI� DPRUSKRXV�
silica causes a

SHUVLVWHQW�LQFUHDVH�LQ�WKH���DQG���PHPEHUHG�ULQJV�FRPSDUHG�
with WKH�XQVKRFNHG�FRQ¿JXUDWLRQ��,Q�DGGLWLRQ��WKH����DQG�
ODUJHU�PHPEHUHG rings also show persistent increases in 
their contributions to the ring distribution. These persistent 
changes in the ring coordination indicate the formation of 
D�VWDEOH�SKDVH�RI�SHUPDQHQWO\�GHQVL¿HG�IXVHG silica. The 
large increases observed in the larger rings also suggest the 
disruption of the fused silica network, and may indicate 
the existence of cracks, and microvoids. The increases in 
the smaller strained rings are a plausible connection to the 
REVHUYHG�SHUPDQHQW�GHQVL¿FDWLRQ� The role of the larger 
ULQJV�XSRQ�GHQVL¿FDWLRQ�LV�QRW�FOHDU��+RZHYHU the ability for 
ODUJHU�ULQJV�WR�H[LVW�LQ�FRPSDFW�QRQ�SODQDU�FRQ¿JXUDWLRQV�
suggests that their impact on density is small.

:LWKLQ�D�WZR�GLPHQVLRQDO�SHUVSHFWLYH��WKHLU�UHSRUW�RI�DQ�LQFUHDVH�
in large rings (and hence, we suspect, of <Ȟ2)> ��RQ�GHQVL¿FDWLRQ� LV�
very reasonable, and consistent with data for crystalline silicates. 
,QGHHG�� WKRVH� ODUJHU� ULQJV�DUH� UHVSRQVLEOH� IRU� WKH�GHQVL¿FDWLRQ��7KH�
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TXRWH�DERYH�DWWHPSWV�WR�ZULWH�RII�WKH�LQÀXHQFH�RI�ODUJH�ULQJV��DVFULELQJ�
GHQVL¿FDWLRQ� WR� D� YHU\�PLQRU� FKDQJH� LQ� WKH� QXPEHU RI� WKUHH�ULQJV��
FRQVLVWHQW� ZLWK� LQWXLWLRQ� IURP� D� WKUHH�GLPHQVLRQDO� SLFWXUH�� 7KHLU 
results are sensible, their discussion less so. The ring statistics found 
LQ� VLPXODWLRQV� IRUP� D� GLVWULEXWLRQ� EHWZHHQ� ��� DQG� ���VLGHG� ULQJV��
SHDNHG�EHWZHHQ����DQG ��ULQJV��)LJXUH�9,����

Their work supports the working hypothesis of amorphous 
VLOLFD� DV� D� WZR�GLPHQVLRQDO� K\SHUEROLF� SDWWHUQ�� 1RZ� WKH� GHQVLW\�
of (relaxed and unshocked) amorphous silica (fused silica glass) is 
equal to 2.203 g cmí3. It is reasonable WR�DVVXPH�WKDW�WKH�6L�6L�GLVWDQFH�
in amorphous silica is the same as that of its crystalline counterparts, 
QDPHO\����c��VR�WKDW�WKH�JHRPHWULF�GHQVLW\�ȡg� ����� We can then use 
WKH� OLQHDU�¿W� UHODWLQJ�JHRPHWULF�DQG� WRSRORJLFDO�GHQVLW\� IRU silicates 

Aqua Reticulata: topology of liquid water networks

Figure VI.5. �'LVWULEXWLRQ�RI�ULQJ�VL]HV�EHIRUH��GXULQJ�DQG�DIWHU�ODVHU�LQGXFHG�
GHQVL¿FDWLRQ� RI� DPRUSKRXV� VLOLFD�� GHGXFHG� IURP� QXPHULFDO� VLPXODWLRQV��
adapted from data reported in ref. 27.



166 $TXD�,QFRJQLWD��ZK\�LFH�ÀRDWV�RQ�ZDWHU�DQG�*DOLOHR�����\HDUV�RQ

(Figure VI.3) to deduce the topological density, namely Td10� �������
lastly, eq. 3 (with constant c�IURP�WKH�¿W�VKRZQ�LQ�)LJXUH�9,����OHDGV�
to an estimate of WKH�DYHUDJH�WZR�GLPHQVLRQDO�ULQJ�VL]H��<Ȟ2)> § 5.4, 
illustrated in Figure VI.6. Though direct comparison with the ring 
statistics reported in ref. 27 is uncertain, this value is close to the 
average reported by Kubota et al. (see Figure VI.5).

7KHVH�DXWKRUV�DOVR�UHSRUWHG�D�GHQVL¿FDWLRQ�RI�����RQ�ODVHU�VKRFN�
treatment, ZKLFK��DVVXPLQJ�QR�FKDQJH�LQ�6L�6L�GLVWDQFHV��LPSOLHV�WKDW�
the denser phase has topological density Fd10 §�1150, realised by a 
hyperbolic network with <Ȟ2)!�§�5.8. This increase too is consistent 
with the ring statistics reported in ref. 27 (see Figure VI.5).

5 Ices
The close parallels between silicate and ice frameworks mean that 
WKH�IRUHJRLQJ�DQDO\VLV�WKDW�DOORZV�DQ�HVWLPDWH�RI�WKH�WZR�GLPHQVLRQDO�
ULQJ�VL]H� RI� WKH DPRUSKRXV� VLOLFD� IUDPHZRUN� LV� HDVLO\� PRGL¿HG� WR�
predict <Ȟ2)> for liquid water.

Unfortunately, the wealth of tetrahedral framework silicates is not 
matched E\�³SVHXGR�WHWUDKHGUDO´�LFH�SKDVHV���,�XVH�WKLV�WHUP�WR�GHQRWH�
ice/water nets with four edges per node. Typically, the edges radiate 
from the centre of each tetrahedron to their four vertices. But since 
the analysis is topological rather than geometric, the edge geometry 
LV�LUUHOHYDQW��DQG�DQ\�GHJUHH�IRXU�QHWZRWN�LV�DGPLVVDEOH���6L[�GLVWLQFW�
SVHXGR�WHWUDKHGUDO ice crystalline polymorphs are known. Their 
structural data are tabulated in Table 2.
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Table 2��7HWUDKHGUDO�LFH�QHWZRUNV��'HQVLW\�DQG�ULQJ�VL]H�SDUDPHWHUV�
DUH�GH¿QHG in the main text (cf. Table 1). 

class examples net ID
density, 

U
g

topological 

density, TD
10

2d ring 

size, <n
2
> 

dense ice II ict 833 1333 6

ice III kea 833 1225 5.68

ice Ih lon 637 1027 6

ice Ic dia 649 981 6

intermediate
(clathrates)

clathrate I mep 549 1058 5

clathrate II mtn 545 1049 5

like the silicate data, the topological and geometric densities for 
the ice frameworks are related by TD10  � k’ȡg, where a best fit 

Aqua Reticulata: topology of liquid water networks

Figure VI.6. � (VWLPDWH� RI� WKH� WZR�GLPHQVLRQDO� ULQJ�VL]HV� RI� QRUPDO� DQG�
GHQVL¿HG amorphous silica from their framework densities (see main text). 
The data VXJJHVWV� WKDW� DPRUSKRXV� VLOLFD� KDV� D� WZR�GLPHQVLRQDO� ULQJ�VL]H��  
<Ȟ2)> § 5.4 (full lines). The dotted lines show the corresponding data for 
ODVHU�VKRFNHG�GHQVL¿HG silica.
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gives k’� �1.62  (Figure VI.7). This is slightly larger than the constant  
N�IRXQG�IRU�VLOLFDWHV��WKRXJK�WKH�GLIIHUHQFH�LV�LQVLJQL¿FDQW�JLYHQ�WKH�
scatter of the data.

The limited data also is also consistent with eq. 2, where the best ¿W�

is found for                               , as shown in Figure VI.8. Again, the paucity 
of data (compared ZLWK� VLOLFDWHV��GRHV�QRW� DOORZ�GH¿QLWLYH�HVWLPDWH�
of the constancy or otherwise of k’. The data are, however, consistent 
with the functional form of eq. 2 assuming that c’ is constant.

6 liquid water
The density of liquid water at atmospheric pressure has been measured 
carefully between 0 and 100°C.28 Combining that data with the recently 
measured O···h í�O distances in liquid water (eq. 1) leads to the 
conclusion that the topological density of liquid water changes only 

Figure VI.7. � 7RSRORJLFDO� YV�� JHRPHWULF� GHQVLW\� RI� FU\VWDOOLQH� SVHXGR�
tetrahedral ice polymorphs (cf. Table 2).
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Figure VI.8. 7RSRORJLFDO�GHQVLW\�DV�D�IXQFWLRQ�RI�WZR�GLPHQVLRQDO�ULQJ�VL]H�
for ice polymorphs (cf. Figure VI.4.) The arrows mark data for hexagonal and 
cubic forms of ice I (lower and upper respectively).

Figure VI.9.  Topological density of water, Td10, as a function of temperature 
at atmospheric pressure.)
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marginally (between 1194 and 1176, peaking in density very close to 
body temperature) over the entire range IURP������ƕC, as shown in 
Figure VI.9.

$FFRUGLQJ�WR�WKH�¿W�GHGXFHG�IURP�WKH�LFH�SRO\PRUSKV��)LJXUH�9,�����
this variation in topological density is accounted for by a variation 
RI� WKH� WZR�GLPHQVLRQDO� ULQJ�VL]H��<Ȟ2)> between [5.83 í� 5.88], i.e. 
varying only very slightly over the complete temperature range up to 
100ƕC, as plotted in Figure VI.10.

7 Closing and an auto-critique
What can be gleaned from this analysis? First, the concept of water as 
a tetrahedral framework, due to Bernal, remains reasonable. however, 
his and Fowler’s original concept of liquid water as a continuum of 
states, from relatively open tetrahedral nets at lower temperatures, to 
GHQVHU�SDWWHUQV�FORVHU�WR�LWV�ERLOLQJ�SRLQW�±�UHPLQLVFHQW�RI�FORVH�SDFNHG�
structures – is not consistent with the most recent scattering analyses. 
These data suggest that the (geometric) density variations with 
WHPSHUDWXUH�DUH�QRW�DFFRPSDQLHG�E\�VLJQL¿FDQW�FKDQJHV�LQ�WRSRORJLFDO�
density, so that the network topology of liquid water is rather constant 
with temperature. This conclusion also argues against more recent 
³WZR�VWDWH´�PRGHOV�RI�ZDWHU��DOO�RI�ZKLFK�LPSO\�PHDVXUHDEOH�FKDQJHV�
in water network topology with temperature. In addition, the supposed 
presence of water “strings” is not supported by this analysis.6 strings 
have a degree of just two, and the presence of strings would be 
expected to lower the (average) degree of the bonding net in liquid 
water, z, below four. In fact, as mentioned in the Introduction, 
VFDWWHULQJ�VWXGLHV�VXJJHVW�DQ�DYHUDJH�¿UVW�VKHOO coordination slightly 
larger than four.8 Further, our analysis suggests that density is expected 
to increase with increasing z and <Ȟ2)> (cf. eq. 2). since melting of 
ice is accompanied by an increase in density, were water strings to 
form (thereby lowering z) a compensating increase in <Ȟ2)> (beyond 6) 
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would be required. For example, if <Ȟ2)>� ���DQG�z� ����FRUUHVSRQGLQJ�
to ice I), the topological density for ice/water (assuming c࢝ ������LV�
Tǻ10� �������,I�z drops to (e.g.) 3.8 to accommodate strings, <Ȟ2)> must 
increase to larger than 6.6 to achieve a denser melt than ice, a severe 
topological change, for which there is no supporting evidence. Other 
ZDWHU�PRGHOV� KDYH� DUJXHG� IRU� FODWKUDWH�OLNH� FOXVWHUV�� IRUPLQJ�¿QLWH�
GRPDLQV��VHH��IRU�H[DPSOH��5HI������(YLGHQWO\��¿QLWH cluster have z < 4, 
due to the boundary. so here too, large rings are essential to achieve 
the increased density within the cluster (and still larger to achieve the 
required bulk density, due to low density interstitial regions between 
clusters). such models therefore appear unlikely candidates for liquid 
water structures, ZLWKLQ�WKLV�WZR�GLPHQVLRQDO�YLHZ�

7KLV�HVWLPDWH�RI� WKH� WZR�GLPHQVLRQDO�ULQJ�VL]H�RI� OLTXLG�ZDWHU� LV�
dependent on the assumption that the “constants” linking topological 
and geometric density (k’��DQG�WRSRORJLFDO�GHQVLW\�DQG�ULQJ�VL]H��F࢝)  

Figure VI.10. (VWLPDWH� RI� WKH� WZR�GLPHQVLRQDO� ULQJ�VL]HV� RI� OLTXLG�ZDWHU�
between ����� °C (cf. Figure VI.6).
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KDYH�¿[HG�YDOXHV� IRU� DOO�SVHXGR�WHWUDKHGUDO� LFH�SRO\PRUSKV�DV�ZHOO�
as liquid water. Unfortunately, minimal ��PDQLIROG� HPEHGGLQJV� IRU�
the ice polymorphs are unknown, in common with dense silicate 
QHWZRUNV�� *LYHQ� WKDW� GLI¿FXOW\�� ,� FDQ� RQO\� HVWLPDWH� WKH� FUXFLDO 
parameters governing the topology of these nets <Ȟ2)> , h and hence 
ȍ). It is therefore likely that the single topological measure extracted 
from this analysis, <Ȟ2)> for amorphous silica and liquid water, is 
an approximation only. To go further, more detailed explorations of 
minimal embeddings of (particularly dense) nets are required.

5HÀHFWLRQ�RQ�WKH�FHQWUDO�LVVXH�WKDW�GURYH�WKH�RULJLQDO�GHEDWH�EHWZHHQ 
Galileo and delle Colombe reveals the uncertainty in my simple analysis. 
I have argued that the (topological) density grows with increasing 
WZR�GLPHQVLRQDO�ULQJ�VL]H��+RZ�FDQ�LW�EH�WKHQ��WKDW�FRQYHQWLRQDO�LFH�
(Ic), with <Ȟ2)>� ����ÀRDWV�RQ water <Ȟ2)> (§5.9)? Inspection of the 
GHQVLW\�ULQJ�VL]H�GDWD��)LJV�������UHYHDOV that the topological density 
for ice I (cubic and hexagonal forms) is substantially lower than that 
SUHGLFWHG�IURP�WKH�EHVW�¿W�IRU�LFH�SRO\PRUSKV��VHH�DUURZHG data points 
LQ�)LJXUH�9,�����5HFDOO�WKDW�WKH�WRSRORJLFDO�GHQVLW\�GHSHQGV�RQ�ULQJ�
size (<Ȟ2)>), network degree (z), and the constants h, ȍ and k  (or k’). It 
is notable that the tridymite polymorph of silica, which also has <Ȟ2)> 
 ��� �DQG� LV� VWUXFWXUDOO\ equivalent to ice Ih) is similarly anomalous 
compared with other silicates, with an unexpectedly low density for 
LWV�ULQJ�VL]H��DUURZHG�GDWD�LQ�)LJXUH�9,�����,Q�WKH absence of known 
PLQLPDO���PDQLIROG�HPEHGGLQJV� IRU� lon (tridymite, Ice Ih) and dia 
(ice Ic), this anomaly, common to both amorphous silica and liquid 
water, remains unresolved. It is likely a central issue surrounding the 
issue of relative densities of liquid and frozen water. We can, however, 
conclude that both amorphous silica and liquid water have similar 
network topologies, namely GHJUHH�IRXU�QHWV�ZLWK�DYHUDJH�ULQJ�VL]HV�
OLNHO\� EHWZHHQ� ������� )XUWKHU�� WKH� GHQVLW\� DQG� DFFRPSDQ\LQJ� ULQJ�
size variations between crystalline and amorphous states of water and 
silica are similar, suggesting that these relative densities may be a 
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feature of tetrahedral frameworks in general, rather than a peculiarity 
of h2O nets.

Perhaps the most valuable aspect of this analysis lies in the 
topological approach, rather than the quantitative details. Bernal’s 
concept of structural similarities between liquid water and (possibly 
PXOWL�SKDVH��FU\VWDOOLQH�VLOLFDWH networks initiated rigorous discussions 
of the concept of water structure. While useful, direct analogies with 
crystalline networks are overly simplistic and misleading. Indeed, 
WKH�FXUUHQW�FRQWURYHUV\�RYHU�WZR�VWDWH�PRGHOV�DQG�UHODWHG crystalline 
phases appears to have overlooked the potent arguments of Fletcher that 
WKH�SKHQRPHQRQ�RI�VXSHU�FRROLQJ�RI�OLTXLG�VWDWH�ZDWHU�LV�LQFRPSDWLEOH�
with a network that resembles crystalline frameworks. As he wrote 
in 1971 “It is clear, from considerations based on the possibility of 
supercooling water at various pressures, that the liquid does not 
FRQWDLQ� DQ\� VLJQL¿FDQWO\� ODUJH� IUDFWLRQ of cluster with structure 
identical with that of one of the ices.”29 Quantitative investigations and 
comparisons of ordered and disordered structures require approaches 
that jettison the usual geometric concepts underlying crystalline 
patterns. The ideas discussed here are a simplistic attempt to explore 
structural frameworks at this broader level. They offer a starting point 
for further investigations.
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