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a b s t r a c t

We suggest constructive definitions for the determination of untangled finite graphs and three-periodic
nets, using barycentric embeddings in two and three dimensions. The possibility of deliberately con-
structing tangled graphs and nets is canvassed, and we conclude that tangled patterns offer a novel class
of nano- and meso-structured materials with useful features, including high internal surface area and
volume and chirality.
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1. Introduction

Osamu Terasaki has made a consistent impact on the study of
nanoporous and mesoporous materials. His masterful use of the
electron microscope to unravel complex structures is well docu-
mented. To relative outsiders such as us, the importance of his work
lies beyond the technical brilliance of his microscopy. Rather,
Osamu’s detailed observations and structural reconstructions
reveal the truth of an important article of faith to all materials
scientists: structure plays the central role in the behaviour and
design of materials. He shields closet geometers from the increas-
ingly frequent catcalls by the real outsiders, who fail to recognise an
essential difference between science and engineering. Without
your work, we would have little defence against the charges of
“uselessness”: Osamu, we need you!

2. Structural entanglement

With that defence of our own position out of the way, we feel
able to assert the relevance of a topic that remains scarcely touched
to date in porous materials research: that of structural entangle-
ment. Our principal goal in this paper is to describe in very crude
general terms the concept of entanglement and to suggest
a possible first step towards a characterisation of (dis)entangle-
ment in graphs and nets. Graphs correspond to the structures
formed by finite ‘molecular’ networks, with a bounded number of
vertices. In contrast to finite graphs, infinite nets are crystalline

networks and contain an infinite number of vertices. They can be
two- or three-periodic, with 2D or 3D unit cells respectively; we
usually use the term to describe three-periodic examples.

So far, entanglement has been recognised and discussed to some
degree by scientists interested in a somewhat different class of
porous materials to porous inorganic materials championed by
Terasaki and his colleagues: metal coordination polymers (or
metal-organic frameworks, MOFs).

The structural richness of entangled, catenated and/or knotted
patterns has long been a target for synthetic organic chemists.
Knotted molecules were first prepared by Dietrich-Buchecker and
Sauvage [1]. Since then, numerous other examples have been
found. Catenated organics are an equally rich area, including cate-
nanes and rotaxanes [2].

MOFs are built from polymeric edges, condensed to form nets by
coordinating metal ions. In a sense they are giant floppy analogues
of classical covalent frameworks, such as zeolites. It is this floppi-
ness, inherited from the polymeric ligands, that admits the possi-
bility of tangled structures. The edges may well wind around each
other before or during their condensation into nets, resulting in
structures that may be e qualitatively at least e tangled. As first
pointed out by Robson and Hoskins [3], numerous MOFs display
complex and various forms of entanglement, discussed in some
detail in a rich review by Proserpio et al. [4]. In this review, the
authors also pointed out that many MOFs can be considered as
catenated nets, whose types of catenation can be to some extent
explained by exploring the threading of various rings in the
structures. That is a useful approach in that it allows for the
threading to be classified according to the mathematical links
formed by the threaded rings.
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One particular example of a MOF [5] consists of a triplet of
“chicken-wire” nets (or, using O’Keeffe’s notation, hcb, [6]), inter-
grown to form arrays of Borromean rings. Proserpio et al. reinter-
preted the structure to include neighbouring AgeAg interactions as
net edges [4]. The resulting structure is a degree-four network, built
of six-rings, whose topology is identical to that of the diamond (dia)
net. If the geometric location of the nodes in the net is ignored and
the net is considered as a topological graph only, the structure is
indeed dia. However, the net is very different to dia, in that the
crossing of edges viewed from various directions is distinct to that
of dia. This situation is analogous to the formation of a knot from
a simple loop of string that is wound up to give a multiple loop. A
knot results when the under-over crossings of the loop are changed
from those that can be formed by simply winding up the loop, for
example by rethreading a loose end through the loop.

This phenomenon is perhaps most simply explained within the
language of mathematical graph theory. A graph is a topological
entity only; its structure is nothing more than the connection table
of edges. Since topology is only concerned with the linkages
between vertices, vertex and bond locations in space are irrelevant.
For example, the (complete) graph, K4, contains just four vertices,
and each vertex is connected to each other (so all vertices have
degree-three). There are an infinite number of different ways that
this graph can be embedded in space, all of which preserve the
graph topology. We can therefore construct an infinite variety of K4
graphs in space, all topologically equivalent, despite their possibly
distinct spatial embeddings. Some examples are shown in Fig. 1.

Among topologically equivalent nets, two levels of structural
flexibility remain. The first is the usual geometric placement or
embedding of the graph, described for example by the cartesian
coordinates of the vertices. If two embeddings of K4 can bematched
(possibly after a rigid-body rotation and translation) to each other,
theyare congruent. Here, the notion ofmatching is important. If one
assumes that the bonds are e for example e straight edges linking
vertices, congruence ismeasured byvertex locations alone. Imagine,
however, that the bonds themselves are free to wander through
space. Strict congruence between a pair of K4 embeddings then

demands that all of the points of space occupied by these particular
embeddings can be overlayed, including edges as well as vertices.

For many purposes, strict geometric congruence is too restric-
tive. For example, if edges are displaced a little, the net remains for
most purposes essentially unchanged. However, if edge displace-
ments are so large that edges are forced to pass through each other
during bending, their mutual threading in the structure changes,
even while their topology remains unchanged. To account for the
possibility of various entanglements, a second form of structural
equivalence e more restrictive than topology but less so than
geometry e is worth considering.

This intermediate taxonomy of nets e somewhere between
topology and geometry e recognises that among all topologically
equivalent structures, various entanglements are possible. How do
we classify these? The situation is strongly reminiscent of knots,
where it can be very difficult (if not impossible) to decide of if two
windings are equivalently knotted. If they can be morphed into
each other without edges having to pass through each other, they
are demonstrably equivalent knottings. Mathematicians refer to
embeddings that are equivalent within an arbitrary spatial rear-
rangement of the vertices and edges that are not change the
crossings as lying within the same ambient isotopy class.

All structures that can be morphed into each other without
edges crossing through each other en route are (in our terminology)
equivalent isotopes. Just as it is generally difficult to decide whether
two tangled loops of string are essentially the same knot, it is
a challenging question to decide if two graph or net isotopes are
equivalent. Some simple questions that emerge when thinking
about this problem:

! When is a net tangled?
! Are tangled nets necessarily knotted?
! Are knotted nets necessarily tangled?

In this paper, we will discuss some introductory observations
concerning those issues; they are by nomeans conclusive, but show
that the topic is a rich one, worth serious thought.

Fig. 1. Six distinct embeddings of K4, the graph of edges of the tetrahedron. All are topologically equivalent, yet all differ in the mutual weaving of edges. (a) is the usual untangled
tetrahedral embedding, (bef) are tangled. (bee) contain knots and/or links and are therefore also knotted, whereas (f) is unknotted. We call these distinctly tangled embeddings
distinct isotopes of K4.
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3. Tangled frameworks: playing with ambient isotopy

To explore these questions, it is helpful to think first of the
analogous e and we shall see, simpler e question of a taxonomy of
knots. Knot theory has undergone a resurgence in recent decades
driven by the power of the Jones polynomial and related poly-
nomials that offer powerful algebraic tools for distinguishing
different knots and links (i.e. distinct isotopes of a simple loop, or
multiple loops). This knot invariant approach hopes to provide
a characteristic equation of knots, thereby rendering the issue of
knot taxonomy to one of algebra.

More recently, an alternative approach has been explored, that
appeals immediately to geometry rather than algebra. This
approach seeks to find a canonical embedding for each isotope. If
such a route could be found, and if that embedding were unique,
the difficult algebraic question as to whether a pair of knots are the
same isotope or not is answered by relaxing each knot to a canon-
ical form and then checking if they are geometrically equivalent or
not. This geometric approach is attractive (though, like the alge-
braic route, it remains incomplete).

In fact, if we are looking only to distinguish different net topol-
ogies (rather than isotopes of the same net topology), the geometric
approach is powerful and easily implemented. A simple route is to
form a canonical “equilibrium placement” [7]. This placement is
described bycrystallographic coordinates for the vertices, which are
then joined by straight edges. The coordinates are precisely those
formed by barycentric placement, where each vertex is at the centre
of mass of its immediate neighbouring vertices (one edge distant).
We can give that abstract crystallographic placement an explicit
spatial geometry by choosing a unit cell size and shape, and locating
the vertices at cartesian coordinates corresponding to the crystal
coordinates. The resulting net whose embedding is that due to
equilibrium placement (described in [7]), is unique and therefore
affords a canonical geometrisation for a given net topology. In some
cases, the algorithm produces ‘collisions’ where edges of the systre
net can cross through each other.

Note, however, that the equilibrium placement approach does not
give a canonical geometry for isotopes, since distinct isotopes of the
same topology will all relax to the same net. However, we will make
the case in this paper that equilibrium placement also offers a conve-
nient tool for determining an untangled isotope of a graph or net.

4. Baby steps towards quantification of entanglement

4.1. Knots in untangled frameworks

A natural starting point in any investigation of tangled graphs
and nets is the domain of knots. However, all (three-periodic) nets

contain knots and links in profusion. Look for example at the net
that arises by tiling space with face-sharing cubes, whose edges
form a simple-cubic net, shown in Fig. 2 (called, in the jargon of
O’Keeffe’s three-letter codes for nets, pcu [6]).

This embedding must surely be characterised as the untangled
isotope among all nets with the same topology as pcu. Indeed, the
barycentric embedding of the pcu topology gives this embedding.
Notice that the smallest cycles in the graph e the four-sided rings
surrounding cube faces e are unthreaded. However, generic closed
loops in the pcu net give various knots. For example, a 24-edge cycle
in the pcu net is sufficiently large to form the trefoil, the simplest
knot. An example of a cycle that gives the 41 knot is shown in Fig. 2,
adapted from [8].

The possibility of knots in untangled nets is unsurprising, given
the arbitrarily large cycles than can be traced in nets. A less evident
possibility is the following. Some graphs and nets contain knots and
or links formed by their shortest cycles. For example, Conway et al.
showed that all possible embeddings of the complete graph with 6
vertices (K6) in three-space necessarily contains interlinked loops
among the set of triangular cycles [9]. An example is shown in Fig. 3
(b). It is therefore useless to attempt to define untangled isotopes of
nets as those free of knots or links.

The unavoidable threading seen in K6 is also found in infinite
nets. That observation is, in isolation, uninteresting, but are those
links formed by smallest cycles in the nets? Are all these cycles
unknotted and unlinked in an untangled net? Clearly, the answer is
yes in some cases (e.g. pcu, cf. Fig. 2). But in other casese analogous
to the situation of K6 e this requirement cannot be satisfied.
Intriguingly, this situation arises for example in the high-pressure
polymorph of silica, coesite (or, in the nomenclature of [6], coe),
shown in Fig. 3. The smallest cycles (or “strong rings” [10]) of the
coesite framework form links that cannot be unthreaded, nomatter

Fig. 2. An examples of a knot within the untangled embedding of the pcu net: the four-
crossing figure-of-eight (41) knot.

Fig. 3. (a) Planar drawing of the complete graph, K6, with vertices marked by red dots. (b) One 3D spatial embedding of this graph with the six vertices located as in an octahedron;
red and blue cycles are threaded. Any spatial embedding of this graph results in a link [9]. (c) A barycentric embedding of the coesite net, with linked strong rings highlighted as red
and blue cycles (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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how the edges are rethreaded in the network. It is likely that
knotting in this case is induced by the high density of the net.

So we are faced with a potential dilemma in defining the
untangled state of the coe net. Either all isotopes of the coesite net
topology are classified as tangled due to the presence of these links,
or we choose a specific isotope among all those isotopes topolog-
ically equivalent to coesite as the untangled embedding. In our
view, the latter is a better choice. However, we must then accept
that entanglement is a distinct entity to knottedness. In particular
the coesite example shows that untangled nets can nevertheless
contain knotted or linked cycles, even among their shortest cycles,
defined by the strong rings of the net.

4.2. Tangled but unknotted nets

Stranger still, we can find examples of tangled nets, whose
shortest loops are all unknotted. In a recent paper, we called this
mode of entanglement a ravel [11] (These have also been discussed
in the mathematical literature, and the earliest report known to us
is by Kinoshita [12]. Other authors have called these patterns
‘almost unknotted’ graphs [13]). Ravelled nets can be totally free of
knots, but they cannot be classified as untangled. A simple example
can be formed in the complete graph with four vertices (K4). Surely
the untangled isotope of K4 is that formed by the edges of the usual
tetrahedron. So the ravelled isotope of K4 shown in Fig. 1(f) is
necessarily tangled. But all cycles in this isotope are themselves
unknotted, as shown in Fig. 4.

We can think of the K4 graph as a branched knot, and that
branching (induced by the degree-three vertices) evidently
complicates the problem of entanglement to a level beyond that
found in knots (which, by definition, are tangled isotopes of vertex-
free loops). This idea can be generalised; for example, a suite of
tangled symmetric patterns for branched vertices of degree 2, 3 and
4 are illustrated in Fig. 5(bed). These patterns are nothing more
than branched cinquefoil (five-crossing) knots Fig. 5(a). Knotted or
unknotted cycles result from these patterns, depending on how the
loose ends are connected, as shown in Fig. 5(eeg). Knots (such as
the cinquefoil) then, are merely the simplest possible mode of
entanglement of a graph or net. But they are neither necessary nor
sufficient for a net to be tangled or untangled!

Related tangles are easily formed from these examples, such as
the tangle shown in Fig. 6(a). This ravel e while tangled e has no
knotted cycles (and is called a universal ravel [11]). It can therefore
be inserted into an unknotted net (thereby tangling the net)
without adding knots, by replacing a star of edges radiating from
a single vertex by the ravel, as in Fig. 6(b). The resulting net is knot-
free (Fig. 6(c,d)). It is also link-free (since links are defined only for
disjoint cycles). Note, however, that if shortest cycles spanning all
angles in the net are included, a pair of cycles, sharing a common
vertex, are threaded (Fig. 6(e)).

The detection of tangled nets is therefore a complex problem.
Significant progress has been made in numerical detection of knots
and links in structures, prompted by Proserpio et al.’s observations
on entangled MOFs. In particular, Blatov has authored the TOPOS

Fig. 4. Distinct cycles in the ravelled tetrahedron of Fig. 1(f), highlighted in red. (All other loops in the figure are related by the three-fold symmetry of the ravel to one of these two
loops.) None of these cycles is knotted (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 5. (a) The cinquefoil knot, a five-crossing knot. (bed) Sequence of analogous tangles of increasing vertex-degree. (b) is an identical isotope to the cinquefoil, while (ced) show
related tangles formed by forming 3- and 4-fold rotationally symmetric patterns from the 2-fold pattern. (e) If any pair of adjacent loose ends in the 3-, 4- .-fold tangles are joined
(such as the ends at B and C in (c)), a trefoil knot results. (f) The trefoil knot. (g) If next-to-adjacent loose ends are joined (e.g. B and D of (d)), the pattern is knot-free, yet tangled. We
call this latter feature a “ravel”, cf. [11].
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software package, for detection of these entanglement modes in
nets [14]. This approach is an excellent start to this problem, but
current versions, which rely on numerical detection of threading of
disjoint loops, fail to detect ravels.

An open question emerges from the observation that ravels
allow entanglement without the presence of knots or links: namely,
are there yet more entanglement modes that are both ravel- and
knot-free? Indeed is there an infinite hierarchy of entanglements,
of which knots (tangled loops) and ravels (tangled vertices) are the
simplest? If the answer is affirmative, we remain a long way distant
from understanding of tangling in nets, let alone possible classifi-
cation of tangles in nets.

4.3. A tentative definition of the untangled isotope for a given net
topology

Though the choice of the untangled ‘ground state’ isotope for
a graph or a net is arbitrary, it would be helpful to arrive at a defi-
nition that produces the ‘usual’ isotopes of well-known graphs or
nets. The exercise is, however, less clear cut than the choice of the
untangled knot (or unknot), which is clearly a simple uncrossed
loop. The previous examples show that any attempt to align the
notion of an untangled net with the presence of knots and or links
is flawed, since entanglement can occur in the absence of knots,
and knots can occur in the absence of entanglement. Of course, all
such discussion is predicated on a firm understanding of what
constitutes entanglement.

A graph, with a finite number of vertices, is fundamentally
distinct from a (three-periodic) net, due to the unboundedness of
the nets. Wemay hope to reduce the study of nets to that of graphs,
via (for example) the concept of ‘quotient graphs’, introduced by
Chung et al. [15]. This construction is analogous to the reduction of
an infinite crystal to a single unit cell, coupled with periodic
boundary conditions. While this approach is useful for under-
standing the topologies of nets, it cannot encode the threading of
loops in nets faithfully, since loops may extend beyond a single unit
cell of the net. Further, the ‘gluing’ of vertices separated by a lattice
vector implicit in the quotient method introduces spurious cycles.
In other words, the quotient graph is a very different isotope to the
original three-periodic net. This difficulty with (infinite) nets places
them in a distinct category to (finite) graphs; we deal with the
characterisation of their untangled isotopes separately below.

4.4. Untangled isotopes of planar and polyhedral graphs

The definition of an untangled isotope for some classes of graphs
is clear. For example, planar graphs can be drawn on the page
without edge crossings. Since this drawing can be seen as (e.g.
stereographic) projection from the sphere onto the plane, they also
reticulate the sphere. Therefore polyhedral graphs, which are
simple, planar and 3-connected e such as the graph of edges of
polyhedra e lie in the sphere. (“3-connected” graphs are those that
cannot be split into multiple disjoint graphs by removal of less than
3 vertices and accompanying edges. It does not refer to the number
of edges incident to a vertex, that we call here the vertex “degree”.)
Further, Whitney proved that there is only one way to embed a 3-
connected planar graph in the plane or sphere, so the isotope of any
polyhedral graph that lies on the sphere is unique [16].

Topologists speak of the “minimal genus embedding” of a graph,
that is the lowest genus surface (strictly, a 2-cell embedding of an
oriented 2-manifold) which can be reticulated by the graph,
without edge crossings (for details, see, for example, [17]) (This is
also sometimes referred to as the “graph genus” or the “cyclomatic
number” of the graph). Thus, the minimal genus of polyhedral
graphs for example is zero, and if an isotope of a polyhedral graph
cannot be embedded in a sphere, it is tangled. Indeed, we have used
this as a guide to enumerating tangled polyhedral graphs: we
assume that the simplest tangled isotopes reticulate the (genus-
one) torus rather than the (genus zero) sphere [18,19].

This topological criterion is our preferred starting point for
understanding tangled graphs. So what of more general graphs? It
is reasonable to demand that an untangled isotope of a particular
graph reticulate a surface whose genus is the minimal genus of the
graph; conversely if an isotope can only be embedded in a surface
of higher genus than the minimal genus it is necessarily tangled.

Consider, for example, the complete graph with six vertices, K6,
shown in Fig. 3. This cannot reticulate the sphere, therefore an
untangled isotope of K6 will exhibit more threading than untangled
isotopes of polyhedral graphs. There are four distinct ways of
reticulating the torus to form K6 [20], so the untangled isotope of K6
is among these examples. In fact, it turns out that all of these
‘toroidal isotopes’ are equivalent, even though they reticulate the
torus in distinct ways. The spatial embeddings that result from
these four torus embeddings e assuming the usual donut-shaped
embedding of the torus in space e can be deformed into each other

Fig. 6. (a) A universal ravel. (bec) Connection of any pairs of dangling ends gives an unknotted loop. (d) This example does contain threaded cycles, sharing a common vertex.
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without forcing edges to pass through each other. Therefore all four
toroidal embeddings yield the same isotope in 3D space. Since the
torus is the lowest genus orientable manifold that can be reticu-
lated by K6 without crossings on the surface, this isotope qualifies
as the untangled isotope of K6. A view of this isotope is shown in
Fig. 7. Indeed, this isotope is partially threaded: it contains a single
(Hopf) link between disjoint triangular rings, shown in Fig. 7.
Despite this unavoidable threading, the untangled K6 isotope is less
threaded than tangled counterparts. For example, the isotope
shown in Fig. 3 contains a number of (Hopf) links, illustrated in
Fig. 7.

This minimal genus criterion is necessary, but may be insuffi-
cient to characterise the untangled isotope, since there may be
a number of isotopes that share this sameminimal genus surface. In
contrast to the K6 example, in general the various reticulations of
minimal genus 2D manifolds of a graph will result in distinct
isotopes in 3D space. A further step is then necessary to isolate the
untangled isotope. We propose a geometric approach to choose an
untangled isotope in these cases. Consider first the situation where
the relevant minimal genus embedding is the torus. In those cases,
the various reticulations on the torus by the graph can be lifted to
a simple two-dimensional euclidean net by mapping the reticula-
tion onto its universal cover. This step amounts to an unfolding of the
torus into the plane to form a single 2D unit cell. The complete
universal cover is a infinite 2D crystalline pattern, where each unit
cell of the 2D net corresponds to a single copy of the antecedent
torus (The universal cover is described in many texts, e.g. [21]). The
manner inwhich edges of the net decorate the torus are encoded in

the universal cover via their directions with respect to the pair of
lattice vectors defining the unit cell, inmuch the samewayas a helix
winding a cylinder can be indexed according to its pitch relative to
the cylinder axis, or equator. Thus, heavily wound edges on a torus
have high indices. This means that the edge lengths in the universal
cover e for a normalised cell area e are a gauge of the degree of
winding of the edges. Alternatively, if the average edge length is
normalised (to one, say), the area of the unit cell varies inversely
with the degree of winding of edges. Therefore, large unit cell area
imply simpler entanglements. Of course, there are many degrees of
freedom in this universal cover, corresponding to themany possible
tori. Among those possibilities, we choose a cell that has largest area
consistent with (i) barycentric embeddings (i.e. 2D equilibrium
placement) and (ii) average edge length of one. Barycentric coor-
dinates are optimal for our purposes, since these lead to minimal
squares of the edge lengths compared with any other embedding
with the same topology as those of the universal covers [7].

This prescription is precisely that used by the Systre software for
finding canonical embeddings for 3D and 3D nets, making this
calculation straightforward in cases where the minimal genus of
the graph is one [7,22]. For example, consider the four distinct
reticulations of K6 on the torus [20]. These reticulations lift to
universal covers whose barycentric embeddings are shown in Fig. 8
(Recall that this calculation in technically unnecessary in this case,
as all four reticulations give the same isotope. We show this
example here to illustrate the technique only). Barycentric
embeddings of the universal covers result in unit cells with four
and six vertices for these examples. To compare the area of each

Fig. 7. Top left and middle: Two views of the untangled isotope of K6. Top right: This isotope contains a single Hopf link formed by a pair of the triangular cycles in the net. Bottom:
Three distinct Hopf links formed by pairs of triangular cycles in a tangled isotope of K6.

Fig. 8. Barycentric embeddings of the four toroidal reticulation of the K6 graph. The unit cell of the first pattern contains four vertices (an artifact of the analysis that for convenience
treats all vertices as alike, a single copy of the graph contains six distinct vertices).
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domain corresponding to a single torus, we scale the area to
accommodate the six vertices in K6, resulting in the normalised
areas listed in Table 1. These areas are those of largest (flat) tori
whose reticulations have average edge lengths of one. Since
embedding 2 has the largest area in the universal cover corre-
sponding to a single copy of K6 in the torus, this is the best candi-
date for the untangled isotope according to the working definition
proposed above.

With this prescription, the determination of the untangled
isotope for genus-one cases is straightforward.

4.5. Untangled isotopes of higher genus graphs

In principle, a similar approach is feasible for higher genus
graphs also. However, once the minimal genus exceeds one, the
universal cover lies in the hyperbolic rather than the euclidean
plane. A numerical algorithm to form barycentric 2D hyperbolic
patterns has yet to be developed, though we see no conceptual
obstacle to extending the euclidean process to hyperbolic space.

4.6. Untangled isotopes of 3D nets

If the graph is infinite, such as periodic (3D) nets, the approach
described above fails, since a single copy of the net in its universal
cover has infinite area in the hyperbolic plane. Simplification of the
net to a finite graph, such as the quotient graph, also fails to capture
the essential features of the isotope, for reasons outlined in Section
4.3 above. We propose a slightly different algorithm for the deter-
mination of the untangled isotopes of nets, but one that again calls
on equilibrium placement. In this case however, the calculation is
done in 3D euclidean space, rather than within the space contain-
ing the universal cover of the 2D reticulation. Ironically, the situa-
tion is more straightforward for infinite nets than for finite graphs!
The prescription for nets is simple: the untangled isotope is

equivalent to that formed by the barycentric embedding in 3D
euclidean space. Though this abstract placement is not a metric
embedding of the net, imposition of any metric (i.e. unit cell
vectors) will result in the same isotope. Therefore, we define the
untangled isotope of a (collision-free) net to be that given by
equilibrium placement. Conversely, distinct isotopes of the net,
with different edge crossings, are tangled.

This working definition of an untangled net shares some feature
of the unknot. In particular, it has an isoperimetric property that is
reminiscent of the unknotted loop: it minimises the squares of edge
lengths for a fixed cell volume [7]. This observation was noted
earlier: Delgado Friedrichs and O’Keeffe remarked that barycentric
embeddings are appealing in that they avoid “unnecessary entan-
glements” [7].

We note that this definition fails for nets whose equilibrium
placement results in vertex collisions. That remains an open
problem. Indeed, it appears to be likely that net topologies with
collisionsmay havemore than a single untangled isotope under any
reasonable definition of the untangled isotope.

The algorithms presented here for untangled isotopes are
explicitly geometric, and hence constructive. We find this a distinct
attraction of the approach, but we do not claim that the issue is now
firmly resolved. It is worth pointing out here that at least one other
definition has been proposed, namely that untangled isotopes are
characterised by minimal crossing number, averaged over of all
possible planar drawings of the graph [13]. In the case of polyhedral
graphs, this criterion very likely coincides with that of minimal
genus. For more complex graphs, we prefer to generalise the
concept of a 2-manifold reticulation, and define the unknotted
isotope to be that which reticulates a manifold of simplest topology
(lowest genus) and largest cell volume in the universal cover. Does
this isotope afford the minimal crossing number? We do not yet
know.

5. Tangled materials

5.1. Metal-coordination polymers, DNA assemblies and mesoporous
materials

This topic is a very attractive and rich one at a theoretical level,
but is it of any interest to the materials chemist? The recognition of
tangled motifs in actual materials is recent, and to date is largely
confined to some examples of MOF’s, as described in Section 2. That
tangled patterns are formed in thesematerials, whose net edges are

Table 1
Unit cell dimensions for barycentric embeddings of the four toroidal reticulations of
K6 shown in Fig. 8 with average edge lengths set to unity.

Pattern a b g # of
vertices

Normalised area

(a) 3.50126 1.11084 90 4 5.8340
(b) 2.78924 2.78924 120 6 6.7376
(c) 3.03554 2.71614 45.45 6 5.8709
(d) 2.72667 4.59082 90 6 6.2588

Fig. 9. (a) A toroidal “wreath” isotope of the cube graph. Vertices have been displaced from those of the usual (untangled) cube to reduce the edge crossings and to highlight the
chirality of the isotope. Assembly of these tangled cubes into a simple-cubic lattice gives a tangled and chiral pcu net (cf. Fig. 2). Figure adapted from [18].
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polymeric ligands, is unsurprising. In our view, it is certain to recur
in materials whose ligands are extended and flexible. Though we
have seen above that entanglement is a more general phenomenon
than knotting, it is known that polymer chains exhibit an increasing
tendency to knot as their length grows [23]. Therefore graphs
whose edges are polymer chains are also likely to be entangled if
the edges of the graph are sufficiently long compared with the
characteristic length of the polymer.

A promising class of network materials are those built by self-
assembly of DNA strands, pioneered by Seeman (see, for example,
[24]). These materials afford very efficient yields of prescribed
topologies, due to the specific recognition of complementary base
pairs of DNA. Both extended networks and polyhedral graphs have
been synthesised from strands of DNA [25e27]. Though DNA is
a relatively stiff polymer, it can readily form knots, provided the
strands are sufficiently long [28,29]. Assembly of tangled graphs
and nets is therefore likely once the edges are sufficiently long.

Indeed, Hanadi Sleiman has confirmed that assembly of poly-
hedral graphs results in a 100% yield of the desired (untangled)
pattern, except for larger molecular weight ligands [30]. It is likely
that the less-than-perfect yield for larger polyhedral structures is
due to the formation of tangled polyhedral graphs, whose simpler
representatives are the toroidal examples discussed elsewhere
[18,31]. A similar phenomenon is likely to be found also in extended
framework nets constructed from longer strands of DNA.

While the potential for synthesis of tangled patterns may seem
a nuisance, they offer interesting possibilities for downstream
materials. One obvious feature of tangled structures is their relative
compact volume compared with their untangled counterparts.
Thus, if entanglement can be encoded into the channel structure of
catalytic or storage materials, entanglement offers an elegant
solution to the search for high internal surface or free volume.

A further characteristic of the simpler tangled patterns formed
by polyhedral graphs make this a potentially useful complication:
chirality. Recall that the simplest tangles of polyhedral graphs are
those that reticulate the torus; these are the least tangled patterns.
It is therefore feasible that these can be deliberately targeted using
DNA edges of suitable length. We have shown recently that these
toroidal isotopes of polyhedral graphs are e without exception e
structurally chiral, so that they are either right- or left-handed by
virtue of their entanglement [19] (This chirality is at the supra-
molecular scale, and independent of the presence of chiral helical
motifs in DNA). Similarly, assembly of these tangled units into
extended nets can readily give chiral nets. An example is shown in
Fig. 9.

So can these graph-like and net-like patterns be cast into harder
materials such as mesoporous solids? The “transcription” of DNA
structures into hard siliceous materials is chemically feasible and
nowdemonstrated for isolated DNA helices. It was first proposed by
Corkery [32] and later proven experimentally by Che et al. [33,34].
We therefore forsee the interesting possibility of marrying the
rapidly developing field of DNA materials with hard inorganic
meso-materials. We propose to combine that possibility with the

developing understanding of tangled patterns that can be achieved
in the presence of long strands of DNA (or other polymeric
frameworks, such as MOF’s) and the novel area of “tangled mate-
rials” is within sight.
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