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Hamiltonian-versus-energy diagrams in soliton theory
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Parametric curves featuring Hamiltonian versus energy are useful in the theory of solitons in conservative
nonintegrable systems with local nonlinearities. These curves can be constructed in various ways. We show
here that it is possible to find the Hamiltonié) and energyQ) for solitons of non-Kerr-law media with local
nonlinearities without specific knowledge of the functional form of the soliton itself. More importantly, we
show that the stability criterion for solitons can be formulated in termbl @ihd Q only. This allows us to
derive all the essential properties of solitons based only on the concavity of the ldurgeQ. We give
examples of these curves for various nonlinearity laws and show that they confirm the general principle. We
also show that solitons of an unstable branch can transform into solitons of a stable branch by emitting small
amplitude waves. As a result, we show that simple dynamics like the transformation of a soliton of an unstable
branch into a soliton of a stable branch can also be predicted from HR® diagram.
[S1063-651%99)09805-0

PACS numbg(s): 42.65-k, 47.20.Ky, 47.27.Te

[. INTRODUCTION We believe that the first example of their application was
presented if16]. KusmartseVf17] was the first person to

The Hamiltonian(H) is one of the fundamental notions in understand the importance of projecting curves on the plane
mechanicg1] and more generally in the theory of conserva-of conserved quantities. He applied catastrophe theory and a
tive dynamical systems with a finit@r even infinit¢ num-  mapping technique to represent soliton families with dia-
ber of degrees of freedom. The Hamiltonian formalism hagrams and to show that the critical points on these diagrams
turned out to be one of the most universal in the theory ofdefine the bifurcations where the soliton stability changes.
integrable systemi8] and nonlinear waves in genefdl]. In  However, the qualitative analysis in the work has been sim-
the case of nonintegrable systems, the Hamiltonian existglified and it missed some important details. In particular, for
whenever the system is conservative, and it is useful foinfinite-dimensional systems, the parametrization of wave
stability analysig4,5]. It turns out that the most useful ap- packets using two parameters @ndk in [17]) is valid only
proach in soliton theory of conservative nonintegrablein the close vicinity of stationary solutions where the Hamil-
Hamiltonian systems is a representation on the plane of corionian has an extremum. For more general solutions and for
served quantities: Hamiltonian versus enef§y. A three- the evolution of a wave packet from an arbitrary initial con-
dimensional(3D) plot (Hamiltonian-energy-momentunis  dition, the use of the above parameters may fail. On the other
useful when dealing with two-parameter families of solutionshand, at the extremal points, more definite parametrization is
[7]. needed.

Recently, Hamiltonian-versus-energy curves have been In this work, we use a direct approach to analyze the
used effectively to study families of solitons and their prop-H(Q) soliton curves and, additionally, we enhance the con-
erties, viz., range of existence, stability, and general dynameept with a stability theorem. We believe that this theorem
ics. Specific problems considered up to now include scalaturns the employment dfl(Q) curves into a powerful tool
solitons in non-Kerr medig6], vector solitons in birefringent for analyzing soliton solutions, their stability, and their dy-
waveguided 8], radiation phenomena from unstable soliton namics.
branches[9], optical couplers[10], general principles of Usually the Hamiltonian and energy for solitons of non-
coupled nonlinear Schdinger equation§11,12, parametric  Kerr media are found by substituting the explicit soliton
solitons in gquadratic medifl3], and the theory of Bose- form into the appropriate integrals. However, the explicit
Einstein condensatesl4]. Moreover, Hamiltonian-versus- forms are not always available, and furthermore, not always
energy curves are useful not only for studying single-solitomecessary. Sometimes, it is sufficient to know that the fun-
solutions, but also for analyzing the stability of bound stateslamental soliton can be represented as a single-peak function
(when they exist[15]. Other examples could be mentioned which decreases to zero at infinity. Then the important prop-
as well. erties of solitons—range of existence, stability, and simple

In most publications, soliton families have been studieddynamics—can be predicted from our analysis. In particular,
using plots of energy versus propagation constant. Thesa this paper, we prove a theorem which relates the concavity
curves allow the soliton families to be presented graphicallyof the H-Q curves to the stability of the solitons. We con-
and, moreover, allow predictions of their stability properties.sider several examples of local nonlinearities and apply the
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general principles to these media. The main advantages @fhereK= [ _F(I)dt. The point now is that we can convert
our approach are its simplicity, clarity, and the fact that itfrom integrals in the time domain-{»<t<w) to integrals
provides the possibility of predicting simple dynamics of in terms of the intensity (& 1<, wherel ,, is the maximum

evolution for solitons on unstable branches. pulse intensity. We suppose that the soliton profile is a
single maximum solution of Eq1) with no nodes. In other
Il. ANALYSIS words, we deal with the fundamental nonlinear “mode” of

. Y Eg. (1). We then do not need to solve the modified NLSE
For simplicity, we consider in this paper only scalar waveeypiicitly. We use the fact that

fields (t,£). The nonlinear Schainger equationNLSE)
for a general nonlinearity law ig1—6] di

a=2fft=—2\/l—\/2(qI—F) 7

1
i e+ = e+ N(|¢]?) p=0. 1
et 5 v (191w @ (t>0) to obtain

In the case of temporal solitonsjs the retarded time vari- | dl 1 d
able [while in the case of spatial (11)D solitons,t is a Q\/ﬁzf m—=|m —y'
transverse spatial coordindte is the longitudinal distance, 0 y1-J(1) 0 v1-=J(1ny)
andN is the nonlinearity law. It indicates that the change in

refractive index depends on the local intensity. Localizedwhere we have defined(l)=F(l)/gl and introduced the

®

solutions satisfy the ansatz change of variabley=1/1, for convenience. We note that
_ J(I»)=1, so that the conditiod(l)<1 determines the ex-
P(t,§)=f(t)expiqé), (2)  istence regime of soliton solutions. Furthermore,
where f(t) is a real field profile, and) is the propagation \F Im J(1)dI
constant. K\/== f —_— 9
The total energy associated with an arbitrary solution, a4 Jo y1-J()
#(1,8), is

ThenQq—K simplifies toS/\/2, where

Q= ) | dt, () Im .
f_m S= Jafo \/1—J(I)dI=Im\/ajo V1=J(Imy)dy.

where the intensity i$=|y|2= f2. Strictly speaking, in spa- (10

tial problems,Q is the power or power flow. In problems

related to pulse propagation in optical fibers, wheis re-  Finally

garded as a retarded tim@, is the total pulse energy. For

simplicity, we refer toQ as energy throughout this work, H=\25-qQ. (12)
keeping in mind the above remark. For localized solutions

[Eq. (2)], Qs finite and it is one of the conserved quantities This expression will be used here to calculateversusQ

of Eq. (1). curves explicitly. It is easy to show that in the case of a Kerr

Similarly, the Hamiltonian is another conserved quantity:medium

Hzﬁm Sfe-F(hdt, (4 HQ)=-27- (12)
with F given by lll. STABILITY THEOREM

L One of the advantages of usihtyQ curves is that they
F(|):f0N(| )dl”. can predict the stability of solitons. It is apparent that, if
there is more than one branch at a giv@nthen the lowest

The Hamiltonian plays a major role in the dynamics of thePranch (i.e., the one with the minimum Hamiltoniaris

infinite-dimensional system. Namely, stationary solutions ofStaPle. This conclusion follows directly from the nature of
Eq. (1) can be derived from the Hamiltonian using the varia-the Hamiltonian and does not need a special proof. However,
tional principle SH=0. we will show that the stability condition can.take. a more
Now, substituting Eq.(2) into Eq. (1) and integrating direct form. We now prove a useful theorem in this regard.
once. we have For solitons in media with local nonlinearities, we have, us-
' ing the equations in Sec. I,
f2=2(ql—F). 5
1=2(q1=F) 5 ds 1

—=—(S+Ky2). 13
Using Eqgs.(4) and(5), it is easy to show that dqg 2q( \/—) (13

H=9Q—-2K, (6) Hence
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dH dQ

dg~ ddq-

(19 °7

-10
Then it follows that
=20

dH
E =-—q. (15) T -30
-40
If we start atg=0 and traverse the curve so thgis increas-
ing, then the magnitude of the slope always increases. Fur- _50
thermore,
-60
2 _
d°H — 1 . (16) FIG. 1. Hamiltonian versus energy for power-law nonlinearity
dQ? dQ/dq for various values of the parameter
The denominator on the right-hand side defines the stability b-2
of the lowest-order modggundamental solitong4,19-23. H(q,Q)= bt+2 qQ. (19)

Now we can see that stability is directly related to the con-
cavity of the H-versusQ curve. Namely, the solitons with We define
H”(Q)<0 are stable while those withl”(Q)>0 are un-

stable. ) \/E bT'(1ho+1/2) |7 2
Another consequence of E(L4) is that c(b) 7 (14 b) T (1) . (20
dH dQ : : S
—=0=-——=0 or g=0. (17)  Wwherel' is the gamma function. TheQ is given by
dg dg
q @ o
Thus if Q has a stationary point, then so ddé¢sForq>0, Q= c(b) (21
this produces a cusp on th&Q diagram. However, we can
havedH/dq=0 with =0 anddQ/dqg#0. This produces a and
rounded maximum on the-vs-Q plot and not a cusp. )
Clearly, from Eq.(14), if we haveq>0, thenH decreases -2 _
asQ increases, meaning thdH/dQ< 0. On the other hand, H(Q):C(b)b+—2Q(2+b)/(2 ?, (22)
if g<O0 is allowable, therH and Q have the same slope, so
thatdH/dQ>0. Thus, theH-versusQ curve can be calculated without any
Thus, we can conclude the following, for the lowest-orderknowledge of the soliton profile itself. The curve4Q) are
modes. shown in Fig. 1 for several values of the paramétewhen
(1) Solitons withH”(Q)<0 are stable while those with b=1 (Kerr medium, thenc(b)=1/8 andH(Q) = —Q%/24,
H”(Q)>0 are unstable. in agreement with Eq(12).
(2) Stability changes only at cusps. Let us consider stability. The derivative,
This criterion for stability can be more general than
dQ/dg>0, because it involves only conserved quantities dH 2b/(2—b) _
: o . s e —=—c(b)Q =—q, (23
which always exist in conservative systems; this is in con- dQ
trast toq, which may not be defined uniquely. This is an
important theorem and we illustrate its application in severahs required, and
of the following examples. Moreover, we also consider what
happens to unstable solitons if they are excited in the system. dZ_H: B 2bc(b) QUEb-2/C-B _ _ 1
d@?  (27D) Q'(a)

IV. EXAMPLES

Solitons in these media are always stable. Note that when

0<b<2, these functions are single valued, so that all soli-
This nonlinearity has been studied in relation to the selftons of the family are stable ard’(Q) is always negative.

focusing singularity{18]. HereN=1°, with b>0, so that)  Thus the curve is always concadewn The latter fact is

=(I/1,)". Usually, we havéo<2 so that the solitons do not important when considering inelastic interactions between

A. Power-law nonlinearity

collapse(in the one-dimensional caselhen solitons[15].
Clearly,b=2 represents the borderline case between the
_ bQ\/Eq (18) concave downwards curveb<2) and the concave upwards
b+2 °’ curves p>2). In fact, forb=2 the curves reduce to a single

point (Q=+3/27w/2~1.924,H=0), and this is indepen-
and dent ofqg. In this case, the exponential growth rate coefficient
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is zero and the stabilitylinear growth would have to be
considered separately, as there is no concept of concavity for
a single point.

Although the actual field profile has not been used, for the
sake of completeness, we give it here:

f(t)=[q(1+b)]¥®sechH®(b2qt)]. (24) "
If we setb=1, then we obtain e
f(t)=v2qsecti\2qt), (25)
which is the well-known Kerr-law soliton. -10

B. Log-law nonlinearity

Nonlinearity models involving logarithm-type laws allow o o
us to find a multiplicity of exact solutions of E(L) [24,25. FIG. 2. Hamiltonian versus energy for the logarithmic-law non-
Nevertheless, these models remain generally nonlntegrab@eamy model of this section for various values of the parameters
in the sense that the inverse scattering technique cannot 5"
applied to them. In this case, we choose the moiel
=In(b®¥=aln(b?), where a>0, so thatl,=b 2exp(1
+g/a). Then For an arbitrary functiomN(1), the first two terms in the
Taylor series giveN=I+ vI2. This nonlinearity can be ob-
(26) tained by using two separate dopaf6]. This model gives

aQ
E’ J(H=(1/9)(3+v1/3). Let us consider separately the two
opposite signs ob.

C. Cubic-quintic nonlinearity law

and
1. v positive case

H(Q.Q)=(a=-q)Q, @7 Now »>0, so it is convenient to definee=4+vq/3

while Q is Q=I,,y@/(2a), which is proportional to =tan(A)(>0). Thus O<vq<c>. Then
exp@/a). Thus

0= 3(secA—1) (1 dy

2a B _

H(Q)=a0 2—In(b2Q /?” (28) av\2q JoJ1—y\1+ytark(A2)

The effect described in Sec. 1l shows up clearly with this =\ g arctara). (3D

log-law example. Here
Now, using Eq.(10) we find

dH p( )

an \/ 1+ (29)

dq dq Cap? s:%(sem—1)f1\/1—y\/1+ytanz(A/2)dy,
0

In this caseH has a maximum wheg=0, anddQ/dq is not (32
zero at this parameter value. Hence, Hh& plot features a
rounded maximungand not a cuspat this point, as is clear so that

from Fig. 2.

As seen in the figured H/dQ>0 for all values ofQ be- 3\/5
low the maximum inH (i.e., —»<q<0), while dH/dQ = 3/2[(1+az)arctama)—a]. (33
<0 for all values ofQ above the maximum i (i.e., q 32v
>0). Thus no cusps appear in this example. . . .

The slope of the curve of Eq28) is Finally, using Eq.(11) we obtain

H 3y6
E:a[l—ln(sz\/Za/w)]:—q (30 H(q)= 3Z\If;z[arctama)—a]. (34

so thatH"(Q)=—-1/Q’'(q)= —a/Q, which is always nega-
tive. Some examples are shown in Fig. 2. Note that the
Hamiltonian for these curves increases at low energies before

So, using Eq(14), we find

dH dQ J2q

decreasing at high energies. These curves are always con- e _g———_ (35)

. q .
cavedownfor any a, so the solitons are always stable. dqg dqg 1+ a?
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Thus, if >0, the slopedH’(q) and Q’(q) have opposite
signs, so that if eithe® or H is increasing then the other is
decreasing.

We can now giveH explicitly in terms ofQ:

3Q /2
Q16 " 3,97 r( )

Differentiating shows that

dH
dQ

(36)

6 tanz(Q\/Zv/ )= —

and

—(1+a?)gl2= ——
NI )

2. v negative case

Here v<0, so we letB=4.—vq/3=tanh@)(>0). Thus
0<B<1, so that solitons can exigbnly) within the range
— 2 <vg<0. Then

B 3(secr'B—1)J'l dy
 4v2q Joi—yJ1-ytanH(BR2)

3 /-3
= Earctanl(l B).

The energy result$Eqgs. (31) and (37)] agree with those
calculated using the field solutions in Sec. 4.5 @f
Now, again using Eq(10) we get

37)

S= ﬂ(sech— l)fl\/l—y\/l—ytanr?(B/Z)dy,
0

4y

(38)

so that this timeSis given by

3V3 ,
32v \/__V [(1—B%)arctankig) — B]. (39

From Eq.(11) we get
H( )—i arctankig) — (40
q - 321/\/—_1}[ B B]v

3V6

3Q t
32(—v)3?

HQ) =15,

[—2v
an?‘( Q T) . (41)

We note that Eq(41) agrees with Eq(4.30 in [6], with the

latter being derived in quite a different manner. Taking the
limit »—0 in Egs.(36) and(41) again produces the correct

Kerr-law limit, H=— Q%/24.
Curves plotted from Eq€36) and(41) are shown in Fig.

3. Whenv is positive, each curve has a maximum possible
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FIG. 3. Hamiltonian versus energy for cubic-quintic nonlinear-
ity for various values of the parameter

D. Higher-order polynomial law

A more general case of a Taylor expansion has been con-
sidered by Kaplaf27]. Here, we can, to some extent, gen-
eralize the preceding section by usiNg: | + v12+ y13. Thus

_|(1 vl 'ylz)
\](|)—a E+§+T .

Here |, is the first (positive root of 3yl +4vl2+6l,
—12q. This can be written in an explicit form.

Now 1—J(l,,y) is a cubic polynomial iry and it hasy
=1 as aroot. HenceJ(l ,y)=(1—y)(1+ay+by?). Ex-
panding shows thaa=1—1,/2q andb=yl3/4q. Then we
find

(42

(43

B fl dy
V2q)o Ji-y1+ay+by?’

which can be expressed in terms of an elligidunction,
and

1
s=|quf J1—y1+ay+by2dy, (44)
0

which can be written in terms of elliptie andII functions.

We can make a simplification by writinglay+ by?
=(1-r.y)(1—-roy) wherer,,r,=i[—a=*a’—4b]. Of
course,r, andr, may be complex, but if they are real they
cannot be greater than 1. Then

o I (2
_\ll_rz qry

In principle, this result may give bistable behavior of solitons
[27].

arcsir(\r;)

fo—ry
Ty(r—1))° 49

E. Saturable nonlinearity law
Here we use a nonlinearity model which has been consid-
ered in[28], viz.,

N=Kk[1—(1+1/y)7?], (46)

Q. Whenv is negative, there are no limits along either vari-
able. In both casesH”(Q)<0, so all these solitons are wherevy is the saturation parameter akds a constant. This
stable. nonlinearity does not allow explicit solutions fb¢t). How-
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FIG. 4. Hamiltonian versus energy for saturable nonlinearity for

three values of the parameter

ever,H(Q) curves can be calculated analytically using the
above formalism. We obtain simple results with our ap-

proach, as

12k

F J()

and ln=r——.

Then the integrals can be calculated analytically:

72 e }
Q_ 2\/§(k—q)3/2[2+k\/a k q C (47)

and
S= k —ZC)—d (48)
=Y 4H(7T q ’
where
c t{ k=29 (49)
=arctan ——|.
2\/6\/k—q

ThenH is found from Eq.(11), as before.

In general,Q increases withg while H decreases witlg.
Parametric plotgfor 0<q<k) are shown in Fig. 4. They
decrease monotonically for any positigeand are concave
down, implying stability.

F. Dual power-law nonlinearity

This nonlinearity is given byN=1°+»1?". When v is
positive, the refractive index increases monotonically with
Qualitative behavior oH(Q) curves is then similar to the
one considered in the preceding section. We consige0d,

where theN(l) dependence is not monotonic and we can

expect qualitatively new effects. We letB=2(1

+b)v—rg/(2b+1)=tanh@) (>0). Thus 0<B<1, so that

solitons can existonly) within the range

1+2b —yae0
I — 7 .
4(1+b)? g

Then
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I 1 1/b—1d
0= m y y , (50)
by2qJo V1—y\1-ytani(B/2)
where
1+ 2b)[sechiB)—1]]*®
_[@+20)[sectiB) 1) -
2v(1+Db)
so that

= V2qr(i+1p) \2'b'2 b'?)’

whereF is the hypergeometric function arm-tant?(B/2).
With the special casb=1, Q reduces to

_ \F 1.3\ \F =
Q=ln aF 5,1,5,2)—Im q—zarctanm z), (53

which reduces to the form @ given in the earlier section by
Eq. (37).
Now, again using Eq(10), we get

s |mb\/af1y1/b1\/1_y\/1—ytanf?(B/2)dy, (54)
0

so thatSis given by

o ImVam (1)
2b 1+ 1b

( 113 1
)F —E,B,E‘FB,Z). (55)

Whenb=1, Sagrees with Eq(39). Whenb=2, the hyper-
geometric functions reduce to elliptic integrals G&ndE).

Now we have explicit forms foQ, S and henceH. In
general, whe<2, Q increases anti decreases monotoni-
cally with g, so that the parametrid versusQ plot decreases
monotonically agq increases and is always concave down.
Hence, the solitons of the whole family are stable.

Forb>2, howeverQ has a minimum anéi has a maxi-
mum atg>0, thus producing a cusp in thé¢-versusQ plot
(see Fig. 5. Note that solitons exist only above some thresh-
old energy in this case. The important conclusion from this
case is that the upper branch should be unstable, because the
Hamiltonian is concave upwards while the lower branch
should be stable as it is concave downwards. Numerical
simulations similar to that described in Sec. V show that this
is indeed the case.

G. Triple power-law extension

We can also takdN=1°+v1%°+ yI1%°_ If we let n=12,,
then we can findn, and hencd,, by solving the cubic
equation

n N v 2, 0%
b+l 2b+1" 3b+1

n3=q. (56)

Then
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125
0.005
1
m ’
Q 0.75
aw
-0.005 0.5
0.25
-0.01
0
FIG. 5. Hamiltonian versus energy for dual-power-law nonlin-
earity for the values of the parametdrs=-5/2 andv=—1. The 0.04
dotted arrow shows a transformation which occurs from the un-
stable branch to the stable one, due to the soliton’s interaction with 0.03
radiation. The cusp occurs @t q.=0.0492 and corresponds to the
soliton’s minimum energy oQ=2.51 and maximum Hamiltonian, 0.02
viz., H=0.007 83.
T 001
g= lm [yl 57
by29/0 V1-yN1-riyVi-ray B TR T VR X
where the roots of the cubic polynomial are I,;1/and 1f, 0.01 Q
as before. Again, if ; andr, are real then each must be less
than 1.
Similarly

FIG. 6. Hamiltonian versus energy for triple-power-law nonlin-
|m\/a 1 earity (Sec. IV G for the values of the parameters=—1 andy

S= —f yP 1 1—yJ1-r;yJl-r,ydy. (58  =0.5.(a) b=3/2. Here the lower branch is stable and the upper
b Jo branch is unstable(b) b=5/2. Here the lowest branch (086

. . . <0.17) is stable and two upper branches are unstable. Note
This may put an additional branch on tHeQ curve, leading dH/dQ=—q at each point.

to bistable behavior.

As noted in Sec. lll, the magnitude of the slope of the 1
curve on the [H-Q) diagram increases as we move along the —fu—qf+f(f2P+pf4)=0. (59)
curve in the direction of increasing For example, in Fig. 2
6(a), g=0 corresponds to the origin, and the magnitude L
|dH/dQ| increases as we move towards the cusp; this valud e exact solution is
continues to increase once we move onto the upper branch f(t)=[h(t)] L& (60)
(g>0.25) whereH is increasing. '

In Fig. 6(b) small g corresponds to the higQ values on  \where
the right of the diagram. AgaindH/dQ| increases ag in-
creases and we approach the first cusp, which is the left cusp. 1
Then|dH/dQ| increases again with as we move along the h(t)= m[lJFS(b)COS“Zb\/EU]! (61)
lowest branch(i.e., the stable oneWhen we pass the right
cusp,H increases anfiH/dQ| once again continues to in- with s(b) defined as
crease withg.

4qv
V. SOLITON TRANSFORMATION s(b)= \/1+ (1x2p) Tt b)? (>0). (62)

The main point of the above calculations is that the exacbsin the definitions of previous sections, we note that if
solution for the soliton profile is not needed for finding the 9 P '

H(Q) curve. Indeed, the explicit forms of solutiorigt) <O, thens=\1-p?=sech@) (<1), while if »>0, then
have not been used in these calculations. Nevertheless, vee= V1+ a?=sec@) (>1). Using Eq.(60), we see that
now present an explicit solution for the profitét), for the
case of dual-power-law solitons in order to investigate the | —1f(0)12=
dynamics and verify the usefulness of tHeQ diagram in m=[1(0)]"=
predicting stability(instability) and pulse behavior.

Thus, forN=1°+ »1%° (Sec. IV B, we have the ordinary For »<0, this clearly agrees with the form foufifig. (51)]
differential equation: in the preceding section.

(1+2b)(s(b)—1)]*
2v(1+b)

(63
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interaction with radiation, it evolves into a soliton of the
stable branch. The initial and the final soliton profiles are
shown in Fig. 7. The final state, after the radiation waves
have dispersed, is a soliton with parametgrs0.094 and
Q=2.69. The shape stays practically the same after
=1400, thus confirming its stability. The course of the above
transformation is clearly seen in Fig. 7. It is represented by
the dotted arrow in Fig. 5. A physically similar process has
been considered analytically {®] for solitons in birefrin-
gent fibers. As a general rule, this analysis shows that the
transformation always takes place from an upper right point
on theH(Q) diagram to a lower left point on the diagram.
Hence the direction of the arrow in Fig. 5 must be down and
to the left.

The instability eigenvalues of the linearized equations for
the upper soliton branch must be complex, as they have real
parts which correspond to the deviation from the unstable
soliton and imaginary parts which correspond to interactions
with radiation. This type of complex eigenvalue has been
found for a different problem if29]. Note that complex
eigenvalues have been proved to exist for Hamiltonian sys-
tems in[30-32.

FIG. 7. (a) Evolution of an unstable soliton. The result of this VI. CONCLUSION AND DISCUSSION
evolution is shown schematically by the arrow in Fig(B). Initial
(£=0) and final ¢>1400) soliton profiles. Initially the stationary ~ We have reformulated soliton stability principles by prov-
soliton solution ¢=0.005) is unstable, but it evolves into a soliton ing a general theorem for stability in terms léfand Q, and
on the stable branch while emitting small amplitude radiation wavesve have shown that parametric curves of Hamiltonian versus
[note ripples in(@)]. energy are useful in the theory of solitons in conservative

nonintegrable systems. In particular, for lowest-order soli-

To illustrate the usefulness of thé(Q) diagrams in pre- tons, concave down implies stability, while concave up cor-
dicting dynamics, let us consider a simple example. In Fig. Sresponds to instability. Furthermore, stability changes only at
the upper unstable branch of solitons corresponds to theusps. We have shown that it is possible to find the Hamil-
range 6<q<d.. The lower stable branch corresponds to thetonian and energy for solitons of non-Kerr-law media with-
interval 9.<q<(Qmax—6/49. The cusp appears &@=q. out any knowledge of the functional form of the soliton it-
=0.0492. We have made numerical simulations based on Egelf. We gave various examples. We also considered some
(1) with the initial conditions corresponding to the stationary simple dynamics, namely, the transformation of an unstable
solutions of the unstable branch. We used the Cranksoliton into a soliton of a stable branch.
Nicholson technique, in conjunction with a Newton iteration ~We believe that this approach can be generalized to in-
scheme, to solve the nonlinear equation. We used zerclude more complicated Hamiltonian nonlinear systems, in-
boundary conditions and absorbing layers close to theluding cases with tw$8,10] or more coupled NLSEE33],
boundary in order to remove the small amplitude radiatiorparametric solitong34], and examples of higher-order di-
waves. An example of propagation is shown in Figa)7 mensionality. For example, the curvel€Q) calculated nu-
These simulations confirm the instability of the uppermerically in[12] show clearly that our stability criterion can
branch. We start with the exact solution, H§0), as the be applied to a system of coupled NLSEs. The results ob-
initial condition, and takeq=0.005, which corresponds to tained in[14] also show that this principle can be generalized
Q=2.936. Initial symmetric perturbations are inserted byto the case of (+ 3)D solitons. It is quite obvious, then, that
multiplying the function by a coefficient slightly different (1+2)D cases and spatiotemporal ¥8)D solitons[35—
from one, namely, 1.00001. The results were qualitatively37] also could be handled with our approach. This means
the same even without this coefficient, due to the unavoidthat, independent of their physical nature, single-soliton so-
able deviations of the profile from the exact one in the nudutions of Hamiltonian systems can be well understood and
merical discretization. This soliton is unstable, and due tanalyzed using the concavity of th&(Q) curves.
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