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Abstract

We study, analytically, the discrete complex cubic–quintic Ginzburg–Landau (dCCQGL) equation with a non-local
term. We find a set of exact solutions which includes, as particular cases, bright and dark soliton solutions, constant m
solutions with phase shifts, periodic solutions in terms of elliptic Jacobi functions in general forms, and various pa
periodic solutions.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Light interaction with nonlinear periodic media h
attracted much attention in recent years. Various
tical phenomena in photonic crystals and arrays
planar waveguides or fibers have been predicted
observed. In particular, discrete solitons in nonlin
lattices have been the focus of considerable atten
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0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.08.028
in diverse branches of science[1–4]. Discrete soli-
tons exist in several physical settings, such as
logical systems[5], atomic chains[6,7], solid state
physics[8], electrical lattices[9] and Bose–Einstein
condensates[10]. Discrete solitons also exist in pho
tonic structures (in arrays of coupled nonlinear o
tical waveguides[11–17] as well as in a nonlinea
photonic crystal structures[18]). Photonic crystals
which are artificial microstructures having photon
bandgaps, can be used to precisely control prop
tion of optical pulses and beams. When using disc
waveguides and photonic crystals, “discrete solito
.
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appear naturally and have a number of interes
properties.

Various models of discrete nonlinear systems ad
soliton solutions. The discrete nonlinear Schrödin
(dNLS) equation is

i
dψn

dt
+ D

2
(ψn+1 − 2ψn + ψn−1)

(1)+ β1|ψn|2ψn = 0,

where ψn are complex variables defined for all i
teger values of the site indexn. The termψn+1 −
2ψn + ψn−1 plainly approximates a second deriv
tive term for a continuous system and so physica
represents diffraction. A simple transformation[11]
eliminates the term−2ψn, thus indicating that what i
occurring is nearest-neighbour coupling. Hence, a
alistic discrete system features diffraction-type effe
The dNLS equation was used by Christodoulides
Joseph[12] to model the propagation of discrete se
trapped beams in an array of weakly-coupled non
ear optical waveguides. It is well known that the sta
dard DNLS equation(1) is not completely integrabl
and that it does not have any non-trivial exact so
tions. The integrable discrete nonlinear Schrödin
equation (Ablowitz–Ladik (AL) system)

i
dψn

dt
+ D

2
(ψn+1 − 2ψn + ψn−1)

(2)+ |ψn|2(ψn+1 + ψn−1) = 0,

was found in[19] and it can be solved using the inver
scattering method and other methods.

Periodic structures have an even richer variety
properties when they are dissipative, i.e., have g
and loss in the system. In particular, discrete analog
of the complex Ginzburg–Landau equation have
tracted attention in the field of the pattern formati
in nonlinear coupled oscillators[20,21]. Specific laser
and amplification systems can be designed using
tive waveguide arrays. In[22], we studied the discret
complex cubic Ginzburg–Landau (dCCGL) equatio

i
dψn

dt
+

(
D

2
− iβ

)
(ψn+1 − 2ψn + ψn−1)

(3)+ (1− iε)|ψn|2(ψn+1 + ψn−1) = iδψn.

Several exact solutions can be derived in this ca
However, in the model where the highest nonline
ity is cubic, the solitons are unstable, as a numer
study[23] clearly shows. Thus, just as in the contin
ous case, the dCCGL equation does not provide co
tions for stability. Quintic terms have to be introduc
into the continuous complex Ginzburg–Landau eq
tion to allow for stable soliton solutions. The sam
requirement should be fulfilled in the case of discr
system. Hence analysis of the cubic–quintic disc
complex Ginzburg–Landau equation is a necess
step for further progress.

There are several ways of introducing the quin
terms. They can be local, as in the simple discret
tion of the NLSE, or non-local, as in the Ablowitz
Ladik equation. Higher-order nonlinearity can also
clude a higher degree of non-locality. Each of the
cases has to be studied separately in order to un
stand the influence of the quintic nonlinearity on so
ton solutions and the dynamics of the system in g
eral.

Abdullaev et al. studied the discrete complex cub
quintic Ginzburg–Landau equation[24] with non-
local cubic and local quintic nonlinear terms:

i
dψn

dt
+ (ψn+1 + ψn−1)

(
1− λ|ψn|2

)
= −δψn + iγ |ψn|2ψn + iβ(ψn+1 − 2ψn + ψn−1)

(4)− iκ|ψn|4ψn.

Note that all nonlinear terms responsible for dissi
tion are local. Using a perturbation technique, wh
δ, γ , β andκ are small, they found a soliton solutio
which is approximate and valid at small dissipatio
Efremidis and Christodoulides studied a different d
crete complex cubic–quintic Ginzburg–Landau eq
tion [25]

i
dψn

dt
+

(
D

2
− iβ

)
(ψn+1 − 2ψn + ψn−1)

+ (1− iε)|ψn|2ψn + (ν − iµ)|ψn|4ψn

(5)− iδψn = 0,

where all nonlinear terms are local. They found t
discrete solitons of the discrete complex cubic–quin
Ginzburg–Landau equation have several features
have no counterparts in either the continuous limi
in other conservative discrete models.

In this Letter, we study a discrete equation set, s
ilar to that in[24,25], but include a quintic nonlinearit
with non-locality of the lowest order. At the same tim
the cubic terms remain local. For this particular mod
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we derive exact soliton and periodic solutions. Th
are exact solutions for arbitrary values of the dissi
tive terms, so they are different from the approxim
solutions obtained under the restriction that dissi
tive terms be small. In particular, we consider a mo
of a dissipative system, viz., the following discre
complex cubic–quintic Ginzburg–Landau (dCCQG
equation

i
dψn

dt
+

(
D

2
− iβ

)
(ψn+1 − 2ψn + ψn−1)

+ (1− iε)|ψn|2ψn

(6)+ (ν − iµ)|ψn|4(ψn+1 + ψn−1) − iδψn = 0.

As we can see, the quintic nonlinear term differs fro
that in (4) and (5). Other generalizations of the dC
CQGL equation are also possible and may have
act solutions. Each of these cases requires a s
rate study. The continuous limit of(6), as well as(4)
and (5), is the complex Ginzburg–Landau equati
(CGLE) [26]

i
dψ

dt
+

(
D

2
− iβ

)
ψxx

(7)+ (1− iε)|ψ |2ψ + (ν − iµ)|ψ |4ψ = iδψ,

which has many applications in describing sup
conductivity, superfluidity, non-equilibrium system
phase transitions, and wave propagation phenom
In the limit of β = ε = ν = µ = δ = 0, Eq. (6)
is reduced to the (non-integrable) discrete nonlin
Schrödinger equation(1).

If we take the continuous limit of Eq.(6) with
ψn = aΨn, τ = a2t , x = na andδ = δaa

2 (a is a small
lattice parameter), we have a complex quintic Sw
Hohenberg type equation[27,28]

iΨτ +
(

D

2
− iβ

)
Ψxx + (1− iε)|Ψn|2Ψn

+ 2a2(νa − iµa)|Ψn|4Ψn + a2

12

(
D

2
− iβ

)
Ψxxxx

(8)= iδaΨ,

which also has many applications in describing n
equilibrium systems.
-

.

2. Exact soliton solutions

Stationary solutions of Eq.(6) are defined by

(9)ψn = φne
−iωt .

The Hirota method can be applied to obtain
lected exact solutions of Eq.(6). In order to do this
we substitute

ψn(t) = φn(t)e
−iωt = gn(t)

fn(t)
e−iωt ,

ψ∗
n (t) = φ∗

n(t)eiωt = g∗
n(t)

fn(t)
eiωt

with real fn, into Eq. (6). As a result, we obtain th
multi-linear form:

if 2
n fn+1fn−1(ġnfn − gnḟn) + ωgng

3
nfn+1fn−1

− (1− iε)gng
∗
ngnfnfn+1fn−1

+
(

D

2
− iβ

)
(gn+1fnfn−1 − 2gnfn+1fn−1

+ gn−1fn+1fn)f
3
n

+ (ν − iµ)
(
gng

∗
n

)2
(gn+1fn−1 + fn+1gn−1)

(10)− iδgnf
3
n fn+1fn−1.

Then, the standard procedure of the Hirota method
be used to obtain the exact solutions listed in the
lowing sections.

Solutions can be obtained only for certain relatio
between the coefficients of the equations. Namely,
set

(11)δ = εω, β = εD

2
, µ = εν,

and note that in this case the system simplifies to

ωφn + D

2
(φn+1 − 2φn + φn−1)

(12)+ φ3
n + (φn+1 + φn−1)νφ4

n = 0.

Simple (constant) solution.
We takeD,ν and ε arbitrary. Direct substitution

shows that any constanta is a solution, so long a
ω = −a2(1+ 2a2ν).

Alternating constant solution.
Furthermore,(−1)na is a solution for any constan

a, so long asω = 2D + 2a4ν − a2.
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2.1. Bright soliton

By using, for example, the Hirota method, we c
find the explicit solution for the fundamental solito
with a constant phase across its profile.

We can write the two relevant solutions separat
using the function sech. For the bright pulse soluti
we needD > 0 but arbitrary, andν < 0 but arbitrary.

For convenience, we definek using

sech(k) = √−2νD (< 1).

The solution is then:

(13)φn = √
D cosh(k)sinh(k)sech(kn + α),

with α arbitrary and

ω = −2D sinh2
(

k

2

)
= D −

√
− D

2ν
.

This can also be expressed as

(14)φn = (p − p−1)
√

D(p + p−1)/2

pn+na + p−n−na
,

wherek = logp andna = α/k.
The soliton profile is shown inFig. 1(a). The nu-

merical simulations based on the original equation(6)
show that this solution is stable. The results of the s
ulation are shown inFig. 1(b). Small perturbations d
not destroy the solution and tend to disappear as
soliton evolves in time. We recall that solitons of t
discrete complex cubic Ginzburg–Landau equation
unstable[23]. This shows that quintic terms are impo
tant in making the soliton stable.

Let us consider particular examples. ForD = 1 and
ν = −1/4, we have the all-positive solution:

φn = 21/4 sech

(
narcsech

(
1√
2

))
≈ 1.189207 sech(0.8813736n).

This can also be expressed as

(15)φn = 2.37841

qn + q−n
, q = 0.414214,

and is clearly positive everywhere.

2.2. Bright soliton with alternating sign

In the case of the bright alternating sign (spike
soliton solution, we needD < 0 but arbitrary, and
ν > 0 but arbitrary. As before, we definek through
sech(k) = √−2νD (< 1). The solution is:

(16)φn = (−1)n
√−D cosh(k)sinh(k)sech(kn + β),

with β arbitrary and

ω = +2D cosh2
(

k

2

)
= D +

√
− D

2ν
.

For D = −1 andν = 1/4, we have the alternatin
sign solution:

φn = 1.189207(−1)n sech(0.8813736n),
y

(a) (b)

Fig. 1. (a) Bright soliton profile for the equation parametersD = 1, ν = −0.4. This implies thatk = 0.481212 and the soliton is given b
φn = 0.528686sech(0.481212n). (b) Numerical simulation showing stationary soliton evolution in time forε = 0.05.
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(17)φn = 2.37841

qn + q−n
, q = −0.414214.

It is clearly positive forn even and negative forn odd.

2.3. Dark soliton

In analogy with the previous case we can find
solution for the dark solitons. We can also introdu
the parameterk through cosh4 k = −2Dν (> 1). For
D < 0 but arbitrary andν > 0 but arbitrary, such tha
2Dν < −1, the plain dark soliton solution can be wr
ten in terms of hyperbolic functions:

(18)φn = √−D sech(k) tanh(k) tanh(kn + α2),

whereα2 is arbitrary and the frequency is

ω = D tanh2 k = D −
√

− D

2ν
.

This can also be expressed as

(19)φn = 2
√−D(p − p−1)

(p + p−1)2

pn+na − p−n−na

pn+na + p−n−na
,

wherena = α/k.
For example, forD = −1, ν = 2, we haveφn =

1
2 tanh(0.88137n).

The dark soliton profile is shown inFig. 2(a). Nu-
merical simulations showing the evolution of this s
lution in time are presented inFig. 2(b). The solution
is stable and evolves in time without changing. Mo
over, small perturbations do not grow but rather dis
pear exponentially with time.

2.4. Alternating sign dark soliton

We now describe the solution for the dark solit
with alternating sign values ofφn. We again define
the parameterk through cosh4 k = −2Dν (> 1). For
D > 0 but arbitrary and withν < 0 but arbitrary, such
that 2Dν < −1, as before, we can express this so
tion in terms of hyperbolic functions. The alternati
sign dark solution can be written as

(20)φn = (−1)n
√

D sech(k) tanh(k) tanh(kn + β2),

whereβ2 is arbitrary and the frequencyω is

ω = D
(
1+ sech2 k

) = D +
√

− D

2ν
.

This can be expressed as

(21)φn = (−1)n
2
√

D(p − p−1)

(p + p−1)2

pn+na − p−n−na

pn+na + p−n−nb
,

wherenb is arbitrary.
For example, forD = +1, ν = −2, we have

φn = (−1)n 1 tanh(0.88137n).
2

ark
(a) (b)

Fig. 2. (a) Dark soliton profile for the equation parametersD = −1, ν = 0.824898765. (b) Numerical simulation showing stable stationary d
soliton evolution in time forε = 0.001.
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3. Periodic trigonometric solutions

3.1. Periodic solutions in terms of cosand sin
functions

There is a variety of periodic solutions withν arbi-
trary, apart from sign, andD arbitrary. Here we give
five examples. These five solutions differ in the va
of the period along the lattice and in the frequencyω:

(22)φn =
√−2

5ν
cos(nπ/3),

whereω = D
2 + 4

25ν ;

(23)φn =
√

−√
2

3ν
cos(nπ/4),

whereω = D − D√
2

+
√

2
9ν

;

(24)φn =
√

−1

ν
√

2
cos

[
π

8
(1+ 2n)

]
,

whereω = D − D√
2

+ 1
8
√

2ν
;

φn = −
√

2

5ν
(1+ √

5)

(25)× sin

[
(n − 2)arccos

(
1− √

5

4

)]
,

whereω = 5(1+√
5)Dν−4

10(
√

5−1)ν
.

Eqs.(22)–(25)plainly requireν < 0, while the fol-
lowing one needsν > 0:

(26)φn =
√

2

3ν
cos

[
π

6
(5− 4n)

]
,

whereω = 6Dν−1
4ν

.

4. Periodic solutions in terms of elliptic Jacobi
functions

Periodic solutions can also be obtained for the
lation given(11) between the coefficients of the equ
tions. Then, the system simplifies to(12). The latter
can be written in the form of a discrete map:

(27)φn+1 + φn−1 = −φn(φ
2
n − (D − ω))

ν
(
φ4 + D

) .

n 2ν
Once again, we takeφn real. In general, this map i
not integrable, but it includes integrable cases[29].
Only those cases in which the map(27) reduces to
a quadratic difference equation are integrable. W
D
2ν

< 0, we can rewrite the map(27)as

(28)

φn+1 + φn−1 = − φn(φ
2
n − (D − ω))

ν
(
φ2

n +
√

− D
2ν

)(
φ2

n −
√

− D
2ν

) .

The quadratic common factor of the denominator a
numerator on the right-hand side of(28) cancels out
for some sets of coefficients. There are two ca
which include exact periodic solutions.

Case 1. In the case ofω = D −
√

− D
2ν

, the map(28)
becomes

(29)φn+1 + φn−1 = − φn

ν(φ2
n + y2)

,

wherey2 ≡ √−D/2ν. This turns out to be the form o
ω used in the soliton pulse solutions given by Eqs.(13)
and (18).

Case 2. Whenω = D +
√

− D
2ν

, the map(28)becomes

(30)φn+1 + φn−1 = − φn

ν(φ2
n − y2)

,

wherey2 ≡ √−D/2ν. This is the form ofω used in
the soliton pulse solutions given by Eqs.(16) and (20).

Both maps are well-known to be integrable on
Now we can construct exact periodic solutions, f
lowing Pott’s paper[30].

4.1. Periodic solutions in Case 1

4.1.1. cn solution
To solve Eq.(29), we consider the periodic solutio

(31)φn = Acn[2nK/p;m],
whereA is an amplitude,K is the complete elliptic
integral of the first kind:

K(m) =
π/2∫
0

dϕ√
1− msin2 ϕ

,
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m is modulus (0� m < 1), andp is an integer (> 2).
The boundary conditionφ0 = A, φ−1 = φ1 and

φp−1 = φp+1. Forn = 0, Eq.(29)gives

(32)φ1 = − A

2ν(A2 + y2)
.

Substituting(31) into (32),

(33)cn(2K/p;m) = − 1

2ν(A2 + y2)
,

and then(31) into (29), we get

2Acn(2nK/p;m)cn(2K/p;m)

1− msn2(2nK/p;m)sn2(2K/p;m)

(34)= − Acn(2nK/p;m)

ν(A2 cn2(2nK/p;m) + y2)
,

where we used the formula

(35)cn(u + v) + cn(u − v) = 2 cnucnv

1− msn2 usn2 v
.

With the assistance of(33), Eq.(34)simplifies to((
A2 + y2)msn2(2K/p;m) − A2)sn2(2nK/p;m)

(36)= 0,

which is satisfied for alln provided

(37)msn2(2K/p;m) = A2

A2 + y2
.

From(37)and(33), we obtain

(38)m = 4ν2A2(A2 + y2)

4ν2(A2 + y2)2 − 1
.

Forp = 2 we get the solution

φn = Acos

(
n
π

2

)
,

which has period 4, and is valid for anyA, so long as
ω = D − A2.

If p = 4, all expressions here simplify to hyperbo
functions. Then the full solution can be written expl
itly:

(39)φn = Acn

[
n

2
K(m),m

]
.

For convenience, we writem as m = 1 − sinh4 b,
whereb is a new real variable which is given by

b = 1
arcsinh

(−4νy2).

2

Then the amplitude squared,A2, is given by

(40)A2 = −2± √
r

2ν(3+ cosh(2b))
coth(b) (> 0),

where

r = 4+ 17Dν − Dν cosh(4b) (> 0),

and the frequencyω is given by

ω = D − A2 − (
D + 2A4ν

)
tanh(b).

We clearly require thatr be positive.
Eq.(39)can be written in different form:

φn = A
(
mod(n + 1,2) + √

2mod(n,2) tanh(b)
)

× cos

(
n
π

4

)
,

whereb = 1
2 arcsinh(−4νy2). The amplitude square

is

A2 = −1

2ν tanh(b)
− y2.

Thus,

φn = A
(
1, tanh(b),0,− tanh(b),−1,− tanh(b),

0, tanh(b),1, tanh(b), . . .
)
.

This produces a sequence of period 8, with theφn

(n = 0,1, . . .) being given by(
A,A tanh(b),0,−A tanh(b),−A,−A tanh(b),0,

A tanh(b),A, . . .
)
,

whereb is arbitrary.
Another special case of the solution(40) appears

whenm = 0. The plus sign case in the expression
the amplitude(40)gives the zero solution. On the oth
hand, the minus sign gives the following result:

φ = Acos(nπ/4),

where the amplitudeA and the frequencyω are given
by

A2 = −
√

2

3ν
, ω = D − D√

2
+

√
2

9ν
.

This solution is clearly the same as in Eq.(23).
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4.1.2. dn solution
To solve Eq.(29), we consider the periodic solutio

(41)φn = Adn(nK/p;m),

where the boundary conditionφ0 = A, φ−1 = φ1 and
φp−1 = φp+1. For n = 0, Eq.(29) gives(32). Substi-
tuting (41) into (32),

(42)dn(K/p;m) = − 1

2ν(A2 + y2)
,

and then(41) into (29), we get

2Adn(nK/p;m)dn(K/p;m)

1− msn2(nK/p;m)sn2(K/p;m)

(43)= − Adn(nK/p;m)

ν(A2 dn2(nK/p;m) + y2)
,

where we used the formula

(44)dn(u + v) + dn(u − v) = 2 dnudnv

1− msn2 usn2 v
.

With the assistance of(42), Eq.(43)simplifies to((
A2 + y2)sn2(K/p;m) − A2)sn2(nK/p;m)

(45)= 0,

which is satisfied for alln provided

(46)sn2(K/p;m) = A2

A2 + y2
.

From(46)and(42), we obtain

(47)m = 4ν2(A2 + y2)2 − 1

4ν2A2(A2 + y2)
.

4.1.3. snsolution
To solve Eq.(29), we consider the periodic solutio

(48)φn = Asn(nK/p;m),

with the boundary conditionφ0 = 0, φp = A and
φp−1 = φp+1 for any positive integerp. For n = p,
Eq. (29)gives

(49)φp−1 = − A

2ν(A2 + y2)
,

and(48)with n = p − 1 gives

(50)φp−1 = Asn
(
K − (K/p);m) = A

cn(K/p;m)

dn(K/p;m)
.

Using the formula

(51)sn(u + v) + sn(u − v) = 2
snucnv dnv

1− msn2 usn2 v
,

and substituting(48) into (49), we obtain

(52)
2Asn(nK/p;m)cn(K/p;m)dn(K/p;m)

1− msn2(nK/p;m)sn2(K/p;m)

= − Asn(nK/p;m)

ν(A2 sn2(nK/p;m) + y2)
,

which simplifies to

(53)
(
y2msn2(K/p;m) + A2)cn2 = 0.

This is satisfied for alln provided

(54)m = − A2

y2 sn2(K/p;m)
.

From(54), (49)and(50), we obtain

(55)m = 4ν2A2(A2 + y2)2

A4 + y2(A2 − 4ν2(A2 + y2)2)
.

In this case, thep = 2 solution simplifies and all ex
pressions again reduce to hyperbolic functions. T
the full solution can be written explicitly. It is give
by Eq.(48)with m = 1− sinh4(b). Thus we can write
it explicitly:

φn = A
(
mod(n + 1,2) + √

2mod(n,2)sech(b)
)

× sin

(
n
π

4

)
,

whereb = arcsech(r) and

r = 1

2D
√

2

√−D

ν

(√
1− 8Dν − 1

)
.

Using Eq.(54), the amplitude squared is

A2 = (
sinh2(b) − 1

)
y2.

Thus

φn = A
(
0,sech(b),1,sech(b),0,−sech(b),

−1,−sech(b),0, . . .
)
,

and the period is 8.
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4.2. Periodic solutions in Case 2

4.2.1. snsolution
To solve Eq.(30), we consider the periodic solutio

(56)φn = Asn(nK/p;m),

with the boundary conditionφ0 = 0, φp = A and
φp−1 = φp+1 for any positive integerp. For n = p,
Eq. (30)gives

(57)φp−1 = − A

2ν(A2 − y2)
,

and(56)with n = p − 1 gives

(58)φp−1 = Asn
(
K − (K/p);m) = A

cn(K/p;m)

dn(K/p;m)
.

Using the formula

(59)sn(u + v) + sn(u − v) = 2
snucnv dnv

1− msn2 usn2 v
,

and substituting(56) into (57), we obtain

2Asn(nK/p;m)cn(K/p;m)dn(K/p;m)

1− msn2(nK/p;m)sn2(K/p;m)

(60)= − Asn(nK/p;m)

ν(A2 sn2(nK/p;m) − y2)
,

which simplifies to

(61)
(−y2msn2(K/p;m) + A2)cn2 = 0.

This is satisfied for alln provided

(62)m = A2

y2 sn2(K/p;m)
.

From(62), (57)and(58), we obtain

(63)m = 4ν2A2(A2 − y2)2

A4 −
√

− D
2ν

(A2 − 4ν2(A2 − y2)2)

.

Periodic solutions in terms of elliptic Jacobi fun
tions allow us to obtain variety of other particular pe
odic solutions. Their stability is still an open questio

5. Conclusions

In conclusion, we have studied, analytically, t
discrete complex cubic–quintic Ginzburg–Land
equation with a non-local quintic term. We have fou
a set of exact solutions which includes, as parti
lar cases, bright and dark soliton solutions, cons
magnitude solutions, periodic solutions in terms of
liptic Jacobi functions in general form, and particu
cases of periodic solutions. We have given the ra
of parameters where various of these exact solut
exist. Using numerical simulations, we have fou
that (some) soliton solutions of the discrete comp
cubic–quintic Ginzburg–Landau equation are sta
in contrast to the soliton solutions of the discrete co
plex cubic Ginzburg–Landau equation.

A comparison between our discrete complex cub
quintic Ginzburg–Landau equation and other mod
forms an interesting topic. In our model, exact so
tions exist in a narrow region of parameter space.
study of (numerical) solutions outside the region of
istence of exact solutions can also be a fruitful aven
Indeed, this is a subject that deserves further inve
gation.
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