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We consider the family of 2nd order rogue wave rational solutions of the nonlinear Schrödinger equation
(NLSE) with two free parameters. Surprisingly, these solutions describe a formation consisting of 3
separate first order rogue waves, rather than just two. We show that the 3 components of the triplet
are located on an equilateral triangle, thus maintaining a certain symmetry in the solution, even in its
decomposed form. The two free parameters of the family define the size and orientation of the triangle
on the (x, t) plane.

© 2011 Elsevier B.V. All rights reserved.
Rogue waves are in their emerging state of research [1–3]. They
appear not only in oceanic conditions [4] but also in optics [5,6],
superfluids [7], Bose–Einstein condensates [8] and in the form
of capillary waves [9]. Common features and differences between
them in various fields of physics are under intense discussion [10].
New studies of rogue waves in any of these disciplines enrich
the concept and lead to progress towards a comprehensive under-
standing of this still mysterious phenomenon.

One of the formal ways to describe rogue waves mathematically
is the so-called Peregrine solution [11,12]. This is a solution of the
nonlinear Schrödinger equation (NLSE) which is localised both in t
and x, thus describing a unique wave event. This solution is also
unique in a mathematical sense, as it is written in terms of ra-
tional functions, in contrast to many other known solutions of the
NLSE. Recently, the existence of these solutions has been proven
in optical experiments [13]. The experimental observation of them
in a water tank [14] may be an indication that they can describe
rogue waves in oceanic conditions.

The Peregrine solution is not the only one localised both in t
and x [15,16]. In fact, there is an infinite hierarchy of rational so-
lutions which have the same property [16–20]. These have higher
amplitudes and may serve as prototypes of even bigger waves at
the water surface. Symmetric solutions of this type, with a single
maximum, have been studied in several recent publications [17].
Recently, Dubard et al. [18] and Gaillard [19] from Matveev’s group
have presented general formulations for rational solutions of arbi-
trary order in terms of Wronskian determinants. Despite the ex-
plicit form of the solutions, their reduction to the simplest and
most accessible structure is still cumbersome [18,19].

One advantage of the general formulation [18,19] is that the fi-
nal expression contains a few arbitrary parameters that allow us
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to split the symmetric form solution into a multi-peaked solution,
with the distances between the peaks being dependent on the free
parameters. A surprising part of such analysis is that the second-
order rational solution can be decomposed into three solutions
of the first order. Our efforts to find a rational solution that can
be decomposed into two solutions of the first order have failed.
Taking into account that operating with polynomials of the fourth
order in the relevant expressions is a straightforward exercise, we
come to the conclusion that such solutions do not exist. This re-
sult shows that higher-order rational solutions are rather involved
and deserve further careful study.

The mathematics behind the decomposition revolve around the
fact that solutions obtained by Dubard et al. [18] and Gaillard [19]
have free real parameters, thus showing that these solutions are
families rather than isolated solutions. This new feature of the
higher-order rational solutions requires special attention, as the
process of splitting is indeed unique and does not have obvious
analogues.

We start the analysis by writing the focusing NLSE. Namely:

i
∂ψ

∂x
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0. (1)

Earlier [17], we described rational solutions of the NLSE with
the following basic structure:

ψn(x, t) =
[
(−1)n + Gn(x, t) + iKn(x, t)

Dn(x, t)

]
eix (2)

where the polynomials Gn and Kn have orders m(n) that are re-
lated to the order of the solution n and are lower than that of Dn .
The denominator Dn should have no zeros to ensure that the so-
lution is finite everywhere. The “first order” (n = 1) solution,

ψ1(x, t) =
[
−1 + 4

1 + 2ix

1 + 4x2 + 4t2

]
eix (3)

is also known as the Peregrine soliton. It is shown in Fig. 1a.

http://dx.doi.org/10.1016/j.physleta.2011.05.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:ana124@physics.anu.edu.au
http://dx.doi.org/10.1016/j.physleta.2011.05.047


A. Ankiewicz et al. / Physics Letters A 375 (2011) 2782–2785 2783
Fig. 1. (a) First order rogue wave. (b) Second order rogue wave with zero offsets
γ = 0 and β = 0.

The second-order solution without free parameters has been
presented earlier in [15–17]. Solutions which include offset param-
eters can be derived from Eq. (3.87) of the book [21] by taking
the limit κ → 0. This solution is essentially the one derived by
Dubard et al. [18] and Gaillard [19] apart from the point that the
coefficients are adapted to the NLSE in a different form, i.e. with
different scaling coefficients.

The 2nd order rogue wave can be written as the n = 2 version
of Eq. (2), where

G2 = 12
[
3 − 16t4 − 24t2(4x2 + 1

)
− 4βt − 80x4 − 72x2 + 4γ x

]
, (4)

K2 = 24

[
x
(
15 − 16t4 + 24t2 − 4βt

)

− 8
(
4t2 + 1

)
x3 − 16x5 + γ

(
2x2 − 2t2 − 1

2

)]
, (5)

and

D2 = 64t6 + 48t4(4x2 + 1
) + 12t2(3 − 4x2)2 + 64x6

+ 432x4 + 396x2 + 9 + β
[
β + 4t

(
12x2 − 4t2 + 3

)]
+ γ

[
γ + 4x

(
12t2 − 4x2 − 9

)]
, (6)

where β and γ are arbitrary real constants. For this solution, D2
consists of polynomials of 6th order, while G2 and K2 are of 4th
and 5th orders, respectively. The coefficients are different from
those in [18] because of the particular form of the NLSE that we
use here. These expressions have free parameters γ and β that
distinguish them from those we obtained earlier [17]. When γ = 0
and β = 0, these solutions coincide with the expressions obtained
in [17]. Non-zero parameters add nontrivial changes to the shape
of the higher-order rogue wave.

Generally, we can add several free parameters to any solution
of the NLSE [21]. The simplest ones are translations along the t
and x axes. These shift the solutions located at the origin to an
arbitrary position on the (x, t)-plane. These have been omitted in
all previous analyses. The parameters γ and β are different from
these trivial translations. They describe the relative positions of the
first order solutions in the triplet. Finding these relative positions
in terms of γ and β is the subject of our analysis below.

As mentioned, when γ = 0 and β = 0, the solution is sym-
metric and has a single maximum. It is shown in Fig. 1b. The
amplitude of the second order solution is 5/3 times higher than
that of the Peregrine solution. In the absence of translations, the
maximum is located at the origin. In this case, the expressions (4)–
(6) coincide with our formulae in [17]. Non-zero parameters split
the single maximum solution into three parts, where each can be
approximately expressed as a shifted first-order solution. Two ex-
amples are shown in Fig. 2. As we can see, there are sets of offsets
that locate the three maxima on the plane relative to each other.
How are they related to the parameters γ and β?
Fig. 2. Rogue wave triplets. Parameters (a) γ = 200 and β = 0; (b) γ = 0 and β =
100.

To start with, we consider the simple case β = 0. At the same
time, we assume γ is large but arbitrary. In this case, the three
peaks of the solution are located at the corners of a triangle. In
order to find their approximate locations, we start with a little
numerical analysis. From numerical calculations, we find that the
offsets of the peaks are approximately:

x1 ≈ 0.4997γ 1/3, (7)

x2 = x3 ≈ −0.253γ 1/3, (8)

and

t2 = −t3 ≈ 0.436γ 1/3, (9)

where the indices denote the peak numbering. The approximation
works well when separations are notably larger than the width of
each first order solution.

This forms a triplet consisting of one peak at (x1,0) and two
others at (x2,±t2), as shown in Fig. 2a. Thus, we can attempt to
find the separations analytically by setting

x1 = 1/p, x2 = − f1/p, t2 = f2/p,

and assuming p to be small, with t1 = 0, x3 = x2 and t3 = −t2.
We find the overall denominator, D = d1d2d3, as a 6th order poly-

nomial. By equating this with D2(x, t), we find f1 = 1
2 , f2 =

√
3

2 ,
while p = 2/γ 1/3. Thus x1 = 1

2 γ 1/3, x2 = − 1
4 γ 1/3, while t2 =√

3|x2| =
√

3
4 γ 1/3 ≈ 0.433γ 1/3, which agree with the above esti-

mates. For each of the 3 peaks, the radial distance from the origin
is R = 1/p = 1

2 γ 1/3. So the relative offsets are

x2

x1
= −1

2
and

t2

x1
=

√
3

2
. (10)

If γ = 0, then a similar procedure shows that there is one peak
at

x1 = 0, t1 = 1

2
β1/3

and two others at

x2 = −x3 =
√

3

4
β1/3, t2 = −1

4
β1/3,

as shown in Fig. 2b. To put it simply, the triplet is rotated around
the origin by 90◦ relative to the case β = 0, while the orientation
of each of the first order solutions in the (x, t)-plane remains the
same. Here, the radial distance of each first order solution from the
origin is R = 1

2 β1/3.
After these simple estimates, we turn to the case when both γ

and β are non-zero. When γ and β are not very small, the so-
lution consists basically of 3 well-separated fundamental (n = 1)
rogue waves on a unit background. This means that, roughly, we
can approximate the solution as the sum of three first-order solu-
tions:

ψ2(x, t) ≈ eix

[
−1 + 4

3∑ 1 + 2i(x − x j)

d j

]
(11)
j=1
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Fig. 3. Rogue wave triplets. Parameters (a) γ = 20 and β = 40; (b) γ = 100 and
β = −400.

where

d j = 1 + 4(x − x j)
2 + 4(t − t j)

2, (12)

j = 1,2,3. In general, all six offsets (x j, t j) are non-zero. In each
case, the ‘centre-of-mass’ is at the origin (0,0). This holds for any
(γ ,β) (see Fig. 3). The radial distance from the centre for arbitrary
γ and β is

R ≈ 1

2

(
β2 + γ 2)1/6

. (13)

For the case γ = 0, one of the components is located on the x
axis; we set this angle as zero. In the general case of non-zero γ ,
the angular offset from this zero angle is

θ = −1

3
arctan

(
β

γ

)
= −1

3
arcsin

(
β

8R3

)
. (14)

Then all 3 components are equally spaced around the circle. Con-
sequently, the other 2 angles are θ ± 2π

3 . If γ = 0, then θ = −π
6 ,

while β = 0 leads to θ = 0, agreeing with the above analysis. Thus,
using a straightforward technique, for R � 1, we have found ana-
lytic values for the positions of the triplet which forms the rogue
wave of the order of n = 2.

Our main result here is that the 3 first order components in
the second order solution are located symmetrically on a circle,
with 120 degrees between the peaks, independent of the values
of γ and β . Note that, in [19], one axis has a factor of 1/2 in
its normalization, so this causes the neat circular arrangement to
be lost. When the radius of the circle is higher than the width
of individual components, this circular location can be attributed
to the maxima of each component. When they are located closer
to each other, the three peaks join together, with the symmetric
second order rogue wave emerging in the limit of γ = 0 and β = 0.

Now, the question is: if we have two Peregrine solitons nearby
do we have to look for the third one? Our analysis tells us: yes,
we do. Two Peregrine solitons do not exist without the third one
unless they are so far from each other that they have no significant
interaction. Moreover, all three have to be located on a circle on
the (x, t)-plane.

Does our result have any consequences for the observation of
rogue waves in the ocean? We are not in a position to answer
this question now. However, the existence of the so-called “three
sisters” i.e. three big waves on the water surface in a row is one of
the facts discussed in the literature [22].

Generalisation to even higher order solutions is not trivial.
However, we can see analogous symmetries from numerical re-
sults. The third order rational solution with non-zero offset param-
eters is shown in Fig. 4. As we can see, the solution remains highly
symmetric with five components located symmetrically on a circle
with the sixth one in the middle of the circle. The complete anal-
ysis of these cases is well beyond the simple concepts presented
Fig. 4. Rogue wave sextet (n = 3).

here. Just to give a hint, we suppose that the general n-th order
rogue wave can be approximated as follows:

ψn(x, t) ≈ eix

[
−1 + 4

n(n+1)/2∑
j=1

1 + 2i(x − x j)

d j

]
, (15)

where the denominators are d j = 1 + 4(x − x j)
2 + 4(t − t j)

2.
There are n(n + 1)/2 terms which produce several components

in the complete solution. (When n = 3, the number of peaks is 6,
as shown in Fig. 4.) The denominator product then can be pre-
sented in the form,

n(n+1)/2∏
j=1

d j = d1d2 · · ·dn(n+1)/2.

This polynomial has order n(n + 1), which equals the order of the
denominator in the exact solution of order n [17]. Further steps
can be carried out in analogy with the calculations above.

In conclusion, we have found that the second order rational
solution of the NLSE splits into three, rather than two, Peregrine
solutions when the offsets are non-zero. The individual compo-
nents are located on a circle with 120 degrees angular separation
between the peaks. There is no way to construct an “intermediate”
solution which would contain only two Peregrine solutions. Thus,
from a physical point of view, we still encounter a mystery in the
way higher order rogue waves are formed.
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