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Recent advances in the cataloguing of three-dimen-
sional nets mean a systematic search for framework
structures with specific properties is now feasible.
Theoretical arguments about the elastic deformation
of frameworks suggest characteristics of mechanically
isotropic networks. We explore these concepts on both
isotropic and anisotropic networks by manufacturing
porous elastomers with three different periodic net
geometries. The blocks of patterned elastomers are
subjected to a range of mechanical tests to determine
the dependence of elastic moduli on geometric and
topological parameters. We report results from axial
compression experiments, three-dimensional X-ray
computed tomography imaging and image-based
finite-element simulations of elastic properties of
framework-patterned elastomers.

1. Introduction

Surveys of natural and manufactured materials show
a significant gap in the low-density (o <500kgm™3),
high Young’s modulus (E > 1GPa) range [1]; materials
with high Young’s modulus (e.g. solid metal alloys) tend
to have high density. An elegant route to low-density
materials is to form porous materials, whose solid
phase is itself intrinsically stiff. Hashin and Shtrikman
(H-S) have derived theoretical upper bounds for elastic
moduli of composite materials as a function of volume

© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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fraction and moduli of the bulk matrix [2], but the design of porous materials whose stiffness
approaches those bounds remains a challenge.

A common manufacturing technique for porous materials is to create a foam. However, foams
tend to have significantly lower Young’s modulus than the bulk material, well below the H-S
bounds. An alternative route to porous materials is to form framework materials, whose designs
are based on periodic nets. In this paper, we explore the elastic behaviour of frameworks both in
theory and practice as a function of the net geometry. We are particularly interested in net designs
that resist deformation regardless of the direction of the imposed stress, i.e. materially isotropic
and stiff porous elastomeric nets, as well as comparison of isotropic with anisotropic nets.

A key observation driving the design of framework materials is that a solid beam of linear-
elastic material is much stiffer under axial stress than under bending. Since we can model a
framework as an assembly of narrow beams (centred by net edges) meeting at junctions (net
vertices), such a solid will be maximally stiff if it carries stress through axial deformation of
these beams rather than bending. The question now is what structures have this property?
Open-cell foams, for instance, can be considered as random frameworks made of beams that are
polydisperse in size, but they usually show bending dominated behaviour [3]. Here, we consider
only ordered (crystalline) net geometries.

Deshpande et al. [4] argue that frameworks based on combinatorially rigid nets (in the
sense of Maxwell constraint counting) carry stresses axially along the beams and will therefore
show stretch-dominated behaviour. Frameworks based on under-constrained nets, which have
floppy modes (or mechanisms), will carry stresses in the junctions or through bending of their
beams and should therefore have smaller moduli. In two dimensions, these two cases are
exemplified by the triangular lattice, hxl (rigid, stretch-dominated) and the honeycomb hcb
(floppy, bending-dominated).!

The Maxwell-Calladine [7] rule for a general pin-jointed three-dimensional framework with
b bars and j joints is that the number of infinitesimal internal mechanisms m and states of self
stress, s, satisfy

b-3j+6=s—m. (1.1)

If the framework has m =s=0, then it is said to be isostatic; there are no moving joints and no
redundant bars. For large homogeneous random frameworks, this leads to a necessary condition
on the average number of bars meeting at each joint, z, (i.e. the vertex degree) that z > 6. On the
other hand, in the study of Deshpande et al. [4], it is argued that a three-dimensional periodic
net with ‘similarly situated nodes” must have z > 12. For other periodic and symmetric nets, the
conditions for combinatorial rigidity are still being explored [8,9], but there is a possibility here
for rigid nets with 6 <z <12.

As an aside, this discussion on the mechanical stability of random and periodic nets finds
echoes in a variety of physical contexts. For instance, constraint counting arguments have received
a considerable attention in granular physics due to their importance in model materials such as
non-cohesive sphere packings. In such packings, the vertex degree is commonly referred to as
the mechanical coordination number z. On the one hand, an isostatic counting has long been
recognized as a key factor governing the transition to rigidity, i.e the jamming transition, of
disordered packings [10-13]. On the other hand, recent advances have revealed that partially
crystallized sphere packings verify 6 <z <12 [14] and the evolution of z shows a clear correlation
with crucial geometrical rearrangements occurring while a packing crystallizes [15].

In three dimensions, the simplest rigid net is the face-centred cubic lattice fcu and frameworks
with this topology have been analysed in depth [16]. The fcu framework is materially anisotropic,
with different elastic moduli along different directions. The geometric constraints necessary to
realize elastically isotropic framework materials with cubic symmetry are explored in detail by
Gurtner & Durand [11]. Their analysis of the linear-elastic stress—strain equations leads to explicit
!We describe nets by a boldface three-letter code developed for chemical frameworks. Structural details for these nets can be

found in the RCSR database at rcsr.anu.edu.au [5]. Patterned porous materials whose channels lie on net edges are denoted
by the epinet code, italicized; see the EPINET database epinet.anu.edu.au [6].
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geometric conditions for isotropic, stretch-dominated (affine) strain of a framework solid which
are discussed further in §2, as well as estimates of the elastic moduli of isotropic framework
materials that, to our knowledge, have yet to be explored experimentally.

The design of new micro-structured materials requires both a comprehensive dictionary
of potential target structures and a reasonable process for building them. Systematic catalogues
of periodic nets have arisen largely in structural chemistry. Examples are nets derived from
uni-nodal sphere packings [12], O'Keeffe’'s RCSR database of nets most relevant to crystal
chemistry [5], real and hypothetical zeolites [13,14], and EPINET [6], a more general database
that has the broadest range of topological parameters. For the engineer, these are new resources
for exploring the dependence of material properties on geometric and topological framework
parameters.

We have systematically explored the most symmetric net geometries listed in the EPINET
and RCSR databases, to determine the simplest possible stretch-dominated porous networks.
Guided by this theoretical analysis, we have manufactured patterned elastomeric materials
based on some of those nets. We describe the experimental measurement of elastic moduli from
sample frameworks and compare these measurements with X-ray computed tomography (XCT)
image-based FEM numerical calculations.

2. Systematic search for isotropic stretch-dominated frameworks

The criteria derived in [11] for elastically isotropic frameworks that exhibit affine strain provide a
natural starting point for our search, as these will select designs for lightweight stiff materials
regardless of the loading geometry. Driven by recent advances in tiling theory that allow
systematic enumeration of net geometries, ordered by their complexity [15,16], we are now in
a position to search for novel templates in a rational fashion. We have therefore analysed the
simplest structurally isotropic nets—i.e. those with cubic symmetry—from the EPINET and RCSR
databases. Nets with lower symmetry considerably complicate the analysis. Our list comprises
74 nets and includes all cubic nets whose vertices are symmetrically equivalent and contain up
to two symmetrically distinct edges (i.e. {vertex, edge} transitivity {1,1} and {1, 2}, with 19 and
30 nets, respectively) and cubic nets with two symmetrically distinct vertices and a single edge
type (transitivity {2, 1}, 25 nets). We have sorted these nets according to their crystal classes, to
determine whether elastic features are related to crystal class.? Results are collated in appendix A.

Porous network materials can be considered as collections of elastic beams (centred by net
edges) meeting at nodes (net vertices). Durand and Gurtner’s analysis [11,17] led to a suite of
equations that a network should satisfy to exhibit affine stretch-dominated strain assuming no
vertex contribution to the elasticity and standard beam elasticity theory. (This assumption holds
in practice if the edge radii are much smaller than their lengths.) Adapting their notation in
[11], denote by e; an edge vector and &; the unit edge vector. Denote by ¢;, a; and v; the length,
cross-sectional areas and volumes of edges e;. The direction cosines of the edges with (Cartesian)
coordinate axes are

{COS(@I-X), COS(Q;'V)/ COS(@I-Z)} = {él : {1/ 0/ 0}/ éi : {O/ 1/ 0}/ éi : {O/ O/ 1}} (21)
Denote the average measure of a variable g as the weighted average (by edge volume, v;)

_ Zivigi _ Ziaitiqi 22)

) Ziv; Tl

This average is made by summing over all edges within a single translational unit cell of the net.

Four additional sets of equations characterize materially isotropic nets that deform by
stretching of the beams without bending (i.e. with axial strains). The derivation imposes a
carefully chosen displacement field that ensures each (possibly curved) beam will deform affinely.

20f the five cubic classes, the class 23 is not represented in this selection.
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Figure 1. The nets sqc38 and sqc1649. These nets define the skeleta of porous framework geometries that can be tuned to
be elastically isotropic, provided the edges are thickened to give circular beams. The radii of beams along the [100] and [111]
directions (axial and diagonal directions) must be tuned to a specific ratio to form the optimal materials (table 3). (Online version
in colour.)

The first set of equations are

(cos?(60*)) = % 2.3)
(cos*(6)) = é (2.4)
and (cos?(8%) cos(6?) cos(87)) = 0. (2.5)

Note that the first two equations have three separate components each (¢ =x,y,z). The last
equation has nine components, corresponding to permutations of «, g and y, where (8 # y) [11].
For convenience, in the following discussion, we refer to net designs that satisfy these equations as
(elastically) isotropic. Lastly, Durand and Gurtner derive an equation for mechanical equilibrium
at the joints

Xia; cos(6f) - cos(@iﬁ) -cos(6])=0 (2.6)

for «, 8 and y =x,y or z. This equation contains 10 separate equations. When the sum over all
edges emanating from a single vertex vanishes, we refer to the net as being at vertex-equilibrium.

We have calculated the sums given by the left-hand side of these four sets of equations
(2.3)-(2.6) for the list of 74 cubic nets described above. The results are summarized in tables 3
and 4 in appendix A. We do not find any clear correlation between cubic crystal class (point
group symmetry) and elastic behaviour. Most examples are neither elastically isotropic nor at
vertex-equilibrium. Indeed, all {1,1} and {2,1} transitive nets (i.e. with one type of edge) fail
the isotropy conditions, since the summands of equations (2.3)—(2.6) do not give the required
values. Therefore, crystalline isotropic and stiff network materials must contain at least two
symmetrically distinct classes of beams, corresponding to the distinct edges. In that case, the
ratio of beam radii for the different edge classes can be tuned to satisfy the isotropy and vertex
equilibrium equations.

Just two cubic net geometries from the 30 {1,2} transitive nets lead to sums that are exactly
those demanded by equations (2.3)—(2.6) above (for specific ratios of beam radii). These are the
sqc38 and sqc1649 examples, with 14 (six of one type, and eight of the other) and eight (six and two)
edges meeting at each vertex, respectively. The isotropy of the sqc38 pattern has been reported
earlier by Gurtner & Durand [11]; the second example is new. These nets are illustrated in figure 1.
They define frameworks that are elastically isotropic with stretch-dominated strains provided
their cross-sectional area ratios are tuned as listed in table 3.
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3. Manufacture of elastomeric nets

The manufacture of patterned elastomers is now possible using three-dimensional modelling
software and rapid prototyping (three-dimensional printing) technology. We have therefore
manufactured real materials based on some cubic net geometries to compare their elastic
responses and test the validity of the analyses in §2. We have built models of various porosity
based on the nets sqc1 (pcu), sqc3 (bcu) and sqc38 (sod-d) (figure 5). The first two nets are
anisotropic and not combinatorially rigid, but they are well-known cubic three-dimensional
patterns—simple (or primitive) and body centred cubic nets. The third pattern, sqc38, is effectively
the union of the first two. For a suitable choice of edge-radii, it will satisfy Durand’s isotropy
conditions, and it is combinatorially rigid (in fact, it is over-constrained). Since the manufacturing
process described here is a new technique, this initial experimental investigation is restricted to
networks with uniform edge radii.

Direct printing of porous geometries is readily done, however, the bulk material is typically
a weakly consolidated granular solid, poorly suited for testing elastic properties of framework
materials. In our case, the printed material is made of consolidated gypsum powder, whose
constituent particles are typically ca 1 pm in diameter. To form a suitable porous material, we first
print a complementary gypsum mould, which we then fill with liquid polymer polyvinylsiloxane
(PVS) to create a block of framework-patterned elastomer. The physical constraints on the mould
are the three-dimensional printer resolution of 100 um, and an effective casting limit on the
minimum beam diameter of 1 mm. We construct models that are 6.6cm along an edge, with
multiple repeat units of the basic pattern as follows.

Given a target lattice structure described by crystallographic data (as in EPINET), we create
a computer model of the framework by generating multiple unit cells of the structure, then
thickening all edges to have equal circular cross sections (whose radius is determined by the
target porosity) and smoothing the nodes (figure 2). A three-dimensional digital model of the
complementary volume, containing all points in the 6.6 cm cube that are not in the framework is
then formed. This is the mould geometry. The mould is then built in a Zprinter 650 machine using
monodisperse gypsum powder, glued to form a consolidated monolith within the complementary
volume. The resulting mould is typically filled with unconsolidated powder, which is removed
carefully using a brush and an air-gun.

The resulting porous monolith is then saturated with ethylene glycol to prevent wetting by
PVS. The PVS is imbibed into the pore spaces, under pressure to give uniform, almost bubble-free
filling, and subsequently air-cured to form the polymerized elastomer. Lastly, the gypsum-PVS
composite is washed in water to remove the gypsum mould, leaving the patterned elastomer
(figures 2 and 3). Defects can occur during the process, owing to the printing process and the
presence of bubbles, but they usually represent a negligible part of the global structure; the
discrepancy between the target volume fraction and its actual realization is within 1%. The surface
roughness of the beams is the main source of defects, as can be noted in figure 7.

4. Experimental investigation of elastomeric nets

Given a block of patterned PVS, cast as described above, we investigate its elastic properties
with an axial compression apparatus (Instron). We also study the material deformation behaviour
in three dimensions under uniaxial loading, using CT images of the material under various
loading conditions.

The applied axial force and resulting displacement are measured using an Instron machine.
The resolution of force and displacement measurements are 10~* N and 10~ m, respectively. Data
are shown in figure 4. When axially loaded along the z-axis direction (defined in figure 5), we see
that in the linear-elastic regime sqc1 has the stiffest response to compression, followed by sqc38,
then sqc3. The data show a sharp onset of buckling in the sqc1 patterned block of PVS followed by
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Figure 2. Clockwise from top left: an example of the computer model net geometry for sgc38 and its complement, the PVS cast
elastomer and the gypsum mould as built in a Zprinter 650 machine. (Online version in colour.)

sqc38

Figure 3. Examples of patterned blocks of PVS with 9 unit cells. Clockwise from left: sqc38, sqc7 and sqc3. (Online version in
colour.)
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axial compression
networks sqcl_3_38 ¢=34%

25 | 207
= y=-8.0867 + 2.8648x R=0.99912

15+ § ——y=-085141+04786x R=0.99971
§

= = y=-3.7275+ 1.5746x R=0.99992

15 20 25
d (mm) d (mm)

L L 0 ‘i i
15 20 25 0 5 10

Figure 4. (a) Force versus displacement curves for axial compression of three blocks of patterned PVS. Each block has a volume
fraction of ¢ = 0.34. (b) Close-up view of linear region of plot in (a) with linear fits. (Online version in colour.)

A

Figure 5. The nets used as templates for building the porous PVS networks discussed in this paper. From left to right: sqc7
(simple cubic), with vertex degree z = 6, sqc3 (body-centred cubic) z = 8 and sqc38 with z = 14. The diagram below shows
the orientation of axes referred to in the text. (Online version in colour.)

post-yield softening. The sqc38 block yields at a similar level of compression (d =9 mm) as sqcl
and thereafter the force changes little for increased deformation. Finally, sqc3 shows a consistent
linear response for the full deformation range studied (0 < d <21 mm).

We calculate Young’s modulus under axial loading, E,, from the compression measurements
by finding the slope, s, of the line that best fits the data in the linear-response region. Then E =s/I,
where | denotes the length of the side of the patterned block.
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0.2

Figure 6. Young’s modulus measured under uniaxial compression for different body orientation and different geometry
normalized by the modulus measured in state 0. The patterns are sqc7 and sqc38 with all edge-radii equal. The various
orientations are described in the text. (Online version in colour.)

Table 1. Data used to calculate Young's modulus for three blocks of patterned elastomer based on sqc7, sqc3 and sqc38
frameworks with volume fraction ¢ = 0.34.

line of best fit block side length, Young's modulus
slope, s (N/mm) [ (cm) E, (kPa)

Uniaxial deformation measurements on sqcl and sqc38 networks have been made for a range
of axis orientations. To do those measurements, we manufactured a number of PVS patterned
materials with equal underlying net geometries and porosities (i.e. sqcl and sqc38), all bounded
externally by cube faces, and various orientations. Those models were then deformed, giving
the experimental Young’s moduli plotted in figure 6. The orientations of the cubic blocks are
as follows. The initial orientation (state 0), with cube edges aligned with the axis of deformation
(figure 3) is denoted 60. 01 describes the rotated structure whose new z deformation axis is parallel
to the body diagonal of state 0 (AB in figure 5). 62 refers to the model formed by rotating state
00 35.2° around the y-axis and 63 is the body formed by rotating state #0 45° around the y-axis.

In order to explore the geometric deformation modes of these networks, we have also imaged
the patterned PVS materials using high resolution (65 um) XCT. We use a helical tomography
apparatus that is capable of high resolution with a large imaging field of view [18]. The helical
feature of our XCT is especially suitable for these specimens as it allows three-dimensional
imaging of the complete sample under loading, including the compressing piston at the top of
the sample.

The PVS block is placed inside a uniaxial compression cell [19], designed with a rigid piston,
to load the top face of the patterned materials uniformly along the z-axis. The strain is varied by
adding suitable weights to the loading piston. This entire ensemble is placed in the XCT machine
and imaged with 2880 two-dimensional X-ray projections in 360°. The total image acquisition
time was 5h for each stage of compression and tomographic reconstruction was made using the
Katsevich algorithm [20]. The result is a 20483 three-dimensional voxel array with each voxel
representing 65 pm resolution. A typical reconstructed image (sqc38 with no loading) is given
in figure 7. These three-dimensional data contain a wealth of information. For example, we can
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Figure 7. A three-dimensional rendering of a tomographic image of sqc38. The shaded surface (translucent red in the online
version) is an isosurface of the X-ray density chosen to highlight the edges in the framework. The thin struts (green-blue in the
online version) are the medial axis corresponding to the PVS phase. (Online version in colour.)

extract medial axes from the volume data using numerical tools developed in-house [21], that
allow precise quantification of the network edge and vertex geometry as a function of load. For
the purposes of this paper, we use these three-dimensional data to build digital models of our
patterned materials from which we numerically estimate their elastic moduli.

5. Image-based computation of elastic moduli

One advantage of tomographic imaging is that it permits direct simulation of an object’s
mechanical properties using a finite-element method (FEM) [22-24]. First, the X-ray density
map of the tomographic image is binarized: based on the X-ray density value each voxel is
assigned to be either PVS (i.e. part of the framework) or air. The voxels are then taken to be
tri-linear cubical finite elements [22]. In order to calculate the mechanical response of the PVS
framework, a constant strain (or displacement field) is initially applied across all the voxels.
For anisotropic materials, we run six independent FE simulations to solve for the deformation
field of six different applied external orthogonal strains: {xx,yy, zz, yz, xy, zx}. This way, we can
construct any particular applied macroscopic strain as a combination of the selected strain basis
producing sufficient data to calculate all 36 components (Voigt notation) of the sample’s elastic
stiffness tensor (Cjjx).

Initial bulk and shear moduli of 850 and 139 KPa (Young’s modulus of 395 KPa) were assigned
to the solid phase (PVS)? and a constant strain boundary condition scheme was used in the
simulations [25]. The final elastic result (displacement distribution) is such that the total elastic
energy (&) stored in the microstructure is minimized

1
E= 3 J €iiCijki€kl dv. (5.1)
v

3We measured these values using the Instron apparatus on a solid block of PVS that had undergone the same curing process
as the elastomeric nets.
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Young modulus exp. versus simulation
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Figure 8. Young’s modulus versus force. Graphical comparison of the z-axial Young’s modulus as computed from Instron axial
compression data and from FEM analysis of XCT images of the same models under three different loading conditions. These
loadings are within the linear elastic regime found with the Instron experiments figure 4. (Online version in colour.)

Table 2. Summary of the elastic properties of sqc7 and sqc38 framework patterned blocks of PVS. Young’s moduli from
the Instron experiment are calculated from the full linear regime, for the simulation we report values from the initial
loading stage.

Young's modulus (Y;) Young's modulus (Y;)
from experiment (kPa) from simulation (kPa)
sqcl 434 44 4 0.87
......................... sqc3823925:|:09‘|

Here, € is the strain field (a second rank tensor), C is the stiffness tensor (a fourth rank tensor),
dv is the volume element and the integration is over the entire sample. Minimization of elastic
energy means that the gradient of the energy with respect to elastic displacement variables, 1,
is zero (9€/duy, = 0). The FEM simulation outputs the full tensorial stress response of the PVS
frameworks from which we compare the compressive axial element of Young’s modulus (E;)
with the experimental results in figure 8 and table 2. There is good agreement between the values
obtained by simulation and those from the Instron experiments for both the sqc1 and sgc38 blocks.
Our experimental finding—that sqc1 is stiffer under axial loading parallel to edge directions than
5qc38 loaded off-axis to edge directions—is reproduced by simulations. Normalized values of
all three axial components of Young’s modulus and shear moduli for sqc1 and sqc38 blocks are
presented in figure 9. At the initial loading stage, when the force is sufficiently low that the
block deforms as a linear-elastic body (determined by the Instron data), we see that the sgcl
framework has E,/Epys =0.22 and E,/Epys = Ex/Epys =0.10, where E; and E, denote moduli
parallel and orthogonal to the loading axis respectively. With increased loading in the z-axis, E,
maintains this value, while the other two components increase to around the same level. The shear
moduli for the sqc block have also been estimated from the FEM simulations by imposition of
uniform strains in xz, yz and xy planes as described earlier. These moduli too show qualitatively
different behaviour between the initial and final loading stages. The initial configuration has
one shear component much larger than the other two—relative values of 0.26 versus 0.10—with
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Figure 9. Axial components of Young's modulus (a) and shear modulus (b) for sqc7 (dashed line, red in the online version) and
5qc38 (dotted line, blue in the online version) patterned blocks of PVS normalized by modulii for a solid block of PVS. The values
are computed from FEM analysis of XCT images of the blocks under the same three loading conditions as figure 8. (Online version
in colour.)

the large component representing a shear in the plane of the slight axial compression, while
the other two components are in the transverse plane. This distinction disappears at the higher
loading configurations so that all three components are around 0.10-0.11. By contrast, the moduli
computed from images of the sqc38 block are less variable at the different loading stages. All three
components for Young’s modulus increase slightly from an initial relative value of 0.11 to a final
value of 0.14. The two transverse components of the shear modulus are ca 0.14, whereas the third
component increases slightly from 0.17 to 0.19.

6. Discussion of results

Recall that our theoretical survey of cubic nets with symmetrically equivalent vertices suggests
just two isotropic stretched-dominated patterns with up to two symmetrically distinct edges,
according to the criteria deduced by Gurtner & Durand [11]. One of those, sqc38, is predicted to be
isotropic when the ratio of cross-sectional area between the two edge types is ~ 0.77 (cf. table 3).
Our 5qc38 patterned material, with an edge ratio of 1.0, is therefore expected to be nearly isotropic.
That expectation is confirmed by the measurements of stiffness for various loading orientations,
both on- and off-axis relative to edge directions, as shown in figure 6. The axial Young’s modulus
of sqc38 varies by around 10%, confirming a largely isotropic response, as shown in figure 6.

By contrast, axial compression of sqcl patterned materials display a reduction in the axial
Young’s modulus by 70% when the orientation of the pattern with respect to the cast block
changes from being aligned with the cubic edges to other non-aligned directions. Evidently, this
material is far from isotropic.

Nevertheless, axial compression results in §4, figure 4 show that the sqcI block is stiffer when
strained along the z-axis direction than the sqc38 block with equivalent porosity, despite the fact
that sqc38 is combinatorially rigid, while sqcl is not. This is an instructive result, that belies a
simple correspondence between rigid and stiff structures. Although sqcl is not combinatorially
rigid, whereas sqc38 is, it is nevertheless relatively stiff. That stiffness, is in part due to the fact that
the sqcl patterned elastomer was built with a larger edge radius (1.69 versus 0.75 mm) to maintain
equal porosities for both materials. More significantly, the axial compression occurs along an edge
direction of the sqc1 material, so the framework deforms by compression rather than bending. By
contrast, the edges of the rigid body-centred cubic framework sqc3 lie along body diagonals of
cubic unit cell, so z-axial compression of the block occurs principally via bending rather than
stretching. The sqc38 material shows intermediate stiffness to sqc1 and sqc3 under uniaxial strain
parallel to the z-axis of the cubic unit cell common to all three patterns. Indeed, the axial Young’s
modulus for sqc3 is considerably lower than that for sqc38 (7.5 versus 24 kPa) despite the fact that
the sqc3 block has framework edges that are thicker than those for sqc38 (1.1 versus 0.75 mm). This
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too is consistent with the relative stiffness of edges under compression along the z-axis compared
with bending. sqc1 deforms by edge compression only, sqc38 via a combination of compression
(for the edges that are also found in the sqcl pattern) and bending (for other edges) and the sqc3
deformation is dominated by bending.

Results from image-based FEM simulations in §5 confirm (figure 8) and extend the conclusions
deduced from Instron data. In particular, the simulations at all three loading stages (figure 9) are
consistent with quasi-isotropic behaviour in the axial and shear moduli computed from the sqc38
images.

It is interesting to note that the transverse components of Young’s modulus (Ey, Ey) and one
shear component of the sgc1 network change considerably as the loading increases, however. This
hints at a much more complex deformation process for the sqc1 patterned elastomer, confirmed
visually by anisotropic buckling of the material at higher loading. A quantitative study of the
structural deformation of these frameworks from the XCT images will be included in a future
paper.

To obtain a better picture of how elastic properties depend on the underlying net structure, we
need to consider the moduli as a function of porosity. Gurtner & Durand [17] derive expressions
for elastic constants of nets that satisfy their isotropy stretch-dominated strain conditions and
argue that Young’s modulus scales as E = (¢/6)Eg, where Eg is Young’s modulus for the bulk
material. They also observe that this is strictly lower than the bounds implied by Hashin—
Shtrikman for general composite materials. Our block of sqc38-patterned PVS does not quite
fulfil their criteria as we have made all edge radii the same. Nevertheless, taking a value of
Eg =395kPa as per the FEM simulations, we see that their theory predicts E =22.4kPa, which
is consistent with, although slightly lower than, the experimental determination of 24 kPa. The
source of this discrepancy may be traced to a number of factors, from structural defects in our
elastomeric models, to approximations in Durand and Gurtner’s theory (that assume thin beams
and neglect vertex contributions to the elasticity). A more detailed analysis of Young’s modulus
as a function of porosity for a given framework type will be given in the follow-up paper.

In conclusion, a simple distinction between the stiffness of rigid (stretch-dominated)
structures and non-rigid (bending-dominated) structures does not hold for framework-patterned
elastomers. Our experiments demonstrate the fact that non-rigid, anisotropic structures may be
stiffer than rigid isotropic ones along certain axes. Furthermore, a second candidate for isotropic
stiff patterns, sqc1649 is identified from the epinet database. Clearly, there is plenty of scope
for further experiments and analysis, and the search for lightweight stiff and strong materials
continues.

Appendix A

Table 3. Edge-1- and edge-2-transitive cubic nets analysed according to the functions in equations (2.3)-(2.6). The expressions
should evaluate to1/3,1/5, 0, 0, respectively. The two nets that satisfy all four conditions (sqc38 and sqc7649) are marked with
an asterisk. e, (a,) refers to a second edge type (and its cross-sectional area), symmetrically distinct from the first (there is a dash
if the net is edge-1-transitive). The second edge is as listed in EPINET [6] (all nets obtained from RCSR [5] are edge-1-transitive.)
Summands that depend on a; are labelled ‘var’ If there is a value for a, that satisfies the isotropy condition, it is given in the e,
column. Negative values are unphysical.

equation equation equation equation
(23) (2.4) (2.5) (2.6)

(Continued.)
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Table 3. (Continued.)

equation equation equation equation

23) 24 25) (2.6)
— lcz P432 12 = 1/3 1/6

Table 4. Listing of vertex-2, edge-1-transitive cubic nets analysed for isotropy and mechanical equilibrium according to
equations (2.3)—(2.6). The expressions should evaluate to 1/3,1/5, 0, 0, respectively, if the nets are isotropic. The vertex
ordering is as listed in EPINET or RCSR databases [5,6].

space equation equation equation equation
(VR)) (2.4) (2.5 (2.6)

(Continued.)
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Table 4. (Continued.)

space equation equation equation equation
(VR)) (2.4) 2.5) (2.6)
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