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We predict the existence of rogue waves in Bose-Einstein condensates either loaded into a parabolic trap or
embedded in an optical lattice. In the latter case, rogue waves can be observed in condensates with positive
scattering length. They are immensely enhanced by the lattice. Local atomic density may increase up to tens
times. We provide the initial conditions necessary for the experimental observation of the phenomenon. Nu-
merical simulations illustrate the process of creation of rogue waves.
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I. INTRODUCTION

Rogue waves are strong wavelets that may appear in the
ocean when appropriate conditions are met �1�. These waves
can be two, three, or even more times higher than the aver-
age wave crests �2�. The resulting peak may reach the height
of 20–30 m and by some estimates even 60 m. Clearly, these
giants would be very dangerous if it appeared on the path of
an ocean liner �and that is why they are also called “killer”
waves�. Many cases of such encounters are described and
even photos are presented �3�. The first measurement of the
rogue wave in the open ocean is taken on the oil platform in
Norway in 1995 �3�, thus confirming that the rogue waves
are indeed a reality rather than myths spread by sailors. De-
tailed studies in the frame of the program “MAXWAVE” that
include satellite data showed that waves with the height of
25 m are not unusual �4�.

There is a variety of mathematical descriptions of waves
in the ocean �5�. One of them, related to deep ocean waves,
is based on the nonlinear Schrödinger �NLS� equation �6�.
Particular explanations also vary �7�. The basic phenomenon
related to this description is Benjamin-Fair �or Bespalov-
Talanov� �8� instability or more generally speaking modula-
tion instability �MI�. Peregrine first noticed that such insta-
bility can be responsible for a quick increase in the wave
amplitude in the ocean �9�. There is wide range of initial
frequencies that are amplified due to MI, and the resulting
waves can reach amplitudes substantially higher than those
in the initial conditions. In particular, zero-frequency pertur-
bation leads to the wavelet with highest amplitude that is
known as Peregrine soliton �9�. The latter is the solution
localized in two directions and described analytically by the
rational expression �see Eq. �2� below�. Recent studies
showed that even higher amplitudes can be reached due to
the interaction of several MI components �10� or due to the
wavelets that are described by the higher-order rational solu-
tion �11�.

Recently, the notion of the rogue wave has been trans-
ferred into the realm of nonlinear optics �12�. Experimental
studies have shown that continuous-wave laser radiation in

optical fibers splits into separate pulses and those pulses can
reach very high amplitudes �12�. Indeed, the wave propaga-
tion in optical fibers at certain frequencies is described by the
NLS equation or its modification, and the nature of appear-
ance of high peaks could be very similar to the peaks in the
open ocean. Moreover, due to random modulations of the
initial carrier wave in a fiber, the high peaks at the output
also arrive randomly just like in the ocean.

There are at least two fundamental reasons for great in-
terest in generating rogue waves in laboratory conditions.
First, this opens possibilities for detailed studies of their
properties as well as testing applicability of the mathematical
models developed for their descriptions �something unthink-
able in the natural conditions�. Second, being an essentially
nonlinear phenomenon, rogue waves allow us to understand
deeply the nature and the dynamics of instabilities in nonlin-
ear systems. Thus, the natural question that appears is
whether the rogue waves can be observed in other �than
ocean or optical fibers� physical media.

The goal of this work is to give the positive answer to this
question by showing that rogue waves are also rather natural
in the microworld. Namely, they can be observed in Bose-
Einstein condensates �BECs�. The physical reasons for this
are twofold. First, BEC represents a fluid, which in the
mean-field approximation is accurately described by the
Gross-Pitaevskii �GP�, i.e., by the NLS equation �13�. Sec-
ond, due to the two-body interactions, BEC is intrinsically a
nonlinear system. Moreover, a BEC has great advantages
compared to other nonlinear systems. Indeed, the nonlinear
interactions can be experimentally managed by means of the
Feshbach resonance �14�, while the effective atomic mass
and the stability properties can be varied with help of the
optical lattice �OL� �15�. The suitable initial conditions can
be created using phase and density engineering. In other
words, rogue waves in BECs appear to be well controllable
objects.

II. MODEL

To begin with, we start with the one-dimensional �1D� GP
equation,
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i�t = − �xx + ����2� − ig���4� , �1�

where �=sgn�as� and as is the scattering length. In Eq. �1�
we have explicitly included the dissipative term due to in-
elastic three-body interaction whose strength is characterized
by g�0 �16�. This last point is of special relevance as the
rogue waves correspond to a giant increase in the local den-
sity when the impact of the three-body collisions can become
dominant.

Besides the inelastic three-body interactions in a real ex-
perimental situation relevant for the BEC applications, one
has to also take into account a trap potential �see, e.g., the
models �4� and �6� below�. This makes the problem very
different from the analytically solvable NLS equation. Nev-
ertheless, it is natural to expect that using the exact solution
for the NLS rogue wave, one can guess the proper initial
conditions, giving rise for the giant density enhancement in a
realistic mean-field model of a BEC.

Therefore, we start by recalling that when �=−1 and g
=0, Eq. �1� possesses an exact analytic solution �9�,

�0�x,t� = ��x,t�ei��x,t� = �1 − 4
1 + 2it

1 + 2x2 + 4t2�eit, �2�

with the density �2 and the phase distribution � at each in-
stant of time determined directly from this formula. Let us
outline the physical properties of the field distribution �2�,
distinguishing it out of the large class of initial conditions
leading to modulational instability. First, we observe that this
is a solution with the mean density n0=1, in which the do-
mains of the high density n�x , t����0�2�1 and of the low
density n�x , t��1 are spatially separated at any time, being
respectively �x��	�1+4t2� /2 and �x��	�1+4t2� /2. Second,
the initial amplitude and phase modulation provide that the

�superfluid� current density j�x , t�� i���̄x− �̄�x�=64xt /
�1+2x2+4t2�2 is positive �negative� for all x�0 �x�0�, i.e.,
the density excitations move toward �outward� the center x
=0 at any instant of time t�0 �t�0�. The amplitude of the
solution �2� has its maximum at t=0 �see Fig. 1�a��, where
the current density is zero j�0, t�=0 at any time.

Thus, turning to discussion of possible implementation of
the matter rogue waves, we have to look for the initial con-
ditions leading to dynamics which would closely resemble
the physical behavior described above. While in any experi-
ment the time is considered positive, to avoid introducing a
time shift in Eq. �2�, which would be less convenient for the
analytical arguments, we assume that the experiment starts at
initial time ti�0. Moreover, we assume that �ti��1, i.e., the
initial homogeneous density distribution is only weakly
modulated. Then the initial condition can be approximated
by

�i
2 = 1 +

4�2ti
2 − x2�

�2ti
2 + x2�2 and �i = ti −

4ti

x2 + 2ti
2 . �3�

More generally, this is the case where initially the following
properties are satisfied: �xx�x , ti���x�x , ti���t�x , ti� and,
thus, one can neglect the kinetic energy. This readily gives
the useful link �t�x , ti�
�2�x , ti�.

Now, let us consider preparation of the optimal initial
conditions for observing rogue waves. We concentrate on the
atomic density, assuming that the initial phase distribution �i
is obtained using the phase imprinting technique �17�. The
main difficulty in preparation of the respective initial state
arises from the attractive interactions. The latter requires
loading the condensate into a modulationally unstable state.
Therefore, we take advantage of the Feshbach management
�14�, allowing one to change abruptly the sign of the scatter-
ing length at t= ti. More specifically, at t� ti we consider the
condensate having a positive scattering length, whose abso-
lute value could be different from the one exploited in the
attractive regime. Thus, we assume that at t� ti a condensate
with �=�i�0 �generally speaking �i�1� is loaded into a
parabolic trap 	2x2, where the dimensionless linear oscillator
frequency 	 is assumed to be small enough, or more specifi-
cally ti	�1. In order to create the distribution �i given by
Eq. �3�, one also has to impose a potential V0�x� that pro-
vides necessary modulations specified below. Then the sta-
tionary state of such BEC is determined from the stationary
GP equation


�i = − �i,xx + V0�x��i + 	2x2�i + �i��i�2�i, �4�

where 
 is the chemical potential.
Let us now choose V0�x�=
−�i�i

2�x�. Then V0�x� is lo-
calized on the scale �x�� ti as it follows from Eq. �4�. Recall-
ing that the initial condition we are interested in corresponds
to the negligible kinetic energy, we can find �i in the
Thomas-Fermi �TF� approximation: ��TF�2=�i

2−	i
2x2. This is

valid for �x�� x̃, where x̃ is the positive zero of ��TF�2, and
	i=	 /	�i. Taking into account that at �ti��1 the distribution
�i�1, we make the standard estimate x̃
	i

−1. Then the num-
ber of atoms loaded into the trap is N
�−x̃

x̃ ��TF�2dx� 4
3 x̃.

FIG. 1. �Color online� Evolution of the atomic density according
to �a� the exact solution �2�, �b� TF approximation with 	i=0.02, �c�
“Mexican hat,” and �d� uniform �i

2=1 initial conditions. In �b�, �c�,
and �d�, the initial phase distribution �i is taken from Eq. �3�. The
initial time is ti=−3. The inset in �c� shows the initial densities
obtained from Eq. �2� �dashed line� and from the “Mexican hat”
approximation �MH �solid line�. In �b�, �c�, and �d�, we used g
=0.05.
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Generally speaking experimental creation of the trap po-
tential V0�x� with �i

2�x� given by Eq. �3� can be not easy. It
turns out however that excitation of a rogue wave can be
implemented using initial distributions, which on the one
hand are experimentally feasible and on the other hand
closely mimic the “ideal” exact density �3�. These cases re-
quire numerical study, which is performed in the next sec-
tion.

III. ROGUES WAVES IN HOMOGENEOUS BEC

The TF distribution indeed appears to be a good approxi-
mation. This is demonstrated by the direct numerical simu-
lations shown in Fig. 1 �c.f. the panels a and b�. The discrep-
ancy between the exact solution �0 and the one generated by
�TF appears mainly due to the three-body collisions that are
not accounted by the exact solution. The remarkable fact is
that the rogue wave survives the effect of the quintic dissi-
pative nonlinearity with the latter being responsible only for
lowering the maximal amplitude and for retarding times tm at
which the maximum occurs �tm
0.5�0 in Fig. 1�b��.

This leads us to another issue, namely, the sensitivity of
the effect to more general initial conditions. To study this, we
consider the example of the “Mexican hat” distribution
against the homogeneous background,

�MH = �MHei�i, ��MH�2 = 1 + a�1 −
x2

x̃2�e−x2/x̃2
, �5�

where �i is given by Eq. �3�. Such initial conditions can be
created by properly adjusted laser beams having the Gauss-
ian form. At x̃2
1 /2+2ti

2 and a=8 / �1+4ti
2�, the “Mexican

hat” distribution well reproduces the desired initial distribu-
tion �i given by Eq. �3� �see the inset in Fig. 1�c��. Figure
1�c� shows the dynamics originated by �MH. It generates a
rogue wave followed by smooth small-amplitude modula-
tions of the background.

Finally, we have found that the rogue wave can be gener-
ated with the help of pure phase engineering, where the ini-
tial density is a constant. This scenario is illustrated in Fig.
1�d�, where �i from Eq. �3� was chosen as the initial phase
distribution. We again observe the “post-rogue” evolution in
the form of the modulated background, which however is
slightly different from the previous cases involving density
engineering.

IV. ROGUE WAVE IN A BEC LOADED IN AN OPTICAL
LATTICE

Even bigger rouge waves can be observed in a BEC
loaded into an OL, where it is developed from the simple
Bloch wave. Such a state has two new features. First, the
rogue wave is developed on the scale imposed a priori and
determined by the lattice constant. Second, the phenomenon
can be observed in a BEC with a positive scattering length.
The latter does not require the use of the Feshbach resonance
technique. Analysis presented in the previous section shows
that the controlled excitation of the rogue waves requires two
conditions to be satisfied simultaneously. These are the re-
quirements for the modulational instability as well as special

initial density and velocity distributions. The latter condi-
tions can be provided in the case of OL in the same way as
for the homogeneous condensate, i.e., using combined den-
sity engineering and phase imprinting. The conditions for
modulation instability in the case of a BEC loaded in an OL
are completely changed by the lattice. The reason is that any
two Bloch states bordering different edges of a band gap of
the linear spectrum have different stability properties.
Namely, one of them is stable while another one is unstable
�15�. Thus, for any sign of the scattering length one can
achieve the conditions for the modulational instability just
choosing correctly one of the initial states. This is the ap-
proach which we implemented in this section.

To this end, we turn to the GP equation

i�t = − �xx − V cos�2x�� + ����2� − ig���4� , �6�

which now includes a �-periodic OL with the amplitude
V�0. As before, we take into account the inelastic three-
body interactions by including the quintic dissipative term.
The chosen period of the lattice means that the spatial and
temporal variables in Eq. �6� are measured in the units of
d /� and 
 /ER, respectively, while the energy is measured in
units of the recoil energy ER=
2�2 / �2md2�, where d is the
lattice constant and m is the atomic mass. The 1D density
distribution ���2 is measured in �2a2 / �4d2�as�� units, where a
is the transverse trap width.

Let us assume that the initial density is low enough to be
well described in the linear approximation with �=g=0.
Then, the initial stationary density distribution is nothing else
but one of the normalized Bloch states �0,1�x�. It is close to
one of the energy gaps. We assume that the condensate is
loaded into the lowest band, such that the subscripts 0 and 1
refer to its minimum �at q=0� and to its maximum �at q=1�,
respectively. The wavenumber q belongs to the first Brillouin
zone: �q��1. Each Bloch state is characterized by the disper-
sion relation Eq and by the effective mass Mq
= �d2Eq /dq2�−1.

In the presence of the nonlinearity, one of the Bloch states
becomes modulationally unstable �15�. Introducing the non-
linearity coefficients �q=��0

���q�4dx, the instability condition
can be written down as Mq�q�0. For the chosen initial state,
M0�0 and M1�0. Hence, for a condensate with a positive
�0,1�0 �negative �0,1�0� scattering length, the unstable
state occurs at the upper, q=1 �lower, q=0�, edge of the first
band, i.e., the Bloch state �1�x� ��0�x�� is unstable.

Like in the homogeneous condensates, an excitation of
rogue waves in OLs requires an appropriate determination of
the initial phase and density distributions. This appears to be
easy since the initial state can be of a very low density when
it is accurately described within the framework of the
multiple-scale approximation. Accordingly, we look for the
order parameter in the form �
�A�� ,���q�x�exp�−iEqt0�
�see Ref. �15� for the details�, where q=0,1, � is a small
parameter discussed below, �=�2t, �=�x, and the slowly
varying amplitude A�� ,�� solves the NLS equation

iA� = − �2Mq�−1A�� + �q�A�2A . �7�

Now, in analogy with Eq. �2�, one can construct the exact
evolution for A. This, however, will not give us a rogue
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wave, as the giant increase in the density, in a generic case,
breaks the conditions of the applicability of the small-
amplitude approximation. The approximate Eq. �7� however
allows us to determine the proper initial �at t= ti� condition
for exciting rogue waves,

�i =
�

	�q
�1 − 4

1 − �− 1�q2i�2ti

1 + 4�4ti
2 + 4�Mq��2x2�

� �q�x�e−i�Eq+�− 1�q�2�ti. �8�

For a given ti, Eq. �8� contains only one free parameter �
which determines the scale of the solution. We used smooth
initial modulations with various � and performed direct nu-
merical simulations of Eq. �6�. The results are summarized in
Fig. 2. We observe the emergence of the rogue waves both at
the lower �Fig. 2�a�� and at the upper �Fig. 2�b�� edges of the
first band. The density reaches the values �0.035, i.e., al-
most 5.5 times higher than the initial amplitude of the modu-
lation. Starting with the higher initial intensity results in the
increase in the rogue wave amplitude by the factor of 15.
This is shown in panels c and d of Fig. 2. Moreover, we can
see that an array of rogue waves is generated. We again
observe that the rogue wave survives the effect of strong
three-body interactions �see Figs. 2�e� and 2�f��.

The theory reported above is quasi-1D, while the experi-
mentally created BECs are three dimensional, even in the
cases when cigar-shaped confining potentials are used. This
raises an important question about the validity of this ap-
proximation for the description of rogue waves. More spe-
cifically, we have to establish the conditions which allow one
to describe the condensate in terms of the 1D model even at
the stage of maximal amplitude of the rogue wave. To argue
the applicability of the theory for large regions of the gov-
erning parameters, we recall that, say, in the case of a BEC in
an OL, the transverse dynamics can be neglected only when
the density of the transverse kinetic energy, E�=2d2 / ��a�2,
is much bigger than both the recoil energy and the energy of
the two-body interactions Enl=maxx,t���2 �15� �all measured
in the ER units�. For typical experimental parameters of 7Li
condensate with d�1 
m, a�0.5 
m, and �as��1 nm,
we estimate that Enl /E�
0.044, 0.38, and 0.1 in the panels
�a,b�, �c,d�, and �e,f� of Fig. 2, respectively. Also, the char-
acteristic time of the rogue wave, which we identify with the
time where the density profile significantly exceeds the back-
ground density, can be estimated as �t�11 ms �the dimen-
sionless time 500� and �t�3 ms �the dimensionless time
140� in panels �a,b� and �c–f� of Fig. 2, correspondingly.
Furthermore, for our numerical simulations the estimate for a
real number of atoms per unit cell is n= �2a2

4�as�d
���2, i.e., n

�10. Then the peak density �i.e., the largest number of at-
oms in the central well� is estimated as npeak�102 �Figs. 2�c�
and 2�d��. Thus, with suitable choice of the parameters a
rogue wave will neither cause excitation of higher transverse
levels nor break the applicability of the quasi-1D mean-field
approximations �however, neither of these effects is excluded
in principle�.

V. DISCUSSION AND CONCLUSIONS

To conclude, we reported the possibility of observation of
rogue waves in BECs. While the fact that the existence of
such waves is somehow evident, it follows from the fact that
the mean-field dynamics of a BEC is described by the Gross-
Pitaevskii equation; there exists several features of the phe-
nomenon observed in a condensed atomic gas. First, conden-
sates are created in the presence of an external potential,
which is typically parabolic one. Second, the three-body in-
teractions are expected to become a significant factor in the
course of the evolution of the rogue waves �in our simula-
tions they were taken into account by the quintic nonlinear-
ity�. Third, the rogue waves can be generated in a controlled
manner by phase and amplitude engineering.

FIG. 2. �Color online� Evolution of the atomic density starting at
the lower �left column, �=−1, E0=−0.9368� and upper �right col-
umn, �=1, E1=−0.7332� edges of the first lowest band of the OL
with V=3. As the initial condition, we used Eq. �8� with ti=−600
and �=0.05 �panels a,b�, �=0.1 �panels c–f�. The rogue wave is
observed without dissipative losses �panels a–d� and with inelastic
interactions �panels e,f, where g=0.5�. The upper insets show the
respective initial shapes at ti �dashed lines� and ones at t=0, when
rogue waves reach their maxima �solid lines� �gray and white strips
correspond to half-periods of OL, when −V cos�2x��0 and
−V cos�2x��0, respectively�.
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In homogeneous condensates, the rogue waves display lo-
cal increase in the amplitude up to several times. The effect
can be enhanced using optical lattices due to confining effect
of the neighboring lattice maxima. In the latter case, the den-
sity amplitude can be amplified tens of times. This occurs on
the scale of the lattice constant. The great advantage of the
rogue waves in BECs, compared to already observed ones in
the ocean and in optical systems, is that they can be manipu-
lated using tunable interatomic interactions as well as the
flexibility of the confinement and lattice potentials. More-
over, the use of the periodic potential allows one to observe
rogue waves in media where homogeneous plane waves are
stable. The rogue waves are remarkably stable with respect
to inelastic three-body interaction. One can further predict
that due to giant local increase in the density, the rogue
waves can result in enhanced quantum fluctuations, in ap-
pearance of the transverse dynamics of the initially quasi-
one-dimensional condensate, and even in complete destruc-
tion of the atomic condensate.

Our study here is devoted to numerical demonstrations of
new effects in BEC science. We based our simulations on
NLS equation as a rough approximation and confirmed nu-
merically that basic rogue wave solution is robust and retains

its features when the equation is perturbed. Clearly, this ap-
proach raises mathematical questions about stability of rogue
wave solutions relative to perturbations of the initial equa-
tion. The preliminary answer is given by our simulations
using different initial conditions and showing the robustness
of the rogue waves. As any problem of stability, it is vastly
complicated and cannot be solved in the frame of a single
work. Presently, we are at the beginning stage of understand-
ing these problems, with some results being prepared for a
separate publication.

Finally, recalling that the modulational instability �15�
was already observed experimentally �18� and that large di-
versity of the trap potentials are available experimentally
�19�, the rogue waves appear to be the next exciting phenom-
enon to look for in future experiments.
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