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SCULPTING ENTANGLEMENT

STEPHEN T. HYDE AND ROBERT OWEN

1. Introduction

Ten years ago, Peter Harrowell, a chemical physicist at Sydney Uni-
versity, sent SH ⇤ an image of a sculpture he had seen at the Art Gallery
of NSW, shown in Fig. ??(a). This is one of a series of sculptures made
then and since by RO.

I was kind of intrigued

Peter wrote,

this is an eight vertex 3-fold net with the topology of
a cube yet it clearly is entangled - a sort of self inter-
penetration (sounds a bit unsavoury).

SH too was intrigued and wondered how that form related to the more
usual cube graph, with its six squares loops, joined three by three.
Within the language of graph theory, it was indeed an embedding of the
cube graph, with 12 vertices, all of degree three, and its topology was
indeed that of the cube (Figure ??(b)). For example its ”coordination
sequence” - an integer sequence that describes the number of vertices
reached from a root vertex, is {1, 3, 3, 1}. This is pretty clear from a
drawing of the cube graph of Figure ??(c).

Peter Harrowell’s key observation – at least to SH at the time – was
that the structure was ”entangled”, with a threading of edges through
the quadrilateral cycles, giving rise to knots in the embedding. Here
was an extraordinarily beautiful, yet conceptually simple example of a
phenomenon that SH had been thinking about in a far di↵erent con-
text for some time, stimulated by a fascinating observation from an-
other colleague, Davide Proserpio, a structural chemist in Milan. He
noted that the structural skeleton of a complex metal-organic frame-
work material, appeared to be topologically identical to diamond: its
(infinite) coordination sequence and cycles matched those of the dia-
mond net, well known to all solid state scientists (as, for example, the
covalent bonding framework in actual diamond, with sp

3 carbon atoms
at the vertices). Yet this ”diamond” net was also entangled, and could

⇤Here we abbreviate the authors as SH (Stephen Hyde) and RO (Robert Owen)
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(a)

(b) (c)

Figure 1. (a) RO’s sculpture Vessel #2 from the se-
ries ”Cubes and Hypercubes” (2003). Photo, Art Gallery
of NSW, Robert Owen, Di↵erent Lights Cast Di↵erent
Shadows, 2004. (b) Standard ”untangled” embedding
of the cube graph in 3-space. (c) Representation of the
cube graph in the extended complex plane (the three
outermost vertices are glued to give a single vertex.

only be realised from the usual diamond pattern by breaking bonds,
and rethreading them through cycles, changing the crossing order of
edges in projection. This was a beautiful example of a self-entangled
network pattern; far more complex than more familiar knots (which
can be analysed as entangled loops). But classification of this tangled
diamond pattern seemed hopeless: it was a union of an infinite set of
branched knots, rather than a simple knot or link, and there was no
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privileged projection from 3-space to the two-dimensional plane that
simplified the entanglement.

In contrast, RO’s Hypercube, with just eight vertices and twelve
edges, was far more manageable; an elegant and possibly tractable
example of a more generic and utterly unexplored phenomenon: en-
tanglement of a relatively simple finite graph, that of the cube.

2. tangled cubes

RO’s constructions in Hypercube and related sculptures, such as the
Florentia models (Figure ??), though each geometrically di↵erent, are
nevertheless topologically equivalent to the cube graph, all sharing the
cube coordination sequence. They can be bundled into two genera:
those that can be deformed into the usual Platonic form of the cube
graph in three-space by a sequences of movements that change only
edge lengths and vertex angles, and those whose homeomorphisms re-
quire edges to pass through each other to form the standard cube,
thereby changing the mutual threading or edges. The former are ”un-
tangled” and the later ”tangled” cubes. Untangled polyhedral graphs,
like the cube, are readily defined in topological terms: they are (in the
language of graph theory) ”planar embeddings” and can be traced on
the surface of a sphere (S2) via an ”ambient isotopy” that does not
require phantom crossings of edges through each other. In contrast,
tangled examples cannot be untangled without allowing edges to pass
through each other.

Figure 2. Robert Owen’sModels for Florentia (painted
steel), 2006.

For some time, SH called these tangled cases ”knotted cubes”. The
analogy is clear: mathematicians define knots as embeddings of loops
(S1) that cannot be morphed into the ”unknot” (that can be drawn in
the plane without crossings) without phantom crossings, and so knots
cannot be unknotted without cutting and reconnecting the loop. Like
all graphs, cube graphs can be thought of as branched loops (with
branch points at their vertices). So understanding of tangled graphs,
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like RO’s tangled cubes, seemed to demand extension of the tools of
knot theory to branched knots. Perhaps then, a useful ranking of tan-
gled nets, including Owen’s cubes and Proserpio’s metal-organic frame-
work, could be constructed from concepts in knot theory. Given the
complications of knot theory, that task alone was daunting enough, but
worth exploring. A simple scalar measure of knot complexity is a ”knot
energy”, introduced by Fukuhara ? and O’Hara ? as analogues of elec-
trostatic arrays, and Mo↵at ? from the viewpoint of fluid dynamics.
Since then, various formulations of knot energies have been explored ?,
?

An interesting route to that goal was the notion of ”tight knots”.
This approach was appealing in its physical aspect, in contrast to the
more abstract algebraic invariants of knot theory, such as the celebrated
Conway and Jones polynomials ?. Tight knots are embeddings of knots
that minimise the knot arc length, assuming the knot is a flexible tube
with uniform thickness, imposing excluded volume constraints. A use-
ful, though not unique, ranking of knot energies is related to the ratio
of arc length to thickness, the ”ropelength”. This idea has been ex-
plored from the late 1990s, in mathematical contexts. Its applications
of physics are many and varied, from ”glueballs” of high energy physics
?, to gel electrophoresis of knotted DNA ? and the breaking strength
of good old-fashioned physical knots ?! A useful numerical algorithm
that often – though not always – converges to a likely shortest rope-
length is the SONO algorithm ?. A number of deep and more widely
applicable questions surround the notion of knot energies, and a sensi-
ble definition of such an energy. For example, we can ask whether the
most symmetric embedding of a knot in three-space is one of lowest
energy? For many definitions of the energy, the answer is often no.
Tight knots, in contrast, are often realised as very symmetric objects.

The SONO algorithm was extended by Myf Evans, while she was
a PhD student with SH and Vanessa Robins, to the ”PB-SONO” al-
gorithm, in order to explore tight embeddings of graphs (or branched
knots) ?. Here too the results were encouraging, since (in particular)
relaxed embeddings of simple unknotted graphs, like the unknotted
cubes, were equivalent to those of the familiar structures of symmetric
Platonic cube edges (Figure ??a). Better still, knotted examples of
simpler nets, like RO’s cube graphs, converged readily to fixed config-
urations (Figure ??b).

Most encouraging of all, relaxed embeddings of infinite periodic nets
were virtually indistinguishable from the canonical barycentric embed-
dings (with maximal volume and equal edge lengths) realisable by Olaf
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(a) (b)

(c) (d)

Figure 3. (a), (c) Untangled and tangled A-type cube
isotopes. (Note the edge crossings.) (b), (d) Tight con-
figurations of the untangled and A-type tangled cubes,
calculated by Myf Evans ?.

Delgado Friedrichs’ and Mike O’Kee↵e’s equilibrium placement algo-
rithm ?. If these relaxed untangled nets converge to geometries of the
most symmetric barycentric embeddings, it is surely reasonable to im-
pose the same energy on tangled nets, and rank their entanglements
by their ropelength. It seemed, then, that a quantitative handle on
the degree of complexity of Proserpio’s ”tangled diamond” net was in
sight.

But further exploration of tangled graphs forced us to think more
deeply about entanglements.

3. tangled graphs

Our assumption that entangled graphs were really just branched
knots (or links) was rudely shattered by construction of an entangled
theta graph, illustrated in Fig. ??(a). Evidently, this embedding is tan-
gled, as the loops are threaded and cannot be separated. But all loops
are themselves unknotted. Further, we cannot locate tangled links in
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the embedding composed of multiple loops whose vertices belong to one
loop only. (Try it!) This example demonstrated that entanglements in
graphs can be more complex than generalised branched knots. Here was
a new entanglement motif that had no counterpart in knots (or links).
We called this motif a vertex ravel, since it is localised to the (three)
edges emanating from a single vertex; one could contain it within a
ball centred on that vertex ?. (We later realised that this specific ravel
was known to knot theorists, and had in fact been described earlier by
Kinoshita ?.) The existence of ravels means that the phenomenon of
tangling in graphs is a more complex issue than that of knots alone.
Given the mathematical di�culties of knot theory itself, explication of
entanglement of graphs is evidently a complex challenge.

This example allowed SH and his students to construct extended
families of ravels or various types ?, which we proposed as potential
entangled structures in materials, particularly framework materials,
such as the tangled diamond structure described by Proserpio et al.
Entanglement in these materials is unsurprising, since their structural
networks contain long, polymeric edges, whose capacity to intertwine
grows with their length. To our surprise, a first ”ravelled” framework
molecule was synthesised and recognised shortly afterwards by Aus-
tralian chemists, in a metal-organic material ?.

Figure 4. (a) An entangled theta graph: a simple ver-
tex ravel. (b) Embedding of the ravel on a genus-two
bitorus. (c) Embedding of the ravel on a genus-three tri-
torus. The ravelled theta graph cannot be embedded on
the (genus zero) sphere, or the (genus one) torus without
edge crossings.

Why was the ravel so complex? In contrast to the untangled poly-
hedral graphs, that embed in the (genus-zero)sphere, and the sim-
pler tangled polyhedral graphs, that embed in the (genus-one) torus,
the ravel appeared to reticulate only in a more complex topological
object, namely the genus-two bitorus and more complex manifolds
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(Fig. ??(b)). The addition of ”handles” to the topologically simpler
sphere and torus, to form the bitorus (or tritorus) allows the graph
edges to mutually entwine su�ciently to form a ravelled embedding.
This surface reticulation suggests a novel approach to classification of
entangled graphs, namely their exploration as reticulations of underly-
ing two-dimensional manifolds. And advances in tiling theory in recent
years ?, ?, ? can be adopted to systematically enumerate reticulations
of two-dimensional surfaces of arbitrary topological complexity. Thus,
for example, polyhedral graphs can be enumerated (to an arbitrary de-
gree of complexity) via enumeration of tilings of the sphere. And we
can likewise enumerate tangled polyhedral graphs by exploring tilings
of the genus-one torus, the genus-two bitorus, etc. A first classification
of the complexity of a specific entanglement follows from the (lowest)
genus of the underlying two-dimensional manifold (assumed for now to
be oriented for simplicity) that can be reticulated to form that tangled
embedding.

This approach led to a first enumeration of the simplest tangled
cubes by exploring embeddings of the cube graph on the torus ?. In
particular, SH chose to enumerate simpler distinct isotopes – all cube
graphs, but with distinct entanglements of edges that cannot be mor-
phed into each other via ambient isotopies – with equal faces on the
torus. The imposed condition – supposed wrongly to be a natural con-
straint for any cube isotope – was that no cycle be longer than the
largest non-intersecting cycle in the cube itself, namely the Hamilton-
ian cycle with eight vertices. Since the cube graph has degree-three
vertices, this constraint amounts to enumerating less wound tilings of
the torus by the graphene ({6, 3}) net, containing just eight vertices.
Five such examples were found, four of which can be readily drawn
with straight edges. Recall that the conventional (untangled) cube has
six square faces, forming a (topological) cube. These five simplest tan-
gled cubes – from the ”A-type” to the ”E-type” cube – contain just
four hexagonal faces, wrapped on a torus. One family of embeddings,
whose curved edges are derived from the underlying torus geometry,
is shown in the top row of Table ??. Equivalent entangled forms can
be produced by many di↵erent geometric embeddings. Some examples
with straight edges for the A- to D-type cubes are illustrated in row 2
of the Table.

The ”tangled cube” constructions of RO can also be classified within
this taxonomy. Thus, for example, Vessel #2 and some (though not
all) of the Florentia constructions are A-type cubes. Examples of both
A-type and untangled cubes are listed in Table ??.
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As a result of the catalogue of straight-edges A- to D-type cubes, RO
constructed a number of new cubes, entangled and untangled, moulded
to give more aesthetically powerful embeddings. That process is one
that – like the mathematical analysis of torus embeddings described
above – morphs between three and two dimensions. RO’s tangled con-
structions emerge by the following processes. First, a three-dimensional
euclidean embedding of a graph, such as a conventional cube, is pro-
jected to the plane (two-dimensional euclidean space). Vertices are
then moved around in the plane, then fixed, settling their {x, y} coor-
dinates. Their z coordinate in (euclidean three-dimensional) space is
then chosen by fixing a height on vertical sticks placed at the {x, y}
sites. Evidently, this operation need to preserve the entanglement of
the initial embedding.

More recently, a new series of cube constructions were built by RO,
via the same project method. Some of those newer constructions how-
ever, were made from initial embeddings that were themselves tangled,
namely the straight-edge embeddings illustrated in the second row of
Table ??. Once again, the entanglements of the initial embeddings were
not necessarily maintained during the process. The resulting Thought
Form constructions depict a wider spread of tangled forms, from the
untangled case, to A- to C-type cubes, listed in Table ??.

That topological approach to enumeration of toroidal polyhedral
graphs led to a comprehensive enumeration of tangled tetrahedral, oc-
tahedral and cube graphs via embeddings in the torus by Toen Castle ?.
This enumeration removed any constraints on largest cycles, revealing
an infinite universe of possibilities. Once again, RO’s work provided
some inspiration. SH had noticed many examples of unidentified tan-
gled polyhedra among the sculptures in RO’s studio. At a glimpse,
these appeared to be tangled dodecahedra. Now systematic enumera-
tion of toroidal tangles of dodecahedra is a tricky computational task,
given the size of the dodecahedral edge graph (with 20 degree-three
vertices). Nevertheless, with some clever analysis, Toen reduced the
computational task to manageable size, and eventually found two fam-
ilies of toroidal dodecahedra, albeit both containing both large and
small faces on the torus, in contrast to the simplest toroidal cubes
(whose faces – on the torus – are all hexagons).

An example of a complex ”dodecahedron” constructed by RO is
shown in Figure ??. This convoluted spatial form, devoid of evident
spatial symmetries or regular geometry of any type, writhes and twists
through space hypnotically. Its coordination sequence is identical to
that of the dodecahedron, and fixed, regardless of which of the twenty
vertices we choose as the ”root vertex”, namely, {1, 3, 6, 6, 3, 1}. This
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Untangled A-type B-type C-type D-type E-type

Thought Form #2 Thought Form #3 Thought Form#1 Thought Form #7

Thought Form #5 Thought Form #4

Thought Form #6 Vessel #2

Florentia Florentia

Florentia Florentia

Florentia

Table 1. (Top row) The four simplest entangled toroidal cube graphs

that can be drawn with straight edges in 3-space. (Second row) Embeddings of

the simplest tangled cubes with straight edges. (Lower rows) RO’s construc-
tions of cube graphs, from the Vessel, Florentia and Thought Form series.

Some correspond to tangled cubes, others are untangled.
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is the coordination sequence of the dodecahedron (Figure ??(c). This
construction is therefore a tangled dodecahedron. Its subtle geome-
try is more complex (and beguiling to the human eye) then either the
conventional regular (untangled) Platonic dodecahedron, or any of the
toroidal tangled dodecahedral isotopes found by Toen Castle. It is a
tangled polyhedral isotope whose complexity is beyond our enumera-
tive capabilities at present. It seems certain that it embeds on a torus
of genus at least two, but the lowest genus torus that can be reticulated
to form this particular isotope is unknown.

(a)

(b) (c)

Figure 5. (a) Robert Owen’s dodecahedron construc-
tion, Carbon Copy #2, from the series ”Di↵erent Lights
Cast Di↵erent Shadows” (2003). Photo, Art Gallery of
NSW, 2004. (b) labelled by a coordination sequence from
an arbitrary vertex, labelled ”0”. (c) Planar drawing of
the dodecahedron edge graph, revealing its coordination
sequence: {1, 3, 6, 6, 3, 1}.
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One further construction by RO is worth exploring through this
graph theoretic prism, since it illustrates another subtle aspect of en-
tanglement in nets. Florentia Bloom 2, is shown in Figure ??. This
construction embodies a graph with 18 degree-three vertices, so it is
clearly not a dodecahedron, tangled or otherwise. Its coordination
sequence depends on the choice of root vertex; one case is shown in
Figure ??(b)). We cannot trace this graph within the plane with-
out edge intersections; at least one pair of intersecting edges results
(Figure ??(c)). Indeed, we can trace the degree-three bipartite graph,
(K3,3) as a subgroup of this graph. One choice is shown in Figure ??(d).
Kuratowski’s Theorem guarantees that this graph is therefore topolog-
ically non-planar ?, so it is no surprise that it cannot be drawn on
the page without intersecting edges. It is therefore also certainly not a
tangled polyhedral graph, since these are (topologically) planar. But
is it tangled?

This is a subtle question, that can be answered in a number of ways.
In our view, it can only be answered by first defining an untangled
”ground state” for this (non-polyhedral) graph. Since the graph draw-
ing of Figure ??(c) has just one crossing of edges, it can be drawn
on the surface of a (genus-one) torus without crossings. The torus
”handle” – not present on the sphere – allows su�cient freedom for the
crossed edges to be separated. Since the graph is non-planar, this is the
lowest genus (oriented) manifold which can be reticulated to give this
construction. It cannot be further disentangled to reduce edge cross-
ings. In our view then, it is ”untangled”, despite its complex threaded
structure. This feature is common to all non-planar graphs. Classifica-
tion of their entanglement is therefore a delicate issue, and much work
remains to arrive at useful signatures for these non-planar cases.

Nevertheless, our analysis (via mathematics) and construction (via
sculptural art) of entangled polyhedral (and therefore planar) graphs
o↵ers a useful starting point for that study. This tale exemplifies an
often overlooked synergy between the creative arts/sciences/ Both au-
thors - scientist and artist – have been exploring related ideas inde-
pendently and occasionally in tandem, with very di↵erent languages
of form. Yet beneath these superficially disparate approaches lies a
common goal: exploration of space.

4. Looking further

We have chosen to emphasise simpler entanglements, constructed
from mathematics and visual experiments. The dialogue described
here, between the analyses from topology, graph and tiling theory, and
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(a)

(b) (c)

(d) (e)

Figure 6. (a) Robert Owen’s Florentia Bloom 2. (Im-
age courtesy of Robert Owen.) (b) Construction labelled
by a coordination sequence. (c) Planar drawing of the
graph topology of this construction, with a single edge
crossing. Edges are coloured to mimic the coloured edges
of (a) and vertices are labelled by their index in the co-
ordination sequence (as in (b)). (d) A K3,3 sub-graph
found within the graph of (c), with (non-trivial) degree-
three vertices of K3,3 coloured cyan and red. (e) The
bipartite K3,3 graph.
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the constructions allowed by morphing polyhedral nets projected into
two euclidean dimensions, then lifting back into three, is an open one.
RO has a wealth of other constructions that are equally intriguing to
explore from the perspective of polyhedral entanglement. Melburnians
and Sydneysiders can explore this without too much e↵ort.

Visitors to Hamer Hall in the Arts Centre need only look to the
ceiling in the entry, to find Silence made of seven suspended crystal-
encrusted sculptures: all dodecahedra. Their various entanglements
have yet to be explored. The high-rise Triptych apartment building
looms just behind the Arts Centre. This building too is decorated with
some of RO’s tangled polyhedral constructions. (The coloured decora-
tions on the external walls are also designed by RO.) Another series
of seven variously-tangled dodecahedra, Axiom decorate the atrium of
the Commonwealth Law Courts in 305 William Street.

Sydney is also home to a number of readily accessible RO sculp-
tures. A suite of tangled polyhedra entitled New Constellation hang
in the foyer of the MLC Building in Martin Place (along with a large
RO painting). RO’s most complex form is on public view, across the
harbour, and just behind Luna Park, at Harry’s Park, adjacent toot
eh o�ces of the late Modernist architect, Harry Seidler. This large
sculpture, Tracing Light - For Harry 3D/4D replicates RO’s proce-
dure of planar projection followed by lift back into three-dimensional
space described above. But here the initial object is a four-dimensional
polyhedron, a hypercube, or tesseract. Entanglement of this graph is
a still more complex issue!
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