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Abstract. Our study of the gyroid minimal surface has revealed that there are two distinct covering
maps from the hyperbolic plane onto the surface that respect its intrinsic symmetries. We show that if a
decoration of H2 is chiral, the projection of this pattern via the two covering maps gives rise to distinct
structures in E3.
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1 Introduction

This paper is part of a wider project exploring the gen-
eration and enumeration of three-dimensional euclidean
networks through reticulations of triply periodic minimal
surfaces [1–5]. The essential tool is a covering map from
the hyperbolic plane, H2, onto a TPMS, which allows us
to transfer patterns in H2 onto the given surface in E3. We
are then able to systematically generate patterns in E3 by
enumerating patterns in H2 that are compatible with the
covering map. The “patterns” can be tilings, networks,
tree-, line-, or sphere- packings — for examples see the
papers cited above.

The most commonly studied surfaces in this context
are the primitive, P, diamond, D, and gyroid, G, mini-
mal surfaces. They are defined via integrals of a complex
Weierstrass function, which for these three surfaces differs
only by a complex phase factor (the Bonnet angle). This
means the P, D, and G surfaces share the same hyperbolic
crystallography [6]. Explicit definitions of covering maps
that are fully compatible with the surface symmetries were
given in 1989 by Sadoc and Charvolin [7]. We show here
that there are in fact two such maps for the G surface.

Such pairs of covering maps from the hyperbolic plane
to TPMS are possible only when the intrinsic symme-
tries of the surface (i.e. the symmetries of the Gauss map
and its inverse Weierstrass function) are higher than the
extrinsic (euclidean) symmetries. The only known exam-
ples where this is the case are the gyroid, discussed here,
and lower symmetry relatives, namely the one-parameter
families of “rG” (rhombohedral) and “tG” (tetragonal)
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TPMS [8]. Therefore, we also expect to find two distinct
embeddings of a single chiral hyperbolic tiling on the rG
and tG surfaces. The possibility of monoclinic and triclinic
gyroids remains open. Intriguingly, no further examples of
triply periodic surfaces “associate” to TPMS other than
the P/D family have been found, despite searches for such
associates to the I-WP and C(P) (Neovius) minimal sur-
faces [9].

Our discovery of two distinct symmetric covers of
the gyroid was stimulated by a puzzling example raised
by Prof. Michael O’Keeffe. He asked us to explain how
two 3-periodic nets (fcy and fcz in O’Keeffe’s naming
scheme [10]) that are apparently both reticulations of
the G surface can arise from exactly the same hyperbolic
tiling. These examples are discussed at the end of the pa-
per. The fcz framework has recently been observed as the
structure of a crystalline mesoporous germanium oxide,
and it is reasonable to expect that the fcy relative may
be found also [11].

The core result of this paper is that the two maps
onto the gyroid give distinct 3-periodic nets only when the
hyperbolic tiling is chiral (in a 2d sense). The systematic
enumeration of tilings on the gyroid has only recently been
undertaken, and this is perhaps why the existence of two
covering maps was not noticed earlier.

2 Definition of the covering maps

The P, D, and G surfaces (illustrated in Fig. 1) each have
intrinsic surface symmetry related to the ∗246 hyperbolic
kaleidoscopic group (we use Conway’s notation for 2d orb-
ifolds throughout this paper [12,13]). The ∗246 group is
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Fig. 1. Clockwise from top left: translational unit cells for
the D, G, and P minimal surfaces and their common preim-
age in the hyperbolic plane. The hyperbolic plane is illustrated
using the Poincaré disc model in which straight lines are rep-
resented by circular arcs that intersect the disk boundary at
right angles. The black and grey triangles are ∗246 fundamen-
tal domains — there are 96 such triangles in the dodecagonal
translation unit. (This figure is the same as one that appears
in [1]).

generated by three reflections, R1, R2, and R3, whose mir-
ror lines bound a triangle in H2 with corner angles of
π/4, π/6, and π/2. This geometry induces a set of rela-
tions for the group: R2

1 = R2
2 = R2

3 = I (the identity) and
(R1R2)2 = (R2R3)4 = (R1R3)6 = I. Sadoc and Char-
volin [7] found that these three closely-related surfaces
each have a disk-like fundamental unit in E3, that pulls
back to the same dodecagon in the hyperbolic plane, seen
in Figure 1. There are six hyperbolic translations that pair
opposite edges of the dodecagon, and generate a normal
subgroup, T , of ∗246:

t1 = (R3R1R3R1R3R2)2

t2 = R3R1R3 t1 R3R1R3

t3 = (R1R3)2 t1 (R3R1)2

τ1 = (R3R1R2)2(R3R1)2(R2R3R1)2

τ2 = R1R3R1 τ1 R1R3R1

τ3 = R3 τ1 R3. (1)

These translations satisfy the following identity in H2:

τ1t2τ
−1
3 t−1

1 τ2t3τ
−1
1 t−1

2 τ3t1τ
−1
2 t−1

3 = I.

Geometrically, this identity tells us there are twelve do-
decagons around each of its vertices. The subgroup, T ,
generated by the ti and τi translations is isomorphic to
the fundamental group of a three-handled torus and has
orbifold symbol ooo.

A translational unit cell for the (oriented) G surface is
built from the hyperbolic dodecagon by deforming it into

a “double pinwheel” shape with six “blades” and two sets
of three vertices pinned together. A covering map from the
hyperbolic dodecagon onto the G surface can be defined
in two distinct ways. At a topological level the existence
of two covering maps is seen from the existence of two
types of vertex in the fundamental unit: the pinned ver-
tices meeting in two groups of three, and the six vertices
at the tips of the blades. This is in contrast to the P
and D surfaces where all vertices meet in symmetrically-
equivalent pairs. The two covering maps for the G surface
correspond to the two possible choices of which vertices lie
on the “blades” in the pinwheel and which on the “pins”
— see Figure 2.

The essential difference between covering maps of the
G surface and the P and D surfaces can also be under-
stood in terms of the Weierstrass integrals. The Bonnet
angle for the D is 0◦, for the P it is 90◦ (i.e. the adjoint
of the D), and for the G it is1 α ≈ 38.01◦ (making it
an associate of the D and P surfaces). Symmetries of the
Weierstrass function mean that setting the Bonnet angle
to π−α generates a “second version” of the G surface. As
subsets of E3 the two surfaces are identical, but certain
straight lines in the complex plane will map to helices of
opposite handedness via the two different integrals. In the
hyperbolic plane, one such line is that passing through
2-fold points, illustrated in Figure 2. This line maps to a
helix following a 3-fold screw axis, with positive handed-
ness in one parametrization of the G surface, and negative
in the other.

Although the intrinsic symmetries of the G surface
(i.e., the symmetries of the Weierstrass function) pull back
to the ∗246 hyperbolic group, the euclidean symmetries of
the surface correspond to the rotational 246 subgroup. The
space group of the (non-oriented) G surface is Ia3d, which
has a 3-fold and two inequivalent 2-fold rotation axes, 3-
and 4- inversion centers, but no mirror planes. The six-fold
hyperbolic rotations (conjugate to R1R3) map to 3 inver-
sions, four-fold hyperbolic rotations (such as R2R3) map
to the 4 inversions (whose centers lie on one type of 2-fold
axis), while the two-fold hyperbolic rotations (e.g. R1R2)
map to the other type of 2-fold rotation axes. The ∗246 re-
flections, R1, R2, R3, do not correspond to euclidean sym-
metries of the G surface.

The two covering maps Φ, Θ : H2 → G ⊂ E3 are
each defined by a conformal homeomorphism of a patch
of the hyperbolic plane onto an asymmetric unit of the
surface in E3 which is then extended by a homomorphism
between the 2d hyperbolic and 3d euclidean symmetry
groups, φ, θ : 246 → Ia3d so that for x ∈ H2 and Q ∈ 246:

Φ(Qx) = φ(Q)Φ(x) Θ(Qx) = θ(Q)Θ(x). (2)

Swapping the pinned and the blade vertices corresponds to
the ∗246 reflection R1. This gives us a precise relationship
between the two covering maps,

Θ(x) = Φ(R1(x)). (3)

1 Precisely: α = 1/ tan[K′(1/2)/K(1/2)], where K is the
complete elliptic integral of the first kind.
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Fig. 2. Top center: the dodecagonal translational patch in the hyperbolic plane has vertex labels a,b,c,...,l and edge labels
that denote the image of the central dodecagon by each of the six translations. The white line maps to helices of opposite
handedness via the two covering maps. These helices are depicted on the gyroid surfaces below, and as analogously handed
helicoidal surfaces at top left and top right. Bottom left: the dodecagon projected onto the G surface via the Φ covering map
has the vertex labels given. Bottom right: the dodecagon projected on the G by the Θ covering map switches the pinned and
blade vertices.

We next consider the action of the group homomorphisms
on the hyperbolic and euclidean translation subgroups.
In H2 we have T ⊂ 246 ⊂ ∗246, generated by the six in-
dependent hyperbolic translations defined in (1) that pair
opposite sides of the dodecagon: t1, t2, t3, τ1, τ2, τ3. In E3

we have three independent translations a,b, c (these are
the body-centered rhombohedral lattice vectors) which
form an abelian group L ⊂ Ia3d. Explicitly the actions
of the group homomorphisms φ, θ, on the translations are:

φ(t1) = a θ(t1) = a
φ(t2) = b θ(t2) = c
φ(t2) = c θ(t3) = b
φ(τ1) = −a− b θ(τ1) = a + b
φ(τ2) = −b− c θ(τ2) = c + a
φ(τ3) = −c− a θ(τ3) = b + c.

The group homomorphisms φ, θ map T onto L but are not
one-to-one — there are subgroups (kernels) Kφ, Kθ ⊂ T

which map to the identity in L. These kernels are both
isomorphic to the homotopy fundamental group of the G
surface, but are distinct normal subgroups of the rota-
tional 246 group. There are six core generators for each
kernel (given below) and the full set of infinitely many gen-
erators is obtained by conjugating these core elements by
each translation in T (i.e. generators are of the form tct−1

for t ∈ T and c ∈ K). For Kφ the core generators are:

τ1t2t1, τ2t3t2, τ3t1t3,

t1t2τ1, t2t3τ2, t3t1τ3;

while for Kθ they are:

τ−1
1 t3t1, τ−1

2 t1t2, τ−1
3 t2t3,

t1t3τ
−1
1 , t2t1τ

−1
2 , t3t2τ

−1
3 .

The identifications for the G surface given by Sadoc and
Charvolin [7] are elements of the Kφ kernel as defined
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Fig. 3. Left: the dodecagonal translational patch in the hyperbolic plane with a partial sketch of the chiral 5-coordinated net
with Schläfli symbol 3.3.4.3.6. Center: the net mapped by the Φ covering map gives fcy (viewed slightly off the y-axis). Right:
the net mapped via the Θ covering map gives fcz (with the same view angle).

above, but T -conjugacies of their six words fail to generate
the full kernel.

It is interesting to note that although the two kernels
are normal subgroups of 246, they are conjugate within
∗246, that is, Kθ = RiKφRi for i = 1, 2, 3. This exposes an
error in Section 5 of our previous paper [1]. There we claim
that a conjugacy does not affect the covering map. But this
is true only if the kernel is left invariant by the conjugacy,
which is not the case for the G surface since reflection
conjugacies give isomorphic versions of the kernels. The
P and D surface covering maps, however, do have kernels
that are normal in ∗246, and are therefore unaffected by
conjugacy.

3 Achiral H2 patterns project to isomorphic
patterns in E3

We now show that if a pattern in H2 is “the same” as its
mirror image, then it projects to “the same” pattern on
the G surface via the two covering maps. This is intuitively
clear from the relationship (3) between the two maps.

Suppose we have a pattern (tiling or decoration) P in
the hyperbolic plane with symmetry group Γ ⊂ ∗246. The
pattern is geometrically achiral if its mirror image can be
superimposed on the original by an orientation-preserving
isometry, i.e., R(P) = Q(P) for some reflection R ∈ ∗246
and isometry Q ∈ 246. We can apply the isometry R1R to
this equation to find that R1(P) = R1RQ(P), and since
the product of two reflections is orientation preserving we
have that R1RQ = Q′ ∈ 246. From the relationship (3)
and the definition (2) we now have that

Θ(P) = Φ(R1(P)) = Φ(Q′(P)) = φ(Q′) · Φ(P).

Since φ(Q′) is an element of Ia3d we have shown that the
two projections Θ(P) and Φ(P) are isometric.

Conversely, suppose we have that Θ(P) = S ·Φ(P) for
some isometry of E3. Since both objects are decorations
of the G surface, we have S ∈ Ia3d. Therefore, S is the
image of some hyperbolic symmetry Q ∈ 246 (actually
the Kφ coset of Q) under the group homomorphism, i.e.,
S = φ(Q). So:

Φ(R1(P)) = Θ(P) = S · Φ(P) = φ(Q) · Φ(P) = Φ(QP).

Table 1. Crystallographic coordinates for fcy and fcz. Both
have space group Ia3d, unit cell parameter a = 5.7366, and
there is one 5-coordinated vertex in Wyckoff position 96h.

x y z

fcy 0.0945 0.0384 0.8589

fcz 0.0129 0.1284 0.8861

Table 2. The coordination sequences of the 3.3.4.3.6 net in
H2, and its two projections onto the G surface, fcy and fcz.

net cs1 cs2 cs3 cs4 cs5 cs6 cs7

H2 5 12 24 45 83 155 286

fcy 5 12 24 45 76 106 150

fcz 5 12 24 45 76 109 148

and this implies R1(P) = Q′Q(P) for some Q′ ∈ Kφ ⊂ T ,
so that P is indeed geometrically achiral.

This result can be strengthened to show that if a pat-
tern P is homotopic in H2 to a geometrically achiral pat-
tern P ′, then P is homotopic to its mirror image, and the
corresponding patterns on the G surface, Θ(P) and Φ(P)
are also homotopic.

We finish the paper with the example nets referred to
in the introduction, and illustrated in Figure 3. The hy-
perbolic net is vertex-transitive, 5-coordinated, has Schäfli
symbol 3.3.4.3.6, and symmetry group 246. It is chiral, as
can be seen from Figure 3, where the net has vertices only
on the black orthoschemes. Thus, the two G surface cov-
ering maps project it onto distinct 3-periodic nets called
fcy and fcz in O’Keeffe’s labelling scheme [10]. The nets
are also sphere packings, with labels 5/3/c41 (fcy), and
5/3/c42 (fcz) in the enumeration by Fischer [14,15]. In
E3, the two nets both have symmetry group Ia3d, one
kind of vertex and three types of edge, identical geometric
density (as homogeneous sphere packings) and the same
extended Schläfli vertex symbol (encoding the local ring
structure, see [16]) of 3.3.3.4.6.104.104.108.108.1012. The
crystallographic coordinates are given in Table 1. The nets
are, however, topologically distinct as their coordination
sequences show [16], see Table 2. Their sequences differ at
shell 6 and the total number of vertices within ten steps
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of an initial vertex (a measure of topological density) is
1156 (fcy) and 1163 (fcz). The difference is due to the
covering map pinning the white triangles or pinning the
black triangles as in Figure 2. Only the black triangles
contain vertices of the network, so the different covering
maps produce different global topological structure in the
networks.

We thank Mike O’Keeffe for bringing this interesting pair of
nets to our attention, and Gerd Schröder for helpful discussions
about the geometry of the gyroid.
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