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Ordered arrays of cylinders, known as rod packings, are now widely used in
descriptions of crystalline structures. These are generalized to include crystal-
lographic packed arrays of filaments with circular cross sections, including
curvilinear cylinders whose central axes are generic helices. A suite of the
simplest such general rod packings is constructed by projecting line patterns in
the hyperbolic plane (H*) onto cubic genus-3 triply periodic minimal surfaces in
Euclidean space (E*): the primitive, diamond and gyroid surfaces. The simplest
designs correspond to ‘classical’ rod packings containing conventional
cylindrical filaments. More complex packings contain three-dimensional arrays
of mutually entangled filaments that can be infinitely extended or finite loops
forming three-dimensional weavings. The concept of a canonical ‘ideal’
embedding of these weavings is introduced, generalized from that of knot
embeddings and found algorithmically by tightening the weaving to minimize
the filament length to volume ratio. The tightening algorithm builds on the
SONO algorithm for finding ideal conformations of knots. Three distinct classes

Printed in Singapore — all rights reserved

1. Introduction

Rod packings are mutually touching (i.e. packed) but non-
intersecting crystalline arrays of straight cylinders in E’
(O’Keeffe & Hyde, 1996). These include ‘invariant rod
packings™ (Rosi et al., 2005). Since the earliest work on rod
packings, a number of important patterns have been detected
in the solid state (O’Keeffe & Andersson, 1977; O’Keeffe,
1992) including the A15 or B-tungsten (B-W) packing and
a related packing of slightly lower density and symmetry, the
B-Mn packing. More recently, O’Keeffe and colleagues have
provided a systematic technique for enumerating conventional
rod packings and they have come up with a number of new
examples (O’Keeffe et al., 2001, 2002; Rosi et al., 2005).

In the course of our own investigations of spatial patterns,
we have found a novel route to many of these rod packings,
involving projections into [’ of non-intersecting geodesics
from the two-dimensional hyperbolic plane (H?). These
packings of non-intersecting geodesics are closely related both
to standard tilings (Ramsden et al., 2009) and free tilings
(Evans et al., 2013) of H This approach also yields many more
complex arrays of curvilinear rods that wind through space
forming generic helices. These arrays share many of the

! An invariant rod packing is composed of non-overlapping rods (cylinders)
which correspond to invariant line positions of the space groups, so that the
rods lie along the directions of non-intersecting symmetry axes (O’Keeffe et
al., 2001; Rosi et al., 2005).

of weavings are described.

features of conventional rod packings. Our generalized rod
packings are constructed from two-dimensional tilings of
hyperbolic space (H?) and signal a further break from recti-
linear geometries. The approach shares many of the techni-
ques described in detail in a companion paper (Evans et al.,
2013) and elsewhere (Ramsden et al., 2009; Evans & Hyde,
2011; Castle et al., 2011, 2012).

The admission of curvilinear rods leads to the following
possibilities. First, the rods can close up on themselves,
forming finite loops rather than infinitely extended compo-
nents. Our approach allows the catenation of those loops to be
varied, forming, for example, ‘chainmail’ structures. Second,
the packings can contain complex entanglements of the fila-
ments. It is intuitively clear that entanglement can be an
essential contributor to the material properties of the packing,
since mutual winding of adjacent filaments can dramatically
alter both the bulk modulus and Poisson’s ratio of a structure.

2. Weavings in E’

We construct three-dimensional crystalline arrays of curvi-
linear space curves (or filaments), called weavings. The
weavings discussed here emerge from two-dimensional
geodesic arrays on the simplest cubic TPMSs (triply periodic
minimal surfaces), namely the now well known P (primitive),
D (diamond) and G (or gyroid) (Fogden & Hyde, 1992).
Systematic enumeration of suitable two-dimensional arrays
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on the TPMSs, using an extension of Delaney-Dress tiling
theory to so-called ‘free tilings’, allows us to catalogue and
describe weavings as described below. Generalized rod
packings are the set of mutually tangential canal surfaces of
the filaments, formed by the envelope of spheres centred on
the filament with both curvature and torsion (Hilbert &
Cohn-Vossen, 1952), and we retain the original meaning of
the term ‘rod packing’ to describe arrays of straight cylinders
only.

The construction proceeds by decorating tiles of H? with
line segments of the hyperbolic pattern, then mapping the
decorated tile to the TPMS, giving a (generally curved) edge
segment wrapped on the TPMS. The technique employs
aspects of group theory, topology and hyperbolic geometry. A
detailed account of the technique and the enumeration
process for conventional tilings has been given elsewhere
(Ramsden et al., 2009; Robins et al., 2004). Those patterns are
built from tessellations of H” by (simply connected) tiles of
finite area. These tiles map to closed cycles on the TPMS and
conventional one-component nets in E° (Ramsden er al.,
2009).

Free tilings result from tessellations by (simply connected)
tiles whose areas and edge lengths are unbounded. In the
companion paper to this one (Evans et al., 2013), we intro-
duced free ‘ribbon tilings’ that are tessellations of E* or H* by
infinite strip-like tiles. The forms of infinite tiles can be most
easily classified from their associated ‘medial axes’, defined as
the centres of discs (whose diameter is equal to the tile width)
whose union describes the tiles. The medial axes of ribbon tiles
are unbranched geodesics; medial axes of branched-ribbon
tiles are nets, or branched geodesics.

Branched-ribbon tilings emerged from an earlier study of
tree-like graphs in the hyperbolic plane (Hyde & Oguey,
2000). In that work, we noticed that the convex hulls of the
trees form arrays of (hyper-)parallel geodesics and these can
be considered as edges of symmetric tessellations of H. In
contrast to ribbon tilings, these tessellations of H? have no
counterpart in E*: each tile is bounded by an infinite number
of hyperparallel edges, yet is vertex-free. The medial axes of
these branched-ribbon tiles coincide with the hyperbolic trees
[that form edges of ribbon tilings discussed in the companion
paper (Evans et al, 2013)]. Branched-ribbon tilings are
therefore closely related to ribbon tilings. (Note, however, that
the width of branched-ribbon tiles varies. Their medial axes
are defined by centres of ‘maximal’ discs, that are wedged
between tile edges. The discs are large enough that any larger
disc necessarily includes some points outside the tile.)

Here we analyse the simplest members of these branched-
ribbon tilings, namely the regular examples, that, like Platonic
polyhedra, have symmetrically identical edges and faces. In
the language of tiling theory, these (vertex-free) patterns are
edge- and face-1 transitive in H” (and on the TPMS). The tile
edges (which are geodesics in H?) map to one-dimensional
spatial curves in . An infinite variety of regular branched-
ribbon tilings is possible, whose edges map to E’ to form a
variety of crystalline arrays of identical curvilinear forms,
defining the filaments of the weaving.

2.1. A taxonomy of weavings

These branched-ribbon tilings project onto the TPMS to
form two distinct topologies. Generic examples contain infi-
nite curvilinear lines, resulting in weavings made up of infinite
filaments. In some cases, the filaments form finite closed loops
and the weaving degenerates to a periodic array of catenated
loops, built of links (Cromwell, 2004). We include a brief
discussion of one such example, separately.

We have found three distinct classes of weavings, distin-
guished by their behaviour on straightening the curvilinear
filaments in three-dimensional space, E*> (Evans & Hyde,
2011). Define a filament axis as the straight line that minimizes
the sum of the (Euclidean) distances from points on the fila-
ment to the rectilinear axis. For example, the axis of an ideal
helical filament is coincident with the central screw axis of the
helix. A continuous motion from the original helix to its fila-
ment axis is therefore akin to straightening a helix along its
central axis. In general, our filaments are not ideal helices,
since their specific form depends on the spatial trajectory of
the filament on the TPMS. However, the filaments are by
construction translationally periodic (cf. Evans et al, 2013);
therefore, their axes are necessarily parallel to their vector of
translational periodicity. Our weaving taxonomy depends on
the behaviour of the weaving as the filaments morph from
their initial curvilinear filament geometry to the final state,
where all filaments coincide with their rectified filament axes.
We classify weavings according to the changes (if any) of
filament entanglements during this process.

The notion of entanglement is borrowed, somewhat loosely,
from knot theory. Distinct knots cannot be interconverted
without edges passing through each other. Conversely,
equivalent knots can be interconverted without these
‘phantom moves’ and mappings of their complementary
volumes are ambient isotopic (Cromwell, 2004). Similarly,
equivalent entanglements of a net are related by an ambient
isotopy of their complementary volumes; these are called
equivalent isotopes. By analogy, generalized rod packings are
labelled as equivalent isotopes if they can be interconverted
without phantom moves. Given a generalized rod packing, we
define its ‘untangled’ isotope to be that formed by rods
centred on the filament axes of the initial weaving. (We clarify
that for special cases where the rods intersect below.) Here we
avoid subtle questions of ambient isotopy associated with rod
packings and analyse the possible interconversions of rod
packings via specific transformations only (rectification from
curvilinear to straight rods and tightening, described below). If
phantom moves are present during rectification, the initial and
final packings are distinct isotopes, with distinct entangle-
ments. In that case, the initial weaving is tangled.

The simplest class of weaving (‘class I’) is untangled. The
filaments can be rectified from their (generically) curvilinear
filament geometry — inherited from the edges on the TPMS —
to form straight filaments that coincide with their filament
axes, without filaments sharing common points in space at any
stage during this rectification process. The generalized rod
packing formed from the weaving is therefore an equivalent
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isotope to the rectilinear (untangled) rod packing, so it too is
necessarily untangled. Untangled weavings include conven-
tional rod packings, both cubic and anisotropic invariant rod
packings (Rosi et al., 2005; O’Keeffe et al., 2001). In addition,
this class includes other invariant rod packings of various
symmetries and generalized rod packings, with curvilinear
rods.

A second class (‘IT’) is relevant to weavings where the
rectification of all filaments to their straight filament axes
results in intersections. In those cases, the untangled state is
not uniquely defined, as the straight filaments form a net
whose vertices are common to more than one filament. The
intersection can be removed by two possible perturbations at
each ‘vertex’: lifting one filament to pass over the other, or
under. Here we define the untangled weaving to be the infinite
family of cases formed by any combination of those moves.
(These intersections are neither tangled nor untangled, yet
share features of both states.) If the initial curvilinear weaving
can be ‘rectified’ into any one of those untangled embeddings
without phantom moves, it is itself untangled and is a class 11
weaving. This implies that the weaving can be transformed
from its initial state to (intersecting) straight filaments aligned
with the filament axes without edges passing through each
other and reversing edge crossings; however, edges just touch
in their final rectified configuration.

The third class (‘III’) collects weavings whose filaments are
sufficiently tangled to impede each other from rectification
along their filament axes without filaments passing through
each other, changing the entanglement of the weaving. Here
we assume the fully rectified rod packing is not intersecting.
We use the untangled isotope to help describe the original
weaving, but emphasize that they are not equivalent under
ambient isotopy. Weavings in this class are tangled versions of
their rectified rod packings.

We assign names to weavings as follows. Untangled weav-
ings in class I are given the name of their associated rectified
rod packing. These are often among the set of 14 invariant rod
packings enumerated in Rosi ez al. (2005), in which case we use
the names derived from a related lattice complex of the space
group from which they are constructed. These are ITT, IT*, &7,
[, Qf, &*, where the 4+ or — superscript denotes one enan-
tiomer of the packing and the * exponent the intergrowth of
both + and — enantiomers (O’Keeffe et al., 2001). The other
eight invariant rod packings from this enumeration are iden-
tified by their structure number (#1-#8), as given in Rosi ef al.
(2005). Where the weavings are related to invariant rod
packings of other symmetry, they are given a label ‘Rod (tetr.)’
which reflects that they are related to a rod packing with
tetragonal space-group symmetry, or ‘Rod (tri.)” where they
have trigonal space-group symmetry.

Class II weavings, whose filaments (just) intersect on
straightening, are labelled ‘Intersect (net)’ where net denotes
the three-letter code for the net formed by the intersecting
filaments, as listed in the RCSR database (O’Keeffe et al,
2008).

Class III ‘tangled’ weavings are named according to the
associated untangled rod packing corresponding to the

arrangement of filament axes (as per type I weavings). This
rod-packing label is prepended by the term ‘tangled’ to indi-
cate that it is not ambient isotopic to the rod packing specified.

Lastly, we name the examples whose filaments form finite
closed loops as ‘loops’.

2.2. Ideal embeddings

General weavings composed of curvilinear filaments share
many features with knots. Standard rod packings have a
unique geometry or embedding in E’, whereas generalized rod
packings do not, since the curvilinear filament geometry can
usually vary without changing the entanglement of the asso-
ciated generalized rod packing. Like knots, isotopes are flex-
ible. It is therefore helpful to describe a canonical embedding
of each isotope. The route that we adopt here builds on the
concept of a ‘tight embedding’ from knot theory that often —
though not always — affords a unique and therefore canonical
embedding for conventional knots and links (Stasiak et al.,
1998).

Tight or ‘ideal’ embeddings of knots minimize the knot
length for a given diameter (L/D). A fast and effective
numerical algorithm is the SONO algorithm (Pieranski, 1998).
Here we adopt an extended version of this concept to find
ideal tight conformations of periodic weavings, using a
generalized version of the SONO algorithm to allow for
periodic boundary conditions and minimize L/D within one
unit cell. This adapted algorithm, introduced in the companion
paper (Evans et al., 2013), is explored in detail in Evans (2011)
and we refer to it as PB-SONO throughout this paper.

The ideal embedding of a (periodic) generalized rod
packing is defined to be the embedding that minimizes L/D
within a unit cell of the structure: L/D is a dimensionless
measure of the filament length per unit cell normalized by the
filament diameter. This measure depends on the unit cell and
does not always offer a useful index of comparative tightness.
We therefore also characterize generalized rod packings by
their packing fraction, which is independent of the unit-cell
shape and volume (V): (mLD?)/4V. We note, however, that
this value may not be maximized in an ideal embedding, as we
will see in examples explored later in this paper. In other
words, ideal embeddings are not necessarily the densest.

3. Regular branched-ribbon tilings

The concept of free tilings has been introduced in the
companion paper (Evans et al., 2013). Here too we explore
regular free tilings that are vertex-1, edge-1 and tile-1 transi-
tive. Details of the representation of free tilings by Delaney-
Dress symbols are given in Evans et al. (2013). Here we focus
on regular tilings by branched ribbons whose tile edges form
arrays of infinite, vertex-free lines in H?. Recall that those
arrays are in one-to-one correspondence with the free ribbon
tilings: they are the medial axes of the related ribbon free
tiling, and vice versa. That correspondence simplifies
enumeration of regular branched-ribbon tilings.
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Consider first the free tilings of H?.
The fundamental regions for free
tilings with threefold, fourfold and
sixfold symmetry are shown in Fig. 1.
Tilings are named according to their
group number in the %246/o000
quotient group (Robins et al, 2004,
Evans et al, 2013), appended with
‘RL’, signifying the regular line arrays
characteristic ~ of branched-ribbon
tilings (cf. Evans et al., 2013).

To project to the TPMS, we first
embed these tiles into the %246 tiling of
H*. A systematic enumeration of these
embeddings is given in Evans et al
(2013) and we refer the reader to this
paper for further details. In short, the
embedding can be specified by the
hyperbolic length of one asymmetric
unit of the line (tile boundary) when
embedded in H”. We use that length to
label the tiling patterns. A complete

table of these embedded tilings is given
in Appendix A.

A rich variety of filament arrays is
formed in E* by projecting the edges of
regular branched-ribbon tilings onto
the P, D and G(yroid) TPMS. These
result in generalized rod packings of
types I, II and IIT as well as catenated links. A complete
enumeration of the weavings is given in Appendix B, and
crystallographic data for all weavings are given as supple-
mentary material.?

122RL

Figure 1

4. Class | weavings
4.1. Invariant rod packings: parallel and layers

There are eight invariant rod packings composed of
parallel rods or layers of rods enumerated in Rosi et al
(2005); four of these are composed solely of parallel rods
and the other four composed of stacked layers, with parallel
rods in each layer. Four of these rod packings, #1, #2, #3 and
#6, arise via branched-ribbon tilings on the P, D and G
surfaces.

The #1 rod packing (Rosi et al., 2005) consists of a two-
dimensional hexagonal arrangement of parallel rods whose
axes lie at the vertices of the {6,3} planar tiling and is a
close-packed array of discs. A number of regular branched-
ribbon tilings from the P, D and G surfaces lead to filament
arrays whose average axes form the same pattern as the
filaments of the #l1 rod packing. These are the
Piyri(cosh™(3/2)), P93RL(COSh71(2\/§))7 Dypoi(cosh™(5/2))

2 Supplementary material for this paper is available from the TUCr electronic
archives (Reference: EO5020). Services for accessing these data are described
at the back of the journal.

Delaney-Dress symbols for the regular three-, four- and sixfold branched-ribbon tilings with infinite
geodesic boundaries. The tilings are named according to their group number in the *x246/00 o
quotient group (Robins et al., 2004; Evans et al., 2013).

and Gl,p (cosh™(3/2)) patterns. For example, the
Giory (cosh™(3/2)) pattern is achiral, with helical filaments,
alternating between left- and right-handed enantiomers, as
shown in Fig. 2. Another variant of this rod packing is the
structure G,z (cosh™'(5/2)), which has double helices along
each rod axis.

A two-dimensional square array of parallel rods whose
axes are located at the vertices of a {4,4} tiling of
E? constitutes the #2 rod packing (Rosi er al,
2005). Structures that are equivalent to this packing
are Py, (cosh™ (v2)), Dy, (cosh™ (v/3/+/2)),
Diyre(cosh™ (3v/3/3/2)), Gihpe (cosh™ (v/3//2)),
Gfapi(cosh™(+/3)) and Gjyp; (cosh™'(3+/3)). Fig. 2 shows
the tetragonal Py, (cosh™'(+/2)) pattern (space group
14/mmm), which consists of undulating rods. Another struc-
ture, P4z, (cosh™'(24/2)), is related to the #2 rod packing and
is composed of quadruple helices along the rod axes. Similarly,
the G, ; (cosh™(2+/2)) structure has triple helices along the
rod axes. Further, tangled versions of the #2 rod packing arise
as structures D,,,z; (cosh™(2+/2)) and Gij,z, (cosh™(24/2)),
see §6.

The #3 rod packing consists of parallel rods whose axes are
at vertices of a trigonal (3.6.3.6) tiling. The Gysg; (cosh™ (+/2))
pattern, shown in Fig. 2, has identical average axes to this rod
packing. The trigonal curvilinear array has undulating fila-
ments (and space group R3c).

Stacked layers of parallel rods where the filament axes of
adjacent layers are orthogonal comprise the #6 rod packing.

Acta Cryst. (2013). A69, 262-275
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*246123 1 (cosh™1(v/2))  Piasrr(cosh™1(\/2))

¥24693Rr (cosh 1 (V2))  Gpr(cosh™1v/2))

undulating

undulating #3 rod packing

example, a structure related to the #5
rod packing, composed of stacked
layers at half the density of the #6 rod
packing, forms on the D surface by
a branched-ribbon tiling with 2x222
symmetry (group 104). The tiling is
edge-2 transitive and therefore irre-
gular. The structure has undulating
components and space group /4, /amd.]

All of the packings with parallel and
layered rods converge to a common
rod packing on tightening using the
PB-SONO algorithm, namely the #4
rod packing (Fig. 3). They are therefore
all equivalent isotopes. Those patterns
with parallel average axes (#1-#4)
tighten by straightening and rearran-
gement of the rods to form the dense
two-dimensional hexagonal conforma-
tion. Similarly, the patterns composed

#2 rod packing

‘/ "/ & of stacked layers of parallel rods (#5-
rdrr ) #8) also eventually tighten to form this

' ideal conformation by rotation of every
ry e L 4 alternate layer to form parallel axes, as

expected. Although various initial
configurations derived from the TPMS
branched-ribbon tilings have distinct
initial unit cells, they further symme-

—— trize on tightening, forming a common

\ \ ' A A 4 primitive unit cell containing just
{ ———— one rod. The packing fraction is

g 0 ¢ n/(2«/§) ~0.91 regardless of the

— choice of unit cell. The L/D measure

g o0 ¢ depends on the unit cell and for the

*246193p1 (cosh™ (v/2))  Diaspr(cosh™1(v/2))

2 % 222 symmetry

Figure 2

Invariant rod packings: parallel and layers. These are shown as tilings of HZ, tilings of the TPMS on
which they are built and as filament packings in three-dimensional space. The names of the structures

are given below each image.

Structures related to this packing are D,,;z; (cosh™(+/2)) and
G7iarg(cosh™(1/3)). Fig. 2 shows the former, which has space
group P4,/mmec.

[The #4, #5, #7 and #8 rod packings described by O’Keeffe
et al. have not emerged from the current enumeration of
regular H> patterns. Further examples are sure to emerge on
more complete enumeration of hyperbolic patterns. For

#6 rod packing

#5 rod packing

smallest unit cell, which contains only
one rod, L/D = 1.

4.2. Invariant rod packings: cubic
examples

Six invariant rod packings of cubic
symmetry are enumerated in Rosi et
al. (2005). Generalized rod packings
related to five of these six arise from
regular branched-ribbon tilings of H?;
the sixth does not have a hyperbolic
antecedent corresponding to the
regular tiling of branched ribbons.

The  filament axes of the
Ghurs (cosh™(1/3/+/2)) pattern align
with the TTT rod packing (Fig. 4). The pattern that emerges
from the tiling on the G consists of close to ideal helical fila-
ments, all of equivalent chirality. [The G4z, (cosh™ (+/3/+/2))
tiling, which is the G surface fibration of the same tiling by the
second covering map of the G surface (Evans et al., 2013),
gives the [T~ enantiomer of the chiral rod packing.] The ideal
embedding of this pattern has curvilinear filaments with close

266

Evans, Robins and Hyde + Periodic entanglement Il

Acta Cryst. (2013). A69, 262-275



research papers

Figure 3

The ideal configuration for all weavings composed of parallel rods, or
stacked layers of parallel rods. One unit cell is shown, which contains a
single rod and has lattice parameters (1, 1, 1, /2, w/2, 7/3). The length
of the rod is 1, the diameter is also 1 and the volume of the unit cell is
V/3/2. Thus L/D =1 and the packing fraction is approximately 0.91.

Figure 4

The Gy, (cosh™ (v/3/+/2)) structure: a helical [T+ rod packing. (Top)
Geometry of the decoration, given in H?, on the G surface and in E’.
(Bottom) The ideal configuration in one unit cell, in E* and on a surface
parallel to the G surface such that one channel has been deflated and the
other enlarged.

to helical trajectories and is formed by tightening both straight
or curved starting filaments. Remarkably, the helices of this
ideal structure decorate a surface parallel to the G minimal
surface such that one channel is slightly deflated and the other
is enlarged, as shown in Fig. 4, indicating the underlying
relevance of the G TPMS to this pattern. The L/D value for
this conformation is 17.91 and the packing fraction is 0.66.

The D4z, (cosh™'(v/3/+/2)) tiling has straight rods, coin-
cident with the IT* rod packing, an intergrowth of both chiral
enantiomers of 1T and I1~. Its ideal configuration also
consists of straight rods, with L/D = 6 and packing fraction
(3m)/16 ~ 0.59 (Fig. 5).

A Giyog, (cosh™'(3/2)) tiling results in quasi-helical fila-
ments winding on the G surface, where all the helices have

Figure 5
D p4rs.(cosh™(v/3/+/2)), equivalent to the TT* rod packing. It is shown (from left to right) in H2, on
the D surface, in E’ and as an ideal configuration within one unit cell.

Figure 6

The Ghyg, (cosh™(3/2)) structure: a helical $*. (Top) The surface
structure shown in H, on the G surface and in E*. (Bottom) The ideal
structure, shown in one unit cell, filling one channel of the G minimal
surface and in IE°.

equivalent chirality. Filament axes coincide with the " rod
packing (Fig. 6). [The Giyg; (cosh™(3/2)) weaving, obtained
via the second covering map, forms the X~ enantiomer.] Both
the Gy, (cosh™(3/2)) weaving and the related £* rod
packing relax under tightening to an ideal form with helical
rather than rectilinear rods. This ideal embedding, like that of
the TI* packing, adopts aspects of the G surface. In the case
of the X7 pattern, the close-packed filaments fill one channel
of the G, leaving the complementary volume close to unoc-
cupied, as illustrated in Fig. 6. The L/D value is 30.21 and the
packing fraction is 0.38, making it the least dense ideal
structure of the cubic rod packings.

Weavings from the Gz, (cosh™(+/2)) (Fig. 7) and the
D14z, (cosh™'(v/3)) tilings have slightly undulating filaments,
ambient isotopic to the I" rod packing. In this case, the ideal
structure is composed of straight rods. The L/D value of the
ideal embedding is 19.27, with a packing fraction equal to 0.71,
making this the densest of all the ideal cubic rod packings.

The P,yg; (cosh™(3/2)) structure is related to the Q* rod
packing (Fig. 8). The filament geometry inherited from the
surface fibration is slightly helical, with all filaments of
equivalent chirality. The ideal packing also has slightly helical
filaments, which coincide precisely with those inherited from
the P surface tiling. The L/D value for this conformation is
24.06 and the packing fraction is 0.49.

Ideal embeddings of all of the cubic
rod packings retain the cubic symmetry
of their starting configurations and
tightening is not accompanied by a
change of symmetry class. With the
exception of the I'" rod packing, both
ideal and densest embeddings of the
cubic rod packings retain their cubic
symmetry, where any deformation of
the unit cell from its cubic form both
increases L/D and decreases the
packing fraction.
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Figure 7

The Gfysg, (cosh™'(+/2)) structure, equivalent to the T rod packing. The structure is shown (from left
to right) in H?, on the G surface, in E* and as an ideal structure in one unit cell.

When different lattice parameters are imposed for the I'"
[Gir3r. (cosh™(1/2))] pattern, and each of these structures
then tightened given this input, we see an interesting result.
Increasing the ¢ axis (elongating the cube cell to be of size
1 x 1 x ¢) results in ideal embeddings with a higher L/D
value and a higher packing fraction, forming denser packings,
that are, however, looser than the cubic case. These denser,
looser embeddings have undulating filaments, with ever larger
curvature variations as c is increased.

These regular tilings produce generalized rod packings
whose ideal forms coincide with five of the six invariant cubic
rod packings detailed in O’Keeffe et al. (2001). The sixth of
these rod packings is the X* packing, which is an interwoven
variant containing a X+ and a £~ (an enantiomeric pair). It
does not emerge from regular branched-ribbon tilings on the
cubic TPMS. (It is probable, however, that this structure is an
irregular case, related to a lower-symmetry orbifold than those
of regular free tilings.) It is interesting to note that the ideal
embedding of the ¥* rod packing is exactly equivalent to
the interweaving of the ideal Gz, (cosh™(3/2)) and
Groorp(cosh™(3/2)) structures (related to the £t and X~
packings). Remarkably, the complementary volume to the
ideal Giogg; (cosh™'(3/2)) structure [or equivalently the
Gyorp(cosh™(3/2)) structure] is just suitable to accommodate
the opposite enantiomer, also in its ideal form. In other words,
the ideal G}, (cosh™(3/2)) structure fills one channel of the

Figure 8

The Py, (cosh™'(3/2)) structure, related to the Q* rod packing. (Top)
The surface fibration, shown in HZ, on the surface and in E>. (Bottom)
The ideal configuration, shown in one unit cell and in E>. The ideal
structure is very close to the surface fibration.

G minimal surface and the second ideal
enantiomer fills the other channel. The
correspondence between the TPMS
and ideal embeddings of these cubic
rod packings is curious, given that tight
embeddings are not a priori related to
two-dimensional hyperbolic patterns.
Among all cases, only the ideal
embedding of the I' rod packing does
not relate readily to the geometry of the
P, D or G morphologies.

4.3. Invariant rod packings: non-cubic examples

The enumeration of weavings from regular branched-
ribbon tilings also results in five additional tetragonal and
trigonal patterns, whose filament axes coincide with recti-
linear, invariant rod packings not enumerated in O’Keeffe et
al. (2001) and Rosi et al. (2005).

The P,z (cosh™'(v/3)) structure is shown in Fig. 9. The
filament geometry inherited from the surface fibration consists
of a tetragonal array of straight lines, where the four filaments
within a unit cell are described by the trajectories {u, 0, % + u},
{u, %, —u}, {4, u, 3+ u} and {0, u, —u} within the space group
P4/nnc. In the ideal conformation of this rod packing the
filaments deviate slightly from their rod axes, forming undu-
lating trajectories. The minimum L/D value, 15.95, occurs with
lattice parameters (a=b =1, ¢c=0.8, a ==y =7/2),
where the packing fraction is 0.553. This tightest unit cell does
not give a densest packing: the density increases with the
length of the ¢ axis, at the expense of L/D, similar to the T’
structure.

The G4z, (cosh™(2+/2)) weaving, shown in Fig. 10, has
tetragonal symmetry (14, /acd). The structure contains slightly
undulating rods, with four distinct axes within a unit cell,
described by the vectors {u,u,—3u}, {—u,u, % + 3u},
{3+u,u,3+3u} and {§ —u, u,3u}. The filaments can be

Figure 9

The P4z, (cosh™(+/3)) structure, a tetragonal rod packing composed of
straight rods. (Top) The surface structure in H2, on the surface and in E*.
(Bottom, left) A unit cell of the ideal embedding of this packing and
(right) larger volume of the ideal embedding, drawn with a deflated
filament diameter to illustrate the undulating geometry of the rods.
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Figure 10

The Gy, (cosh™(24/2)) filamentous array, a tetragonal rod packing
composed of slightly undulating filaments. This weaving is shown (left) in
H?, (centre) on one unit cell of the G surface and (right) in E°.

straightened to coincide with their axes without changing
ambient isotopy, so the G weaving is an equivalent isotope to
this new tetragonal rectilinear rod packing. Another distinct
class I weaving, formed from the D,z (cosh™'(3+4/3)) tiling,
has filaments tracing the same rod trajectories; thus these
weavings are equivalent isotopes.

The filaments of the P, ,z; (cosh™'(54/3)) weaving can also
be rectified to coincide with their axes to give a tetragonal rod
packing (P4/nnc). The construction of this weaving is shown
in Fig. 11. The weaving is composed of slightly undulating
filaments, where the four distinct rod positions within a unit
cube cell are described by the vectors {u, 0, 3u}, {u, 3,3 — 3u},
{0, u,1 —3u} and {1, u, 3u}.

Similarly, the filaments of the Gy, (cosh™(2+/2)) weaving
can be rectified to give a rod packing with trigonal symmetry
R3c (Fig. 12). The three distinct rod positions, described in
the G surface cubic unit cell, are given by the vectors
{u, % + 3u, % + u}, Bu, u, % + u} and {u, % + u, 3u}.

The structure Gy, (cosh™ (+v/2)) (Fig. 13) has filament axes
forming a rod packing of trigonal symmetry R3c. The
Gosrp.(cosh™(24/2)) weaving is also an equivalent isotope. The
alignment of the rods in a cube cell is described by the
vectors {—u,u,3—u}, {u,i+u,3—u} and {3 —u,u, i+ u}
(see Fig. 13). Further, the trigonal rod packing defined by
the Gyse (cosh™'(v/2)) weaving has been observed as the
arrangement of a self-assembled chemical structure in
Carlucci et al. (1999). When viewed along a rod direction, one
can see that this weaving is a deformation of the I'T* cubic rod
packing and is thus an isotope of IT*. Given this, the ideal
configuration of the weaving is thus precisely IT*, for which
L/D = 6 and the packing fraction 0.59.

Figure 11

The P,y4z, (cosh™ (5+/3)) weaving, whose filament axes give a rod packing of tetragonal symmetry
(P4/nnc). The weaving is shown from left to right as a free tiling of H?, on one unit cell of the P
surface, in E* and where the undulating filaments have been straightened to the associated rod

packing.

5. Class Il weavings: intersecting filament axes

Our enumeration also gives novel class II weavings char-
acterized by intersecting filament axes. Recall that these
intersecting filaments form a net whose vertices are the
points common to more than one filament. Clearly, ideal
embeddings of these weavings necessarily have curvilinear
embeddings.

The regular branched-ribbon tiling P, sz, (cosh ™ (+/6)) (Fig.
14) forms a weaving with space group P432 on the P surface.
Rectifying the filaments of this weaving along their axes
causes the filaments to intersect only when fully straightened.
The six distinct filament axes in a cubic unit cell are
{u,s+u,0}, {0,u, 1 £ u} and {u, 0,1+ u}. If the intersection
points of the filaments are changed to be vertices, the filaments
form a known three-dimensional net, labelled reo according to
the three-letter schema developed by O’Keeffe et al. (2008),
with 1-transitive vertices and edges. This net is itself a
conventional (i.e. not free) tiling of the P (or D) surfaces,
listed as sqc877 in the Epinet database (see http:/epinet.
anu.edu.au/sqc877).

The D, gz, (cosh ™' (+/6)) weaving has space group F4,32 on
the surface (Fig. 15). The 12 distinct filament axes in a unit cell
are {u,u, %}, {u, % +u,3), {u, % , u}, {u,%,%+ u}, {%, u, u},

Soudu o) Bowd—ul <), i - u),
{u, —u, I} and {u, 1 — u, 3}. Rectification of this weaving results
in intersecting rods, giving the crs (cristobalite) net (also
known to Epinet as sqc889; see http:/epinet.anu.edu.au/
$qc889), which has 1-transitive vertices and edges (O’Keeffe et
al.,2008). The ideal (tight) embedding of this weaving adopts a
very low density, with L/D = 145.28 and a packing fraction of
0.31.

The G4z, (cosh™'(1/6)) weaving (Fig. 16) is a line pattern
on the gyroid with space group 74,32. The 12 distinct axes of
the filaments in a unit cell are {u,}—u,3}, {u,i—u, 3},

%7%_1’!5”}’ %7%_1"5”}7 {u7%+uvé}5 {uvi_’_uv%}’
{u3%7%_u}, {u,%,%_u}, é,%‘i‘u,u}, %7%4_”’”}’

{u,%,2+u} and {u, 3,3+ u}. These axes form the chiral nfa

net (O’Keeffe et al, 2008), with 1-transitive vertices and
2-transitive edges. The two distinct edges of the net result from
the single asymmetric edge of the weavings because the
intersection point of the filaments cuts the asymmetric unit
of the filament in half: the two distinct edges of the nfa
network together form a continuous straight line. This
weaving also has very low density in its
ideal conformation, with L/D = 123.84
and a packing fraction of 0.31. The
difference between the weaving that
emerges from the TPMS and the ideal
embedding is small.

The Pyiape(cosh ™ (3v/3/1/2))
weaving in Fig. 17 has four distinct
filament axes, with vectors {u, u, —u},
{ut—ui+u}, f{u,ui+u} and
{u, — u, —u} in a unit cell. It has space
group P4/mnnc, and the axes of these
filaments form edges of the regular beu
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Figure 12
The G, (cosh™(24/2)) structure, shown in HZ, on the G surface and in
I, is related to a trigonal rod packing.

net (O’Keeffe et al., 2008), known to Epinet as sqc3 (see http://
epinet.anu.edu.au/sqc3).

6. Class Il weavings: tangled examples

Recall that class III weavings have sufficiently interwoven
filaments to impede each other from rectification along
their filament axes without changing their entanglement.
These examples are therefore ‘tangled weavings’, since the
related rod packing whose (straight) rods lie along filament
axes is a distinct isotope. Like class II weavings, ideal
embeddings of tangled weavings necessarily contain curvi-
linear rods.

Fig. 18 shows the D,z (cosh™(3+/3/+4/2)) tiling and
resulting weaving. This is a tangled variant of the parallel
square rod packing (#2 rod packing), or in fact any of its
equivalent ‘canonical’ isotopes, which contain all of the
parallel and layered invariant rod packings.

The tangled weaving Gjgz; (cosh™'(9/2)) is shown in Fig.
19. Rectification of the filaments along their axes results in the

Figure 13

The Gy (cosh™(+/2)) structure, shown in H?, on the surface and in E?, is related to a rod packing
with trigonal symmetry. The far right image shows the structure when viewed along a rod axis where

it can be seen that this is a deformation of the IT* rod packing.

Figure 14
The P, gz; (cosh™(v/6)) pattern. (Left to right) The free tiling in H* and on the P surface, the
resulting weaving in E” and the reo net, whose edges coincide with the filament axes of this weaving.

Figure 15

The D, g, (cosh™ (v/6)) structure is a weaving with intersecting filament
axes. (Top) The free tiling in H* and on the surface, and the weaving in E°.
(Bottom left) The filament axes intersect to form a crs net. (Bottom
centre/right) The ideal embedding of this weaving.

I'" rod packing with three filaments tracing along each rod. The
ideal form of the tangled weaving has L/D = 220.26 and a
packing fraction equal to 0.40.

The Gigr.(cosh™'(9/2)) weaving, shown in Fig. 20, is a
tangled version of the & rod packing, and hence also the
Ghops (cosh™(3/2)) weaving (cf. Fig. 6). The ideal conforma-
tion of the tangled weaving has L/D = 70.67 and a packing
fraction equal to 0.20. Its ideal form is the least dense of all
weavings constructed so far.

7. Links: looped filaments

As noted above, the filament trajec-
tories of the TPMS fibration occasion-
ally form closed loops in E? rather than
infinite lines, resulting in ‘links’ with an
infinite number of components. Many
of the examples that emerge from the
most symmetric free tilings consist of
arrays of disjoint loops, with no
entanglement between distinct loops.
However, in the case of the tiling
Py 1sr;. (cosh ™ (7+/3/4/2)), distinct loops
are catenated (Fig. 21). Each loop of
the structure catenates 16 of its neigh-
bouring loops, where each loop pair
forms a Hopf link (Cromwell, 2004),
resulting in a three-dimensional chain-
mail. Within this structure, sheets of
doubly periodic chainmail orient along
three orthogonal (100) directions in E,
such that sheets catenate with those of
distinct orientations but not with
parallel sheets.

The behaviour of this chainmail on
tightening using the PB-SONO algo-
rithm is revealing. The link geometry
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Figure 16

The weaving Gf;gz, (cosh™'(+v/6)). (Top) The regular free tiling in H? and
on one unit cell of the G surface, and the resulting weaving in E*. (Bottom
left) The chiral nfa net that results from the intersecting filament axes.
(Bottom centre, right) The ideal embedding of the weaving.

inherited from the TPMS tiling has fourfold axes that are lost
on tightening. That behaviour is analogous to the ideal
embedding of four interwoven helices, where one of the
helices straightens along its filament axis and the other three
wind around this straight filament, forming a triple helix with a
threefold axis. This feature is reminiscent of the ideal config-
urations of some complex torus knots and links that lose
symmetry on tightening (Pieranski, 1998).

8. Closing remarks

The wealth of examples derived in this paper, that emerge
from the simplest most symmetric line patterns on the simplest
TPMS, reveal the efficacy of the construction technique. The
process relies on enumeration of free tilings of H? and we have
explored some regular examples in detail. Most of the
rod packings described previously from Euclidean crystal-
lographic analysis emerge ab initio in this way. A number of
other examples adopt a variety of configurations, leading to
our classification of these generic weavings into three possible
classes, dependent on their entanglement characteristics. This
approach allows us to distinguish between ‘tangled’ and
‘untangled’ weavings, by analogy with knots and tangled nets.
Most significantly, this enumeration technique allows a natural

Figure 17
The P, ., (cosh™(34/3/+/2)) weaving. (Left to right) The free tiling in H?, on one unit cell of the P
surface and the resulting weaving in E*. (Right) The beu net, whose edges coincide with the axes of
the filaments in this weaving.

Figure 18
The D4z, (cosh™(3+/3/+/2)) structure, shown in H?, on the D surface
and in [E’; a tangled variant of the #2 rod packing.

Figure 19

The G 4z, (cosh™'(9/2)) structure is a tangled version of a I rod packing
composed of triple-helical rods. (Top) The regular free tiling in H* and on
one unit cell of the G surface, and the resulting weaving in E*. (Bottom)
The ideal embedding of this weaving.

extension of the useful concept of rod packings to crystal-
lographic arrays of more complex one-dimensional forms.

The generalized SONO algorithm used here generally
results in a useful quasi-canonical ideal embedding for these
weavings, characteristic of their entanglement. It is note-
worthy that ideal embeddings of all of the three-dimensional
weavings, that are not made up of parallel layers, have ideal
embeddings that are at least as symmetric as the original
weavings. (In contrast, this does not hold for many of the
layered rod packings, nor for the three-dimensional chainmail
pattern.) A general trend, common to knots, is a rough
correspondence between the magnitude of L/D and the
degree of entanglement of the weaving. The approach there-
fore holds some promise for exploration
of other tangled patterns also, such as
self-knotted nets and multiple inter-
woven nets. The latter example is
explored in more detail in a companion
publication (Evans et al., 2013).

We note that our projection tech-
nique from two-dimensional hyperbolic
space (H?) to three-dimensional Eucli-
dean space (E*) occasionally affords a
useful embedding for these weavings
and little ‘annealing’ in E is required to
form the ideal embedding. In other
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Figure 20

The Giigg, (cosh™(9/2)) structure is a tangled X+ rod packing. (Top) The
surface fibration is shown in H?, on one unit cell of the G surface and in
E®. (Bottom) The ideal structure.

words, the ideal geometry of the weaving is reminiscent of the
TPMS fibration geometry. Certainly, this curvilinear approach
is a useful one to generate a variety of weavings, of which rod
packings are a subset, since the ideal conformation of some
rod packings contains helical filaments rather than straight
components.

The paper seeks to enumerate simplest generalized rod
packings from the perspective of pure geometry, rather than
materials science. However, it is clear that some of the
weavings explored here arise in the description of chemical
frameworks. In particular, the invariant cubic rod packings are
widely identified in covalent inorganic crystal structures and
other chemical frameworks (O’Keeffe & Hyde, 1996). Many
of the invariant cubic and non-cubic rod packings are also
readily synthesized as metal-organic frameworks, a summary
of which may be found in Rosi et al. (2005). Further, the
Gyipr(cosh™(4/2)) weaving, shown in Fig. 13, has been
observed in the solid state (Carlucci et al., 1999).

These weavings are all constructed as fibrations of surfaces
observed regularly as mesoscale cubic membranes. It has been
suggested that three-dimensional weavings of structural
proteins may form in vivo on the cubic membrane, in much the
same way as these weavings emerge as tilings of the TPMS.
One such example [the Gj.(cosh™(3/2)) weaving] was
proposed to describe the organization of keratin in the
corneocyte of the outer layer of mammalian skin, possibly
templated on a G-shaped membrane (Evans & Hyde, 2011).
That weaving has remarkable ‘anomalous dilatancy’, where
straightening of the quasi-helical filaments results in coop-
erative expansion of the weaving, rather than collapse. This
feature is somewhat reminiscent of auxetic (negative Poisson
ratio) materials and is characteristic of the (class I)
Goc(cosh™(3/2)) weaving. It is worth noting that many of
the structures from the G surface, and also a few from the P
surface, share this property. This construction method then
may also be of significance for the design of materials with
anomalous expansion characteristics (e.g. negative thermal
expansion materials, auxetics). This connection between
geometry and topology and mechanical behaviour is curious

Figure 21

The regular branched-ribbon tiling P, g, (cosh™(74/3/+/2)) forms
complex catenated loops, giving two-dimensional catenated sheets, that
catenate orthogonal sheets, giving a three-dimensional chainmail pattern.
(Top) The free tiling in H, on the surface and the resulting chanmail in
E®. (Bottom left) Four links within a single layer of the chainmail.
(Bottom centre/right) The ideal embedding.

and offers some relevance to the geometric approach intro-
duced here.

APPENDIX A
Free tilings of the hyperbolic plane

The free tilings of H* with infinite geodesic boundaries are
given in Fig. 22. In the companion paper, we detailed free
tilings composed of tree-like boundary components, which are
the medial axes of the tilings shown in Fig. 22, and vice versa.
The edge lengths of each pair of structures differ by virtue of
their independent construction; however, we wish to highlight
the relation between these structures in the following table.

Geodesic packing Tree packing (Evans et al., 2013)

%2461z, (cosh™ (v/3/+/2))
*246 505, (cosh ™ (3/2))
%2465z, (cosh™ (v/6))
246,14z, (cosh™(9/2))
%2465z, (cosh™ (7v/3/+/2))
%246, 4z, (cosh™(33/2))
%2463z, (cosh™ (v/3/+/2))
*246,53z; (cosh™ (v/2))
%2464z, (cosh™ (v/3))
246,14z, (cosh™ (24/2))
2464, (cosh™' (3v/3/+/2))
246,14z, (cosh™ (3v/3))
%246 3,5, (cosh ™ (3/2))
*246 ., (cosh™(5/2))
24603, (cosh ™' (v/2))
%2465, (cosh ™ (24/2))

APPENDIX B

%246 457 (cosh™(3))
*246 ,9pr(cosh™(5))
%246, 4z (cosh ™ (15))
%2465 (cosh ™' (53))
*246 1o (cosh™! (195)
%246, 4z (cosh ™ (725))
%246 37 (cosh™'(5))
*246 53z r(cosh ™ (7))
%246, 1,z (cosh ™! (11))
%246,z (cosh™' (31))
%246,z (cosh ™ (53))
%246, (cosh ™! (107))
%2465, (cosh ™1 (17))
%2465, (cosh™ (49))
%2463 5r(cosh ™' (15))
%2464z (cosh™(63))

Catalogue of resulting structures

Tables 1, 2 and 3 show the three-dimensional filament arrays
formed from regular branched-ribbon tilings of H* projected
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%246118 1 (cosh™'(v/6)) *2461183L(cosh_1(%))

%246124rL (cosh™ (32))  #246129rz (cosh™(3))

%246114r1 (cosh™(\/3))  %246114r1 (cosh™(2v/2))

*246123r1 (cosh™(V/2))

7
>

*24612zRL(cosh_1(%)) *246122RL(COSh_1(g))

*24693RL(cosh_1 (\/5))

Figure 22
Free tilings of the hyperbolic plane, with infinite geodesic tile boundaries. These tilings are named below each image, giving details of the underlying
tiling (x246), the Delaney-Dress tile topology (see Fig. 1), RL to signify regular line packings, and the edge length of one asymmetric unit of the lines.
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Table 1
Weavings from x2223, 2x23 and 2223 hyperbolic symmetry.
Weaving Packing

Structure Packing space group L/D fraction Ideal unit cell Figure
P124RL(COSh_1(\/§/\/§)) Loops Pm3m
Pyorr.(cosh™(3/2)) Helical Q+ 1432 24.06 0.49 1,1,1,7/2,7/2, 7w/2) 8
PllSRL(COSh_l(\/E)) Intersect P432 14
Pyigre(cosh™(9/2)) Tangled QF P432
Py (cosh™ (7+/3/+/2)) Catenated loops P432 85.62 0.35 (11,1, 7/2, 7/2, 7/2) 21
Py (cosh™'(33/2)) Tangled Q* P432
D1y (cosh™ (v/3/+/2)) mn P4,32 6.00 059 (A, 1,1, /2, 7/2, 7/2) 5
Do (cosh™(3/2)) Loops Fd3m
Dyygps (cosh ™' (V6)) Intersect F4,32 145.28 031 (1, 1,1, 7/2,7/2, 7/2) 15
D gz, (cosh™(9/2)) Tangled Q7 F4,32
Dyygr..(cosh™ (74/3/+/2)) IT*: woven F4,32
D14, (cosh™'(33/2)) Tangled Q* F4,32
Gz (cosh™ (v/3//2) Helical T/~ 14,32 1791 0.66 (1,1, 7/2,7/2, /2) 4
G (cosh™(3/2)) Helical £+/~ 14,32 3021 038 (11,1, 7/2, 7/2, 7)2) 6
G (cosh™ (V) Intersect 14,32 12384 031 (111, 7/2.7/2,7/2) 16
Giisge(cosh™ (v/6)) Loops 14,32
Gisr (cosh™ (9/2)) Tangled 3 x T 14,32 22026 0.40 (L1, 1.7/2, /2, 7/2) 19
Giigri(cosh™(9/2) Tangled T 14,32 70.67 020 (11,1, 7/2, 7/2, 7)2) 20
Gigpr(cosh™ (74/3/+/2)) Tangled IT* 14,32
Grigre (cosh™ (75/3/+/2)) Tangled IT* 14,32
Giigr(cosh™(33/2)) Tangled 3 x T 14,32
Grigre (cosh™(33/2)) Tangled &F 14,32
Table 2
Weavings from x2224 and 2224 hyperbolic symmetry.

Surface Packing
Structure Packing space group L/D fraction Ideal unit cell Figures
Pyysge(cosh™ (v/3/+/2)) Loops I4/mmm
Piyser(cosh™ (v2)) #2 14/mmm 1 0.90 (1.1, /2, 7/2,7/3) 2 and 3
Py 14p.(cosh™'(+/3)) Rod (tetr.) P4/nnc 15.95 0.553 (1,1,0.8,7/2, /2, 7/2) 9
Pyyape.(cosh™' (2/2)) Intersect P4/nnc 17
Pyyapr(cosh™ (3v/3/1/2)) Helical 4 x #2 P4/nnc
Pyy4p.(cosh™ (3v/3)) Tangled (tetr.) P4/nnc
Py (cosh™ (5+/3)) Rod (tetr.) P4/nnc 1
D1y (cosh™! (v3//2) #2 P4, /nnm 1 0.90 (11,1, 7/2,7/2,7/3) 2 and 3
Dy (cosh™!(v/2) # Pd fnnm 1 0.90 (L 1.1, 7/2,7/2,71/3)
Diypr(cosh™(+/3)) r 14, Jacd 19.27 0.71 (,1,1,7/2, /2, 7/2)
Dy (cosh™ (2v/2)) #2 14, /acd 0.90 (. 1,1, 7/2, 72, 7/3)
Dyy4pi.(cosh™ (34/3/1/2)) Tangled #2 14, /acd 18
D114RL(COSh_l(3\/§)) Rod (tetr.) 14, Jacd
Dy (cosh™ (5v/3)) Tangled T I4,/acd
Gy (cosh™(v/3/4/2)) # 14, /acd 1 0.90 (,1,1,7/2, /2, 7/3)
G (cosh™ (v2)) r 14, /acd 1927 071 (L1, 1,7/2, /2, 7/2) 7
Giare(cosh™ (v/3)) #2 14, /acd 1 0.90 (1,1, /2, 7/2, 7/3)
Grigge (cosh™ (v/3)) #6 14, Jacd 1 0.90 (1. 1.1, 7/2, /2, 7/3)
G g (cosh™(24/2)) Rod (tetr.) 14, /acd 10
Grigre (c0sh™ (2v/2)) r 14, /acd 1927 071 (11,1, 7/2, 7/2, 7/2)
Gliur(cosh™ (3v/3/7/2)) Helical 3 x #2 14, Jacd
Giiags(cosh™' (3/3/4/2)) Tangled #2 14, /acd
Gare (cosh™ (3v/3)) Intersect 14, Jacd
Grisge (cosh™ (3v/3)) #2 14, /acd 1 0.90 (11,1, /2, 7/2, 7/3)
Gare(cosh™ (5v/3)) Intersect 14, Jacd
G (cosh™'(5v/3)) Intersect 14, /acd

onto the P, D and G(yroid) TPMSs. These weavings are
labelled by their parent free tiling (cf. Appendix A), plus the
surface that the tiling decorates. Owing to the pair of
embeddings that are possible for chiral patterns on the gyroid

(Robins et al, 2005), G tilings are also labelled with * or ~
superscripts to distinguish these cases. For example, the
hyperbolic tiling %246, ,4.; (cosh™!(v/6)) is the embedding of
the free tiling with symmetry 2223 (group 118) into the x246
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Table 3
Weavings from 2x26 and 2226 hyperbolic symmetry.
Surface Packing
Structure Packing space group L/D fraction Ideal unit cell Figures
Py (cosh™'(3/2)) #1 R3m 1 0.90 1,1,1,7/2, /2, /3)
P122RL(COSh71(5/2)) Loops R3m
P93RL(COSh_l(\/Z)) " R3c
Pysp..(cosh™(24/2)) #1 R3¢ 1 0.90 1,1,1,7/2, /2, /3)
Dipopy, (COSh71 (3/2)) Loops R3m
Dy (cosh™(5/2)) #1 R3m 1 0.90 1, 1,1, /2, 7/2, 7/3)
Dy, (cosh™ (v/2)) Rod (tri.) R3¢
Dy, (cosh™ (2+/2)) Intersect R3c
Gy (cosh™(3/2)) #1 R3¢ 1 0.90 1,1,1,7/2, /2, /3) 2 and 3
Gige(cosh™(5/2)) Helical 2 x #1 R3c
G (cosh™' (v/2) #3 R3c 1 0.90 1,1,1, /2, /2, 7/3) 2 and 3
Gispr (cosh™ (v/2) Rod (tri.) R3c 6 0.59 1,1, 7/2, /2, 7/2) 13
Gipr(cosh™ 2v2)) Rod (tri.) R3c 12
Ger (cosh ™ (24/2)) Rod (tri.) R3¢

tiling of H?, embedded with edge length cosh™(+/6). The
structure Gigp; (cosh™'(v/6)) is the fibration of the hyperbolic
tiling %246, 4z, (cosh™'(v/6)) over the G surface by one
covering map. The space group of the weaving, whose
embedding comes from the TPMS, is listed.

We thank Stuart Ramsden for helpful discussions on many
aspects of this work. MEE thanks the Humboldt Foundation
for generous support.
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