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Ordered arrays of cylinders, known as rod packings, are now widely used in
descriptions of crystalline structures. These are generalized to include crystal-
lographic packed arrays of filaments with circular cross sections, including
curvilinear cylinders whose central axes are generic helices. A suite of the
simplest such general rod packings is constructed by projecting line patterns in
the hyperbolic plane (H2) onto cubic genus-3 triply periodic minimal surfaces in
Euclidean space (E3): the primitive, diamond and gyroid surfaces. The simplest
designs correspond to ‘classical’ rod packings containing conventional
cylindrical filaments. More complex packings contain three-dimensional arrays
of mutually entangled filaments that can be infinitely extended or finite loops
forming three-dimensional weavings. The concept of a canonical ‘ideal’
embedding of these weavings is introduced, generalized from that of knot
embeddings and found algorithmically by tightening the weaving to minimize
the filament length to volume ratio. The tightening algorithm builds on the
SONO algorithm for finding ideal conformations of knots. Three distinct classes
of weavings are described.

1. Introduction

Rod packings are mutually touching (i.e. packed) but non-
intersecting crystalline arrays of straight cylinders in E3

(O’Keeffe & Hyde, 1996). These include ‘invariant rod
packings’1 (Rosi et al., 2005). Since the earliest work on rod
packings, a number of important patterns have been detected
in the solid state (O’Keeffe & Andersson, 1977; O’Keeffe,
1992) including the A15 or !-tungsten (!-W) packing and
a related packing of slightly lower density and symmetry, the
!-Mn packing. More recently, O’Keeffe and colleagues have
provided a systematic technique for enumerating conventional
rod packings and they have come up with a number of new
examples (O’Keeffe et al., 2001, 2002; Rosi et al., 2005).

In the course of our own investigations of spatial patterns,
we have found a novel route to many of these rod packings,
involving projections into E3 of non-intersecting geodesics
from the two-dimensional hyperbolic plane (H2). These
packings of non-intersecting geodesics are closely related both
to standard tilings (Ramsden et al., 2009) and free tilings
(Evans et al., 2013) ofH2. This approach also yields many more
complex arrays of curvilinear rods that wind through space
forming generic helices. These arrays share many of the

features of conventional rod packings. Our generalized rod
packings are constructed from two-dimensional tilings of
hyperbolic space (H2) and signal a further break from recti-
linear geometries. The approach shares many of the techni-
ques described in detail in a companion paper (Evans et al.,
2013) and elsewhere (Ramsden et al., 2009; Evans & Hyde,
2011; Castle et al., 2011, 2012).

The admission of curvilinear rods leads to the following
possibilities. First, the rods can close up on themselves,
forming finite loops rather than infinitely extended compo-
nents. Our approach allows the catenation of those loops to be
varied, forming, for example, ‘chainmail’ structures. Second,
the packings can contain complex entanglements of the fila-
ments. It is intuitively clear that entanglement can be an
essential contributor to the material properties of the packing,
since mutual winding of adjacent filaments can dramatically
alter both the bulk modulus and Poisson’s ratio of a structure.

2. Weavings in E3

We construct three-dimensional crystalline arrays of curvi-
linear space curves (or filaments), called weavings. The
weavings discussed here emerge from two-dimensional
geodesic arrays on the simplest cubic TPMSs (triply periodic
minimal surfaces), namely the now well known P (primitive),
D (diamond) and G (or gyroid) (Fogden & Hyde, 1992).
Systematic enumeration of suitable two-dimensional arrays

1 An invariant rod packing is composed of non-overlapping rods (cylinders)
which correspond to invariant line positions of the space groups, so that the
rods lie along the directions of non-intersecting symmetry axes (O’Keeffe et
al., 2001; Rosi et al., 2005).
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on the TPMSs, using an extension of Delaney–Dress tiling
theory to so-called ‘free tilings’, allows us to catalogue and
describe weavings as described below. Generalized rod
packings are the set of mutually tangential canal surfaces of
the filaments, formed by the envelope of spheres centred on
the filament with both curvature and torsion (Hilbert &
Cohn-Vossen, 1952), and we retain the original meaning of
the term ‘rod packing’ to describe arrays of straight cylinders
only.

The construction proceeds by decorating tiles of H2 with
line segments of the hyperbolic pattern, then mapping the
decorated tile to the TPMS, giving a (generally curved) edge
segment wrapped on the TPMS. The technique employs
aspects of group theory, topology and hyperbolic geometry. A
detailed account of the technique and the enumeration
process for conventional tilings has been given elsewhere
(Ramsden et al., 2009; Robins et al., 2004). Those patterns are
built from tessellations of H2 by (simply connected) tiles of
finite area. These tiles map to closed cycles on the TPMS and
conventional one-component nets in E3 (Ramsden et al.,
2009).

Free tilings result from tessellations by (simply connected)
tiles whose areas and edge lengths are unbounded. In the
companion paper to this one (Evans et al., 2013), we intro-
duced free ‘ribbon tilings’ that are tessellations of E2 or H2 by
infinite strip-like tiles. The forms of infinite tiles can be most
easily classified from their associated ‘medial axes’, defined as
the centres of discs (whose diameter is equal to the tile width)
whose union describes the tiles. The medial axes of ribbon tiles
are unbranched geodesics; medial axes of branched-ribbon
tiles are nets, or branched geodesics.

Branched-ribbon tilings emerged from an earlier study of
tree-like graphs in the hyperbolic plane (Hyde & Oguey,
2000). In that work, we noticed that the convex hulls of the
trees form arrays of (hyper-)parallel geodesics and these can
be considered as edges of symmetric tessellations of H2. In
contrast to ribbon tilings, these tessellations of H2 have no
counterpart in E2: each tile is bounded by an infinite number
of hyperparallel edges, yet is vertex-free. The medial axes of
these branched-ribbon tiles coincide with the hyperbolic trees
[that form edges of ribbon tilings discussed in the companion
paper (Evans et al., 2013)]. Branched-ribbon tilings are
therefore closely related to ribbon tilings. (Note, however, that
the width of branched-ribbon tiles varies. Their medial axes
are defined by centres of ‘maximal’ discs, that are wedged
between tile edges. The discs are large enough that any larger
disc necessarily includes some points outside the tile.)

Here we analyse the simplest members of these branched-
ribbon tilings, namely the regular examples, that, like Platonic
polyhedra, have symmetrically identical edges and faces. In
the language of tiling theory, these (vertex-free) patterns are
edge- and face-1 transitive in H2 (and on the TPMS). The tile
edges (which are geodesics in H2) map to one-dimensional
spatial curves in E3. An infinite variety of regular branched-
ribbon tilings is possible, whose edges map to E3 to form a
variety of crystalline arrays of identical curvilinear forms,
defining the filaments of the weaving.

2.1. A taxonomy of weavings

These branched-ribbon tilings project onto the TPMS to
form two distinct topologies. Generic examples contain infi-
nite curvilinear lines, resulting in weavings made up of infinite
filaments. In some cases, the filaments form finite closed loops
and the weaving degenerates to a periodic array of catenated
loops, built of links (Cromwell, 2004). We include a brief
discussion of one such example, separately.

We have found three distinct classes of weavings, distin-
guished by their behaviour on straightening the curvilinear
filaments in three-dimensional space, E3 (Evans & Hyde,
2011). Define a filament axis as the straight line that minimizes
the sum of the (Euclidean) distances from points on the fila-
ment to the rectilinear axis. For example, the axis of an ideal
helical filament is coincident with the central screw axis of the
helix. A continuous motion from the original helix to its fila-
ment axis is therefore akin to straightening a helix along its
central axis. In general, our filaments are not ideal helices,
since their specific form depends on the spatial trajectory of
the filament on the TPMS. However, the filaments are by
construction translationally periodic (cf. Evans et al., 2013);
therefore, their axes are necessarily parallel to their vector of
translational periodicity. Our weaving taxonomy depends on
the behaviour of the weaving as the filaments morph from
their initial curvilinear filament geometry to the final state,
where all filaments coincide with their rectified filament axes.
We classify weavings according to the changes (if any) of
filament entanglements during this process.

The notion of entanglement is borrowed, somewhat loosely,
from knot theory. Distinct knots cannot be interconverted
without edges passing through each other. Conversely,
equivalent knots can be interconverted without these
‘phantom moves’ and mappings of their complementary
volumes are ambient isotopic (Cromwell, 2004). Similarly,
equivalent entanglements of a net are related by an ambient
isotopy of their complementary volumes; these are called
equivalent isotopes. By analogy, generalized rod packings are
labelled as equivalent isotopes if they can be interconverted
without phantom moves. Given a generalized rod packing, we
define its ‘untangled’ isotope to be that formed by rods
centred on the filament axes of the initial weaving. (We clarify
that for special cases where the rods intersect below.) Here we
avoid subtle questions of ambient isotopy associated with rod
packings and analyse the possible interconversions of rod
packings via specific transformations only (rectification from
curvilinear to straight rods and tightening, described below). If
phantom moves are present during rectification, the initial and
final packings are distinct isotopes, with distinct entangle-
ments. In that case, the initial weaving is tangled.

The simplest class of weaving (‘class I’) is untangled. The
filaments can be rectified from their (generically) curvilinear
filament geometry – inherited from the edges on the TPMS –
to form straight filaments that coincide with their filament
axes, without filaments sharing common points in space at any
stage during this rectification process. The generalized rod
packing formed from the weaving is therefore an equivalent
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isotope to the rectilinear (untangled) rod packing, so it too is
necessarily untangled. Untangled weavings include conven-
tional rod packings, both cubic and anisotropic invariant rod
packings (Rosi et al., 2005; O’Keeffe et al., 2001). In addition,
this class includes other invariant rod packings of various
symmetries and generalized rod packings, with curvilinear
rods.

A second class (‘II’) is relevant to weavings where the
rectification of all filaments to their straight filament axes
results in intersections. In those cases, the untangled state is
not uniquely defined, as the straight filaments form a net
whose vertices are common to more than one filament. The
intersection can be removed by two possible perturbations at
each ‘vertex’: lifting one filament to pass over the other, or
under. Here we define the untangled weaving to be the infinite
family of cases formed by any combination of those moves.
(These intersections are neither tangled nor untangled, yet
share features of both states.) If the initial curvilinear weaving
can be ‘rectified’ into any one of those untangled embeddings
without phantom moves, it is itself untangled and is a class II
weaving. This implies that the weaving can be transformed
from its initial state to (intersecting) straight filaments aligned
with the filament axes without edges passing through each
other and reversing edge crossings; however, edges just touch
in their final rectified configuration.

The third class (‘III’) collects weavings whose filaments are
sufficiently tangled to impede each other from rectification
along their filament axes without filaments passing through
each other, changing the entanglement of the weaving. Here
we assume the fully rectified rod packing is not intersecting.
We use the untangled isotope to help describe the original
weaving, but emphasize that they are not equivalent under
ambient isotopy. Weavings in this class are tangled versions of
their rectified rod packings.

We assign names to weavings as follows. Untangled weav-
ings in class I are given the name of their associated rectified
rod packing. These are often among the set of 14 invariant rod
packings enumerated in Rosi et al. (2005), in which case we use
the names derived from a related lattice complex of the space
group from which they are constructed. These are!þ,!#,"þ,
#, $þ, "#, where the þ or $ superscript denotes one enan-
tiomer of the packing and the # exponent the intergrowth of
both þ and $ enantiomers (O’Keeffe et al., 2001). The other
eight invariant rod packings from this enumeration are iden-
tified by their structure number (#1–#8), as given in Rosi et al.
(2005). Where the weavings are related to invariant rod
packings of other symmetry, they are given a label ‘Rod (tetr.)’
which reflects that they are related to a rod packing with
tetragonal space-group symmetry, or ‘Rod (tri.)’ where they
have trigonal space-group symmetry.

Class II weavings, whose filaments (just) intersect on
straightening, are labelled ‘Intersect (net)’ where net denotes
the three-letter code for the net formed by the intersecting
filaments, as listed in the RCSR database (O’Keeffe et al.,
2008).

Class III ‘tangled’ weavings are named according to the
associated untangled rod packing corresponding to the

arrangement of filament axes (as per type I weavings). This
rod-packing label is prepended by the term ‘tangled’ to indi-
cate that it is not ambient isotopic to the rod packing specified.

Lastly, we name the examples whose filaments form finite
closed loops as ‘loops’.

2.2. Ideal embeddings

General weavings composed of curvilinear filaments share
many features with knots. Standard rod packings have a
unique geometry or embedding in E3, whereas generalized rod
packings do not, since the curvilinear filament geometry can
usually vary without changing the entanglement of the asso-
ciated generalized rod packing. Like knots, isotopes are flex-
ible. It is therefore helpful to describe a canonical embedding
of each isotope. The route that we adopt here builds on the
concept of a ‘tight embedding’ from knot theory that often –
though not always – affords a unique and therefore canonical
embedding for conventional knots and links (Stasiak et al.,
1998).

Tight or ‘ideal’ embeddings of knots minimize the knot
length for a given diameter (L=D). A fast and effective
numerical algorithm is the SONO algorithm (Pieranski, 1998).
Here we adopt an extended version of this concept to find
ideal tight conformations of periodic weavings, using a
generalized version of the SONO algorithm to allow for
periodic boundary conditions and minimize L=D within one
unit cell. This adapted algorithm, introduced in the companion
paper (Evans et al., 2013), is explored in detail in Evans (2011)
and we refer to it as PB-SONO throughout this paper.

The ideal embedding of a (periodic) generalized rod
packing is defined to be the embedding that minimizes L=D
within a unit cell of the structure: L=D is a dimensionless
measure of the filament length per unit cell normalized by the
filament diameter. This measure depends on the unit cell and
does not always offer a useful index of comparative tightness.
We therefore also characterize generalized rod packings by
their packing fraction, which is independent of the unit-cell
shape and volume (V): ð"LD2Þ=4V. We note, however, that
this value may not be maximized in an ideal embedding, as we
will see in examples explored later in this paper. In other
words, ideal embeddings are not necessarily the densest.

3. Regular branched-ribbon tilings

The concept of free tilings has been introduced in the
companion paper (Evans et al., 2013). Here too we explore
regular free tilings that are vertex-1, edge-1 and tile-1 transi-
tive. Details of the representation of free tilings by Delaney–
Dress symbols are given in Evans et al. (2013). Here we focus
on regular tilings by branched ribbons whose tile edges form
arrays of infinite, vertex-free lines in H2. Recall that those
arrays are in one-to-one correspondence with the free ribbon
tilings: they are the medial axes of the related ribbon free
tiling, and vice versa. That correspondence simplifies
enumeration of regular branched-ribbon tilings.
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Consider first the free tilings of H2.
The fundamental regions for free
tilings with threefold, fourfold and
sixfold symmetry are shown in Fig. 1.
Tilings are named according to their
group number in the ?246=' ' '
quotient group (Robins et al., 2004;
Evans et al., 2013), appended with
‘RL’, signifying the regular line arrays
characteristic of branched-ribbon
tilings (cf. Evans et al., 2013).

To project to the TPMS, we first
embed these tiles into the ?246 tiling of
H2. A systematic enumeration of these
embeddings is given in Evans et al.
(2013) and we refer the reader to this
paper for further details. In short, the
embedding can be specified by the
hyperbolic length of one asymmetric
unit of the line (tile boundary) when
embedded in H2. We use that length to
label the tiling patterns. A complete
table of these embedded tilings is given
in Appendix A.

A rich variety of filament arrays is
formed in E3 by projecting the edges of
regular branched-ribbon tilings onto
the P, D and G(yroid) TPMS. These
result in generalized rod packings of
types I, II and III as well as catenated links. A complete
enumeration of the weavings is given in Appendix B, and
crystallographic data for all weavings are given as supple-
mentary material.2

4. Class I weavings

4.1. Invariant rod packings: parallel and layers

There are eight invariant rod packings composed of
parallel rods or layers of rods enumerated in Rosi et al.
(2005); four of these are composed solely of parallel rods
and the other four composed of stacked layers, with parallel
rods in each layer. Four of these rod packings, #1, #2, #3 and
#6, arise via branched-ribbon tilings on the P, D and G
surfaces.

The #1 rod packing (Rosi et al., 2005) consists of a two-
dimensional hexagonal arrangement of parallel rods whose
axes lie at the vertices of the f6; 3g planar tiling and is a
close-packed array of discs. A number of regular branched-
ribbon tilings from the P, D and G surfaces lead to filament
arrays whose average axes form the same pattern as the
filaments of the #1 rod packing. These are the
P122RLðcosh$1ð3=2ÞÞ, P93RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ, D122RLðcosh$1ð5=2ÞÞ

and Gþ
122RLðcosh$1ð3=2ÞÞ patterns. For example, the

Gþ
122RLðcosh$1ð3=2ÞÞ pattern is achiral, with helical filaments,

alternating between left- and right-handed enantiomers, as
shown in Fig. 2. Another variant of this rod packing is the
structure Gþ

122RLðcosh$1ð5=2ÞÞ, which has double helices along
each rod axis.

A two-dimensional square array of parallel rods whose
axes are located at the vertices of a f4; 4g tiling of
E2 constitutes the #2 rod packing (Rosi et al.,
2005). Structures that are equivalent to this packing
are P123RLðcosh$1ð

ffiffiffi
2

p
ÞÞ, D123RLðcosh$1ð

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ,

D114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ, Gþ

123RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ,

Gþ
114RLðcosh$1ð

ffiffiffi
3

p
ÞÞ and G$

114RLðcosh$1ð3
ffiffiffi
3

p
ÞÞ. Fig. 2 shows

the tetragonal P123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ pattern (space group

I4=mmm), which consists of undulating rods. Another struc-
ture, P114RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ, is related to the #2 rod packing and

is composed of quadruple helices along the rod axes. Similarly,
the Gþ

114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ structure has triple helices along the

rod axes. Further, tangled versions of the #2 rod packing arise
as structures D114RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ and G$

114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ,

see x6.
The #3 rod packing consists of parallel rods whose axes are

at vertices of a trigonal (3.6.3.6) tiling. The G93RLðcosh$1ð
ffiffiffi
2

p
ÞÞ

pattern, shown in Fig. 2, has identical average axes to this rod
packing. The trigonal curvilinear array has undulating fila-
ments (and space group R3c).

Stacked layers of parallel rods where the filament axes of
adjacent layers are orthogonal comprise the #6 rod packing.
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Figure 1
Delaney–Dress symbols for the regular three-, four- and sixfold branched-ribbon tilings with infinite
geodesic boundaries. The tilings are named according to their group number in the ?246=' ' '
quotient group (Robins et al., 2004; Evans et al., 2013).

2 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: EO5020). Services for accessing these data are described
at the back of the journal.
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Structures related to this packing are D123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ and

G$
114RLðcosh$1ð

ffiffiffi
3

p
ÞÞ. Fig. 2 shows the former, which has space

group P42=mmc.
[The #4, #5, #7 and #8 rod packings described by O’Keeffe

et al. have not emerged from the current enumeration of
regular H2 patterns. Further examples are sure to emerge on
more complete enumeration of hyperbolic patterns. For

example, a structure related to the #5
rod packing, composed of stacked
layers at half the density of the #6 rod
packing, forms on the D surface by
a branched-ribbon tiling with 2?222
symmetry (group 104). The tiling is
edge-2 transitive and therefore irre-
gular. The structure has undulating
components and space group I41=amd.]

All of the packings with parallel and
layered rods converge to a common
rod packing on tightening using the
PB-SONO algorithm, namely the #4
rod packing (Fig. 3). They are therefore
all equivalent isotopes. Those patterns
with parallel average axes (#1–#4)
tighten by straightening and rearran-
gement of the rods to form the dense
two-dimensional hexagonal conforma-
tion. Similarly, the patterns composed
of stacked layers of parallel rods (#5–
#8) also eventually tighten to form this
ideal conformation by rotation of every
alternate layer to form parallel axes, as
expected. Although various initial
configurations derived from the TPMS
branched-ribbon tilings have distinct
initial unit cells, they further symme-
trize on tightening, forming a common
primitive unit cell containing just
one rod. The packing fraction is
"=ð2

ffiffiffi
3

p
Þ ’ 0:91 regardless of the

choice of unit cell. The L=D measure
depends on the unit cell and for the
smallest unit cell, which contains only
one rod, L=D ¼ 1.

4.2. Invariant rod packings: cubic
examples

Six invariant rod packings of cubic
symmetry are enumerated in Rosi et
al. (2005). Generalized rod packings
related to five of these six arise from
regular branched-ribbon tilings of H2;
the sixth does not have a hyperbolic
antecedent corresponding to the
regular tiling of branched ribbons.

The filament axes of the
Gþ

124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ pattern align

with the !þ rod packing (Fig. 4). The pattern that emerges
from the tiling on the G consists of close to ideal helical fila-
ments, all of equivalent chirality. [TheG$

124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ

tiling, which is the G surface fibration of the same tiling by the
second covering map of the G surface (Evans et al., 2013),
gives the !$ enantiomer of the chiral rod packing.] The ideal
embedding of this pattern has curvilinear filaments with close
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Figure 2
Invariant rod packings: parallel and layers. These are shown as tilings of H2, tilings of the TPMS on
which they are built and as filament packings in three-dimensional space. The names of the structures
are given below each image.
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to helical trajectories and is formed by tightening both straight
or curved starting filaments. Remarkably, the helices of this
ideal structure decorate a surface parallel to the G minimal
surface such that one channel is slightly deflated and the other
is enlarged, as shown in Fig. 4, indicating the underlying
relevance of the G TPMS to this pattern. The L=D value for
this conformation is 17:91 and the packing fraction is 0:66.

The D124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ tiling has straight rods, coin-

cident with the !# rod packing, an intergrowth of both chiral
enantiomers of !þ and !$. Its ideal configuration also
consists of straight rods, with L=D ¼ 6 and packing fraction
ð3"Þ=16 ’ 0:59 (Fig. 5).

A Gþ
129RLðcosh$1ð3=2ÞÞ tiling results in quasi-helical fila-

ments winding on the G surface, where all the helices have

equivalent chirality. Filament axes coincide with the "þ rod
packing (Fig. 6). [The G$

129RLðcosh$1ð3=2ÞÞ weaving, obtained
via the second covering map, forms the "$ enantiomer.] Both
the Gþ

129RLðcosh$1ð3=2ÞÞ weaving and the related "þ rod
packing relax under tightening to an ideal form with helical
rather than rectilinear rods. This ideal embedding, like that of
the !þ packing, adopts aspects of the G surface. In the case
of the "þ pattern, the close-packed filaments fill one channel
of the G, leaving the complementary volume close to unoc-
cupied, as illustrated in Fig. 6. The L=D value is 30:21 and the
packing fraction is 0:38, making it the least dense ideal
structure of the cubic rod packings.

Weavings from the Gþ
123RLðcosh$1ð

ffiffiffi
2

p
ÞÞ (Fig. 7) and the

D114RLðcosh$1ð
ffiffiffi
3

p
ÞÞ tilings have slightly undulating filaments,

ambient isotopic to the # rod packing. In this case, the ideal
structure is composed of straight rods. The L=D value of the
ideal embedding is 19:27, with a packing fraction equal to 0:71,
making this the densest of all the ideal cubic rod packings.

The P129RLðcosh$1ð3=2ÞÞ structure is related to the $þ rod
packing (Fig. 8). The filament geometry inherited from the
surface fibration is slightly helical, with all filaments of
equivalent chirality. The ideal packing also has slightly helical
filaments, which coincide precisely with those inherited from
the P surface tiling. The L=D value for this conformation is
24:06 and the packing fraction is 0:49.

Ideal embeddings of all of the cubic
rod packings retain the cubic symmetry
of their starting configurations and
tightening is not accompanied by a
change of symmetry class. With the
exception of the #þ rod packing, both
ideal and densest embeddings of the
cubic rod packings retain their cubic
symmetry, where any deformation of
the unit cell from its cubic form both
increases L=D and decreases the
packing fraction.
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Figure 3
The ideal configuration for all weavings composed of parallel rods, or
stacked layers of parallel rods. One unit cell is shown, which contains a
single rod and has lattice parameters ð1; 1; 1; "=2; "=2; "=3Þ. The length
of the rod is 1, the diameter is also 1 and the volume of the unit cell isffiffiffi
3

p
=2. Thus L=D ¼ 1 and the packing fraction is approximately 0.91.

Figure 4
The Gþ

124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ structure: a helical !þ rod packing. (Top)

Geometry of the decoration, given in H2, on the G surface and in E3.
(Bottom) The ideal configuration in one unit cell, in E3 and on a surface
parallel to the G surface such that one channel has been deflated and the
other enlarged.

Figure 5
D124RLðcosh$1ð

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ, equivalent to the !# rod packing. It is shown (from left to right) in H2, on

the D surface, in E3 and as an ideal configuration within one unit cell.

Figure 6
The Gþ

129RLðcosh$1ð3=2ÞÞ structure: a helical "þ. (Top) The surface
structure shown in H2, on the G surface and in E3. (Bottom) The ideal
structure, shown in one unit cell, filling one channel of the G minimal
surface and in E3.
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When different lattice parameters are imposed for the #þ

[Gþ
123RLðcosh$1ð

ffiffiffi
2

p
ÞÞ] pattern, and each of these structures

then tightened given this input, we see an interesting result.
Increasing the c axis (elongating the cube cell to be of size
1) 1) c) results in ideal embeddings with a higher L=D
value and a higher packing fraction, forming denser packings,
that are, however, looser than the cubic case. These denser,
looser embeddings have undulating filaments, with ever larger
curvature variations as c is increased.

These regular tilings produce generalized rod packings
whose ideal forms coincide with five of the six invariant cubic
rod packings detailed in O’Keeffe et al. (2001). The sixth of
these rod packings is the "# packing, which is an interwoven
variant containing a "þ and a "$ (an enantiomeric pair). It
does not emerge from regular branched-ribbon tilings on the
cubic TPMS. (It is probable, however, that this structure is an
irregular case, related to a lower-symmetry orbifold than those
of regular free tilings.) It is interesting to note that the ideal
embedding of the "# rod packing is exactly equivalent to
the interweaving of the ideal Gþ

129RLðcosh$1ð3=2ÞÞ and
G$

129RLðcosh$1ð3=2ÞÞ structures (related to the "þ and "$

packings). Remarkably, the complementary volume to the
ideal Gþ

129RLðcosh$1ð3=2ÞÞ structure [or equivalently the
G$

129RLðcosh$1ð3=2ÞÞ structure] is just suitable to accommodate
the opposite enantiomer, also in its ideal form. In other words,
the ideal Gþ

129RLðcosh$1ð3=2ÞÞ structure fills one channel of the

G minimal surface and the second ideal
enantiomer fills the other channel. The
correspondence between the TPMS
and ideal embeddings of these cubic
rod packings is curious, given that tight
embeddings are not a priori related to
two-dimensional hyperbolic patterns.
Among all cases, only the ideal
embedding of the # rod packing does
not relate readily to the geometry of the
P, D or G morphologies.

4.3. Invariant rod packings: non-cubic examples

The enumeration of weavings from regular branched-
ribbon tilings also results in five additional tetragonal and
trigonal patterns, whose filament axes coincide with recti-
linear, invariant rod packings not enumerated in O’Keeffe et
al. (2001) and Rosi et al. (2005).

The P114RLðcosh$1ð
ffiffiffi
3

p
ÞÞ structure is shown in Fig. 9. The

filament geometry inherited from the surface fibration consists
of a tetragonal array of straight lines, where the four filaments
within a unit cell are described by the trajectories fu; 0; 12 þ ug,
fu; 12 ;$ug, f12 ; u; 12 þ ug and f0; u;$ug within the space group
P4=nnc. In the ideal conformation of this rod packing the
filaments deviate slightly from their rod axes, forming undu-
lating trajectories. The minimum L=D value, 15:95, occurs with
lattice parameters (a ¼ b ¼ 1, c ¼ 0:8, # ¼ ! ¼ $ ¼ "=2),
where the packing fraction is 0.553. This tightest unit cell does
not give a densest packing: the density increases with the
length of the c axis, at the expense of L=D, similar to the #
structure.

The Gþ
114RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ weaving, shown in Fig. 10, has

tetragonal symmetry (I41=acd). The structure contains slightly
undulating rods, with four distinct axes within a unit cell,
described by the vectors fu; u;$3ug, f$u; u; 12 þ 3ug,
f12 þ u; u; 12 þ 3ug and f12 $ u; u; 3ug. The filaments can be
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Figure 7
TheGþ

123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ structure, equivalent to the # rod packing. The structure is shown (from left

to right) in H2, on the G surface, in E3 and as an ideal structure in one unit cell.

Figure 8
The P129RLðcosh$1ð3=2ÞÞ structure, related to the $þ rod packing. (Top)
The surface fibration, shown in H2, on the surface and in E3. (Bottom)
The ideal configuration, shown in one unit cell and in E3. The ideal
structure is very close to the surface fibration.

Figure 9
The P114RLðcosh$1ð

ffiffiffi
3

p
ÞÞ structure, a tetragonal rod packing composed of

straight rods. (Top) The surface structure in H2, on the surface and in E3.
(Bottom, left) A unit cell of the ideal embedding of this packing and
(right) larger volume of the ideal embedding, drawn with a deflated
filament diameter to illustrate the undulating geometry of the rods.
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straightened to coincide with their axes without changing
ambient isotopy, so the G weaving is an equivalent isotope to
this new tetragonal rectilinear rod packing. Another distinct
class I weaving, formed from the D114RLðcosh$1ð3

ffiffiffi
3

p
ÞÞ tiling,

has filaments tracing the same rod trajectories; thus these
weavings are equivalent isotopes.

The filaments of the P114RLðcosh$1ð5
ffiffiffi
3

p
ÞÞ weaving can also

be rectified to coincide with their axes to give a tetragonal rod
packing (P4=nnc). The construction of this weaving is shown
in Fig. 11. The weaving is composed of slightly undulating
filaments, where the four distinct rod positions within a unit
cube cell are described by the vectors fu; 0; 3ug, fu; 12 ; 12 $ 3ug,
f0; u; 12 $ 3ug and f12 ; u; 3ug.

Similarly, the filaments of the Gþ
93RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ weaving

can be rectified to give a rod packing with trigonal symmetry
R3c (Fig. 12). The three distinct rod positions, described in
the G surface cubic unit cell, are given by the vectors
fu; 12 þ 3u; 12 þ ug, f3u; u; 12 þ ug and fu; 12 þ u; 3ug.

The structure G$
93RLðcosh$1ð

ffiffiffi
2

p
ÞÞ (Fig. 13) has filament axes

forming a rod packing of trigonal symmetry R3c. The
G$

93RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ weaving is also an equivalent isotope. The

alignment of the rods in a cube cell is described by the
vectors f$u; u; 12 $ ug, fu; 12 þ u; 12 $ ug and f12 $ u; u; 12 þ ug
(see Fig. 13). Further, the trigonal rod packing defined by
the G$

93RLðcosh$1ð
ffiffiffi
2

p
ÞÞ weaving has been observed as the

arrangement of a self-assembled chemical structure in
Carlucci et al. (1999). When viewed along a rod direction, one
can see that this weaving is a deformation of the !# cubic rod
packing and is thus an isotope of !#. Given this, the ideal
configuration of the weaving is thus precisely !#, for which
L=D ¼ 6 and the packing fraction 0.59.

5. Class II weavings: intersecting filament axes

Our enumeration also gives novel class II weavings char-
acterized by intersecting filament axes. Recall that these
intersecting filaments form a net whose vertices are the
points common to more than one filament. Clearly, ideal
embeddings of these weavings necessarily have curvilinear
embeddings.

The regular branched-ribbon tiling P118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ (Fig.

14) forms a weaving with space group P432 on the P surface.
Rectifying the filaments of this weaving along their axes
causes the filaments to intersect only when fully straightened.
The six distinct filament axes in a cubic unit cell are
fu; 12 * u; 0g, f0; u; 12 * ug and fu; 0; 12 * ug. If the intersection
points of the filaments are changed to be vertices, the filaments
form a known three-dimensional net, labelled reo according to
the three-letter schema developed by O’Keeffe et al. (2008),
with 1-transitive vertices and edges. This net is itself a
conventional (i.e. not free) tiling of the P (or D) surfaces,
listed as sqc877 in the Epinet database (see http://epinet.
anu.edu.au/sqc877).

The D118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ weaving has space group F4132 on

the surface (Fig. 15). The 12 distinct filament axes in a unit cell
are fu; u; 18g, fu; 12 þ u; 58g, fu; 18 ; ug, fu; 58 ; 12 þ ug, f18 ; u; ug,
f58 ; u; 12 þ ug, f78 ; u;$ug, f38 ; u; 12 $ ug, fu; 78 ;$ug, fu; 38 ; 12 $ ug,
fu;$u; 78g and fu; 12 $ u; 38g. Rectification of this weaving results
in intersecting rods, giving the crs (cristobalite) net (also
known to Epinet as sqc889; see http://epinet.anu.edu.au/
sqc889), which has 1-transitive vertices and edges (O’Keeffe et
al., 2008). The ideal (tight) embedding of this weaving adopts a
very low density, with L=D ¼ 145:28 and a packing fraction of
0.31.

The Gþ
118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ weaving (Fig. 16) is a line pattern

on the gyroid with space group I4132. The 12 distinct axes of
the filaments in a unit cell are fu; 14 $ u; 38g, fu; 14 $ u; 78g,
f38 ; 14 $ u; ug, f78 ; 14 $ u; ug, fu; 14 þ u; 18g, fu; 14 þ u; 58g,
fu; 38 ; 14 $ ug, fu; 78 ; 14 $ ug, f18 ; 34 þ u; ug, f58 ; 34 þ u; ug,
fu; 18 ; 34 þ ug and fu; 58 ; 34 þ ug. These axes form the chiral nfa
net (O’Keeffe et al., 2008), with 1-transitive vertices and
2-transitive edges. The two distinct edges of the net result from
the single asymmetric edge of the weavings because the
intersection point of the filaments cuts the asymmetric unit
of the filament in half: the two distinct edges of the nfa
network together form a continuous straight line. This

weaving also has very low density in its
ideal conformation, with L=D ¼ 123:84
and a packing fraction of 0.31. The
difference between the weaving that
emerges from the TPMS and the ideal
embedding is small.

The P114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ

weaving in Fig. 17 has four distinct
filament axes, with vectors fu; u;$ug,
fu; 12 $ u; 12 þ ug, fu; u; 12 þ ug and
fu; 12 $ u;$ug in a unit cell. It has space
group P4=nnc, and the axes of these
filaments form edges of the regular bcu

Acta Cryst. (2013). A69, 262–275 Evans, Robins and Hyde ! Periodic entanglement II 269

research papers

Figure 11
The P114RLðcosh$1ð5

ffiffiffi
3

p
ÞÞ weaving, whose filament axes give a rod packing of tetragonal symmetry

(P4=nnc). The weaving is shown from left to right as a free tiling of H2, on one unit cell of the P
surface, in E3 and where the undulating filaments have been straightened to the associated rod
packing.

Figure 10
The Gþ

114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ filamentous array, a tetragonal rod packing

composed of slightly undulating filaments. This weaving is shown (left) in
H2, (centre) on one unit cell of the G surface and (right) in E3.
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net (O’Keeffe et al., 2008), known to Epinet as sqc3 (see http://
epinet.anu.edu.au/sqc3).

6. Class III weavings: tangled examples

Recall that class III weavings have sufficiently interwoven
filaments to impede each other from rectification along
their filament axes without changing their entanglement.
These examples are therefore ‘tangled weavings’, since the
related rod packing whose (straight) rods lie along filament
axes is a distinct isotope. Like class II weavings, ideal
embeddings of tangled weavings necessarily contain curvi-
linear rods.

Fig. 18 shows the D114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ tiling and

resulting weaving. This is a tangled variant of the parallel
square rod packing (#2 rod packing), or in fact any of its
equivalent ‘canonical’ isotopes, which contain all of the
parallel and layered invariant rod packings.

The tangled weaving Gþ
118RLðcosh$1ð9=2ÞÞ is shown in Fig.

19. Rectification of the filaments along their axes results in the

# rod packing with three filaments tracing along each rod. The
ideal form of the tangled weaving has L=D ¼ 220:26 and a
packing fraction equal to 0.40.

The G$
118RLðcosh$1ð9=2ÞÞ weaving, shown in Fig. 20, is a

tangled version of the "þ rod packing, and hence also the
Gþ

129RLðcosh$1ð3=2ÞÞ weaving (cf. Fig. 6). The ideal conforma-
tion of the tangled weaving has L=D ¼ 70:67 and a packing
fraction equal to 0.20. Its ideal form is the least dense of all
weavings constructed so far.

7. Links: looped filaments

As noted above, the filament trajec-
tories of the TPMS fibration occasion-
ally form closed loops in E3 rather than
infinite lines, resulting in ‘links’ with an
infinite number of components. Many
of the examples that emerge from the
most symmetric free tilings consist of
arrays of disjoint loops, with no
entanglement between distinct loops.
However, in the case of the tiling
P118RLðcosh$1ð7

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ, distinct loops

are catenated (Fig. 21). Each loop of
the structure catenates 16 of its neigh-
bouring loops, where each loop pair
forms a Hopf link (Cromwell, 2004),
resulting in a three-dimensional chain-
mail. Within this structure, sheets of
doubly periodic chainmail orient along
three orthogonal h100i directions in E3,
such that sheets catenate with those of
distinct orientations but not with
parallel sheets.

The behaviour of this chainmail on
tightening using the PB-SONO algo-
rithm is revealing. The link geometry
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Figure 13
The G$

93RLðcosh$1ð
ffiffiffi
2

p
ÞÞ structure, shown in H2, on the surface and in E3, is related to a rod packing

with trigonal symmetry. The far right image shows the structure when viewed along a rod axis where
it can be seen that this is a deformation of the !# rod packing.

Figure 14
The P118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ pattern. (Left to right) The free tiling in H2 and on the P surface, the

resulting weaving in E3 and the reo net, whose edges coincide with the filament axes of this weaving.

Figure 15
The D118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ structure is a weaving with intersecting filament

axes. (Top) The free tiling inH2 and on the surface, and the weaving in E3.
(Bottom left) The filament axes intersect to form a crs net. (Bottom
centre/right) The ideal embedding of this weaving.

Figure 12
The Gþ

93RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ structure, shown in H2, on the G surface and in

E3, is related to a trigonal rod packing.
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inherited from the TPMS tiling has fourfold axes that are lost
on tightening. That behaviour is analogous to the ideal
embedding of four interwoven helices, where one of the
helices straightens along its filament axis and the other three
wind around this straight filament, forming a triple helix with a
threefold axis. This feature is reminiscent of the ideal config-
urations of some complex torus knots and links that lose
symmetry on tightening (Pieranski, 1998).

8. Closing remarks

The wealth of examples derived in this paper, that emerge
from the simplest most symmetric line patterns on the simplest
TPMS, reveal the efficacy of the construction technique. The
process relies on enumeration of free tilings ofH2 and we have
explored some regular examples in detail. Most of the
rod packings described previously from Euclidean crystal-
lographic analysis emerge ab initio in this way. A number of
other examples adopt a variety of configurations, leading to
our classification of these generic weavings into three possible
classes, dependent on their entanglement characteristics. This
approach allows us to distinguish between ‘tangled’ and
‘untangled’ weavings, by analogy with knots and tangled nets.
Most significantly, this enumeration technique allows a natural

extension of the useful concept of rod packings to crystal-
lographic arrays of more complex one-dimensional forms.

The generalized SONO algorithm used here generally
results in a useful quasi-canonical ideal embedding for these
weavings, characteristic of their entanglement. It is note-
worthy that ideal embeddings of all of the three-dimensional
weavings, that are not made up of parallel layers, have ideal
embeddings that are at least as symmetric as the original
weavings. (In contrast, this does not hold for many of the
layered rod packings, nor for the three-dimensional chainmail
pattern.) A general trend, common to knots, is a rough
correspondence between the magnitude of L=D and the
degree of entanglement of the weaving. The approach there-

fore holds some promise for exploration
of other tangled patterns also, such as
self-knotted nets and multiple inter-
woven nets. The latter example is
explored in more detail in a companion
publication (Evans et al., 2013).

We note that our projection tech-
nique from two-dimensional hyperbolic
space (H2) to three-dimensional Eucli-
dean space (E3) occasionally affords a
useful embedding for these weavings
and little ‘annealing’ in E3 is required to
form the ideal embedding. In other
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Figure 17
The P114RLðcosh$1ð3

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ weaving. (Left to right) The free tiling in H2, on one unit cell of the P

surface and the resulting weaving in E3. (Right) The bcu net, whose edges coincide with the axes of
the filaments in this weaving.

Figure 16
The weaving Gþ

118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ. (Top) The regular free tiling in H2 and

on one unit cell of theG surface, and the resulting weaving in E3. (Bottom
left) The chiral nfa net that results from the intersecting filament axes.
(Bottom centre, right) The ideal embedding of the weaving.

Figure 18
The D114RLðcosh$1ð3

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ structure, shown in H2, on the D surface

and in E3; a tangled variant of the #2 rod packing.

Figure 19
The Gþ

118RLðcosh$1ð9=2ÞÞ structure is a tangled version of a # rod packing
composed of triple-helical rods. (Top) The regular free tiling inH2 and on
one unit cell of the G surface, and the resulting weaving in E3. (Bottom)
The ideal embedding of this weaving.
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words, the ideal geometry of the weaving is reminiscent of the
TPMS fibration geometry. Certainly, this curvilinear approach
is a useful one to generate a variety of weavings, of which rod
packings are a subset, since the ideal conformation of some
rod packings contains helical filaments rather than straight
components.

The paper seeks to enumerate simplest generalized rod
packings from the perspective of pure geometry, rather than
materials science. However, it is clear that some of the
weavings explored here arise in the description of chemical
frameworks. In particular, the invariant cubic rod packings are
widely identified in covalent inorganic crystal structures and
other chemical frameworks (O’Keeffe & Hyde, 1996). Many
of the invariant cubic and non-cubic rod packings are also
readily synthesized as metal–organic frameworks, a summary
of which may be found in Rosi et al. (2005). Further, the
G$

93RLðcosh$1ð
ffiffiffi
2

p
ÞÞ weaving, shown in Fig. 13, has been

observed in the solid state (Carlucci et al., 1999).
These weavings are all constructed as fibrations of surfaces

observed regularly as mesoscale cubic membranes. It has been
suggested that three-dimensional weavings of structural
proteins may form in vivo on the cubic membrane, in much the
same way as these weavings emerge as tilings of the TPMS.
One such example [the Gþ

129Cðcosh$1ð3=2ÞÞ weaving] was
proposed to describe the organization of keratin in the
corneocyte of the outer layer of mammalian skin, possibly
templated on a G-shaped membrane (Evans & Hyde, 2011).
That weaving has remarkable ‘anomalous dilatancy’, where
straightening of the quasi-helical filaments results in coop-
erative expansion of the weaving, rather than collapse. This
feature is somewhat reminiscent of auxetic (negative Poisson
ratio) materials and is characteristic of the (class I)
Gþ

129Cðcosh$1ð3=2ÞÞ weaving. It is worth noting that many of
the structures from the G surface, and also a few from the P
surface, share this property. This construction method then
may also be of significance for the design of materials with
anomalous expansion characteristics (e.g. negative thermal
expansion materials, auxetics). This connection between
geometry and topology and mechanical behaviour is curious

and offers some relevance to the geometric approach intro-
duced here.

APPENDIX A
Free tilings of the hyperbolic plane

The free tilings of H2 with infinite geodesic boundaries are
given in Fig. 22. In the companion paper, we detailed free
tilings composed of tree-like boundary components, which are
the medial axes of the tilings shown in Fig. 22, and vice versa.
The edge lengths of each pair of structures differ by virtue of
their independent construction; however, we wish to highlight
the relation between these structures in the following table.

APPENDIX B
Catalogue of resulting structures

Tables 1, 2 and 3 show the three-dimensional filament arrays
formed from regular branched-ribbon tilings of H2 projected
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Figure 20
TheG$

118RLðcosh$1ð9=2ÞÞ structure is a tangled"þ rod packing. (Top) The
surface fibration is shown in H2, on one unit cell of the G surface and in
E3. (Bottom) The ideal structure.

Figure 21
The regular branched-ribbon tiling P118RLðcosh$1ð7

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ forms

complex catenated loops, giving two-dimensional catenated sheets, that
catenate orthogonal sheets, giving a three-dimensional chainmail pattern.
(Top) The free tiling in H2, on the surface and the resulting chanmail in
E3. (Bottom left) Four links within a single layer of the chainmail.
(Bottom centre/right) The ideal embedding.

Geodesic packing Tree packing (Evans et al., 2013)

?246124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ ?246124RT ðcosh$1ð3ÞÞ

?246129RLðcosh$1ð3=2ÞÞ ?246129RT ðcosh$1ð5ÞÞ
?246118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ ?246118RT ðcosh$1ð15ÞÞ

?246118RLðcosh$1ð9=2ÞÞ ?246118RT ðcosh$1ð53ÞÞ
?246118RLðcosh$1ð7

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ ?246118RT ðcosh$1ð195Þ

?246118RLðcosh$1ð33=2ÞÞ ?246118RT ðcosh$1ð725ÞÞ
?246123RLðcosh$1ð

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ ?246123RT ðcosh$1ð5ÞÞ

?246123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ ?246123RT ðcosh$1ð7ÞÞ

?246114RLðcosh$1ð
ffiffiffi
3

p
ÞÞ ?246114RT ðcosh$1ð11ÞÞ

?246114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ ?246114RT ðcosh$1ð31ÞÞ

?246114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ ?246114RT ðcosh$1ð53ÞÞ

?246114RLðcosh$1ð3
ffiffiffi
3

p
ÞÞ ?246114RT ðcosh$1ð107ÞÞ

?246122RLðcosh$1ð3=2ÞÞ ?246122RT ðcosh$1ð17ÞÞ
?246122RLðcosh$1ð5=2ÞÞ ?246122RT ðcosh$1ð49ÞÞ
?24693RLðcosh$1ð

ffiffiffi
2

p
ÞÞ ?24693RT ðcosh$1ð15ÞÞ

?24693RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ ?24693RT ðcosh$1ð63ÞÞ
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Figure 22
Free tilings of the hyperbolic plane, with infinite geodesic tile boundaries. These tilings are named below each image, giving details of the underlying
tiling (?246), the Delaney–Dress tile topology (see Fig. 1), RL to signify regular line packings, and the edge length of one asymmetric unit of the lines.
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onto the P, D and G(yroid) TPMSs. These weavings are
labelled by their parent free tiling (cf. Appendix A), plus the
surface that the tiling decorates. Owing to the pair of
embeddings that are possible for chiral patterns on the gyroid

(Robins et al., 2005), G tilings are also labelled with þ or $

superscripts to distinguish these cases. For example, the
hyperbolic tiling #246118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ is the embedding of

the free tiling with symmetry 2223 (group 118) into the ?246
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Table 1
Weavings from ?2223, 2?23 and 2223 hyperbolic symmetry.

Structure Packing
Weaving
space group L=D

Packing
fraction Ideal unit cell Figure

P124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Loops Pm3m

P129RLðcosh$1ð3=2ÞÞ Helical $þ I432 24.06 0.49 ð1; 1; 1; "=2; "=2; "=2Þ 8

P118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ Intersect P432 14

P118RLðcosh$1ð9=2ÞÞ Tangled $þ P432

P118RLðcosh$1ð7
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Catenated loops P432 85.62 0.35 ð1; 1; 1; "=2; "=2; "=2Þ 21

P118RLðcosh$1ð33=2ÞÞ Tangled $þ P432

D124RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ !# P4232 6.00 0.59 ð1; 1; 1; "=2; "=2; "=2Þ 5

D129RLðcosh$1ð3=2ÞÞ Loops Fd3m

D118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ Intersect F4132 145.28 0.31 ð1; 1; 1; "=2; "=2; "=2Þ 15

D118RLðcosh$1ð9=2ÞÞ Tangled $þ F4132

D118RLðcosh$1ð7
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ !#: woven F4132

D118RLðcosh$1ð33=2ÞÞ Tangled $þ F4132

Gþ=$
124RLðcosh$1ð

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Helical !þ=$ I4132 17.91 0.66 ð1; 1; 1; "=2; "=2; "=2Þ 4

Gþ=$
129RLðcosh$1ð3=2ÞÞ Helical "þ=$ I4132 30.21 0.38 ð1; 1; 1; "=2; "=2; "=2Þ 6

Gþ
118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ Intersect I4132 123.84 0.31 ð1; 1; 1; "=2; "=2; "=2Þ 16

G$
118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ Loops I4132

Gþ
118RLðcosh$1ð9=2ÞÞ Tangled 3) # I4132 220.26 0.40 ð1; 1; 1; "=2; "=2; "=2Þ 19

G$
118RLðcosh$1ð9=2ÞÞ Tangled "þ I4132 70.67 0.20 ð1; 1; 1; "=2; "=2; "=2Þ 20

Gþ
118RLðcosh$1ð7

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Tangled !þ I4132

G$
118RLðcosh$1ð7

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Tangled !þ I4132

Gþ
118RLðcosh$1ð33=2ÞÞ Tangled 3) # I4132

G$
118RLðcosh$1ð33=2ÞÞ Tangled "þ I4132

Table 2
Weavings from ?2224 and 2224 hyperbolic symmetry.

Structure Packing
Surface
space group L=D

Packing
fraction Ideal unit cell Figures

P123RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Loops I4=mmm

P123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ #2 I4=mmm 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ 2 and 3

P114RLðcosh$1ð
ffiffiffi
3

p
ÞÞ Rod (tetr.) P4=nnc 15.95 0.553 ð1; 1; 0:8; "=2; "=2; "=2Þ 9

P114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ Intersect P4=nnc 17

P114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Helical 4) #2 P4=nnc

P114RLðcosh$1ð3
ffiffiffi
3

p
ÞÞ Tangled (tetr.) P4=nnc

P114RLðcosh$1ð5
ffiffiffi
3

p
ÞÞ Rod (tetr.) P4=nnc 11

D123RLðcosh$1ð
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ #2 P42=nnm 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ 2 and 3

D123RLðcosh$1ð
ffiffiffi
2

p
ÞÞ #6 P42=nnm 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

D114RLðcosh$1ð
ffiffiffi
3

p
ÞÞ # I41=acd 19.27 0.71 ð1; 1; 1; "=2; "=2; "=2Þ

D114RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

D114RLðcosh$1ð3
ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Tangled #2 I41=acd 18

D114RLðcosh$1ð3
ffiffiffi
3

p
ÞÞ Rod (tetr.) I41=acd

D114RLðcosh$1ð5
ffiffiffi
3

p
ÞÞ Tangled # I41=acd

Gþ=$
123RLðcosh$1ð

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

Gþ=$
123RLðcosh$1ð

ffiffiffi
2

p
ÞÞ # I41=acd 19.27 0.71 ð1; 1; 1; "=2; "=2; "=2Þ 7

Gþ
114RLðcosh$1ð

ffiffiffi
3

p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

G$
114RLðcosh$1ð

ffiffiffi
3

p
ÞÞ #6 I41=acd 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

Gþ
114RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ Rod (tetr.) I41=acd 10

G$
114RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ # I41=acd 19.27 0.71 ð1; 1; 1; "=2; "=2; "=2Þ

Gþ
114RLðcosh$1ð3

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Helical 3) #2 I41=acd

G$
114RLðcosh$1ð3

ffiffiffi
3

p
=

ffiffiffi
2

p
ÞÞ Tangled #2 I41=acd

Gþ
114RLðcosh$1ð3

ffiffiffi
3

p
ÞÞ Intersect I41=acd

G$
114RLðcosh$1ð3

ffiffiffi
3

p
ÞÞ #2 I41=acd 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

Gþ
114RLðcosh$1ð5

ffiffiffi
3

p
ÞÞ Intersect I41=acd

G$
114RLðcosh$1ð5

ffiffiffi
3

p
ÞÞ Intersect I41=acd

electronic reprint



tiling of H2, embedded with edge length cosh$1ð
ffiffiffi
6

p
Þ. The

structure Gþ
118RLðcosh$1ð

ffiffiffi
6

p
ÞÞ is the fibration of the hyperbolic

tiling #246118RLðcosh$1ð
ffiffiffi
6

p
ÞÞ over the G surface by one

covering map. The space group of the weaving, whose
embedding comes from the TPMS, is listed.

We thank Stuart Ramsden for helpful discussions on many
aspects of this work. MEE thanks the Humboldt Foundation
for generous support.
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Table 3
Weavings from 2?26 and 2226 hyperbolic symmetry.

Structure Packing
Surface
space group L=D

Packing
fraction Ideal unit cell Figures

P122RLðcosh$1ð3=2ÞÞ #1 R3m 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ
P122RLðcosh$1ð5=2ÞÞ Loops R3m

P93RLðcosh$1ð
ffiffiffi
2

p
ÞÞ !# R3c

P93RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ #1 R3c 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ

D122RLðcosh$1ð3=2ÞÞ Loops R3m

D122RLðcosh$1ð5=2ÞÞ #1 R3m 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ
D93RLðcosh$1ð

ffiffiffi
2

p
ÞÞ Rod (tri.) R3c

D93RLðcosh$1ð2
ffiffiffi
2

p
ÞÞ Intersect R3c

Gþ
122RLðcosh$1ð3=2ÞÞ #1 R3c 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ 2 and 3

Gþ
122RLðcosh$1ð5=2ÞÞ Helical 2) #1 R3c

Gþ
93RLðcosh$1ð

ffiffiffi
2

p
ÞÞ #3 R3c 1 0.90 ð1; 1; 1; "=2; "=2; "=3Þ 2 and 3

G$
93RLðcosh$1ð

ffiffiffi
2

p
ÞÞ Rod (tri.) R3c 6 0.59 ð1; 1; 1; "=2; "=2; "=2Þ 13

Gþ
93RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ Rod (tri.) R3c 12

G$
93RLðcosh$1ð2

ffiffiffi
2

p
ÞÞ Rod (tri.) R3c
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