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We have numerically calculated chaotic waves of the focusing nonlinear Schrr̈odinger equation (NLSE),
starting with a plane wave modulated by relatively weak random waves. We show that the peaks with
highest amplitude of the resulting wave composition (rogue waves) can be described in terms of exact
solutions of the NLSE in the form of the collision of Akhmediev breathers.
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1. Introduction

The one-dimensional self-focusing nonlinear Schrödinger equa-
tion (NLSE) is a model which approximates the wave dynamics in
the ocean [1–8]. Indeed, before trying to understand the results of
simulations for two-dimensional equations [9] it is worthwhile to
gain a more detailed understanding of what is happening within
the one-dimensional model. This may be an easier task, since the
NLSE model is completely integrable and all solutions can be ana-
lyzed within the framework of the inverse scattering technique, or
at least at a qualitative level based on our understanding of NLSE
solutions.

The importance of modulation instability in creating ocean
waves was noticed by Peregrine [10]. Small amplitude waves may
grow to higher amplitudes if their frequencies are within the fre-
quency band of positive gain. The presence of many frequencies in
the wave dynamics results in their nonlinear interaction. Thus, the
overall picture is rather complicated. However, if we are interested
in waves of the highest amplitude, the problem can be simplified
and effectively reduced to the interaction of two independent fre-
quencies within the positive-gain band.

It is well known that the nonlinear Schrödinger equation
(Eq. (1), see below) has soliton solutions that are localized along
the t axis. Solitons can exist on a zero background (completely lo-
calized) or on a plane wave background (Ma solitons [11]). Another
limiting case is the one formed by solutions that are localized
along the x axis (“Akhmediev breathers” [1,12–16]). These are
always located on a plane wave background and represent a non-
linear stage of evolution of the modulation (Benjamin–Fair [17] or
Bespalov–Talanov [18]) instability. Localization in the x-direction is
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just a manifestation of Fermi–Pasta–Ulam (FPU) recurrence for the
NLSE-model [19,20].

Each class of the above-mentioned solutions is a particular case
of a more general multi-parameter family of solutions that describe
periodic waves in the x and t directions [21,22]. The interrela-
tion between these solutions is schematically represented in Fig. 1.
A more accurate representation can be found in Fig. 3.2 of Ref. [22].
This diagram shows that the Peregrine solution is a limiting case of
a one-parameter family of Ma solitons and also of a one-parameter
family of Akhmediev breathers (ABs). Likewise, a soliton solution is
a limiting case either of a one-parameter family of cnoidal waves
or Ma solitons, etc. Finally, all the above solutions are limiting
cases of a two-parameter family of first-order solutions of the NLSE
[21] that fill the entire triangle in Fig. 1 (see also Ref. [22, Chap-
ter 3]). Generally speaking, this family consists of solutions which
are periodic along both the x and t axes. When one of the periods
tends towards an infinite value, we have the limiting case of either
an ordinary soliton or the “Akhmediev breather”. When both peri-
ods are infinite, then the general solution has, as a limiting case,
the simplest rational solution or “Peregrine soliton”. The latter is
localized in both directions, x and t .

The “first-order solutions” are the lowest-order solutions that
the NLSE admits (apart from the trivial zero solution). It is very
unlikely that they can be observed in the ocean in pure form.
The actual wave dynamics consists of a nonlinear superposition of
many simple periodic solutions. Just as two-(or more)-soliton so-
lutions are nonlinearly combined from one-soliton solutions, the
multi-periodic solutions can be combined from the “first-order”
ones. In particular, two “Peregrine solitons” can be combined into
a single more complicated doubly-localized structure with a much
higher amplitude [23,24]. The superposition of several simple pe-
riodic solutions can take the form of chaotic waves.

Now, the question is: what is a rogue wave? Is it just a sin-
gle soliton, or a combination of several periodic solutions? When
dealing with chaotic solutions, we are interested in the maximal
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Fig. 1. Interrelation between various solutions of the NLSE.

amplitudes of the local field distribution. Supposedly, these local
maxima are the rogue waves that appear in the ocean from time
to time. In this Letter, we give a possible answer to the above
question.

Indeed, waves in the ocean are chaotic. This means that their
spectra contain a continuous range of frequencies. If we model the
wave phenomena in the ocean by the NLSE, we have to take into
account the multiplicity of frequencies that exist in the initial con-
ditions. The self-focusing NLSE has a plane wave solution that is
unstable relative to modulation instability. All frequencies that are
in the instability band are amplified. After amplification, they reach
their maximal amplitudes and then decay to zero [16]. Thus, their
interaction can happen over a limited range of propagation dis-
tances, just like the interaction of two solitons. This means that
for a relatively quiet ocean, and in order to observe the local max-
ima of the field, we can limit ourselves to the interaction of just
two “Akhmediev breathers”. A collision of three of them would be
a relatively rare event. At the same time, these collisions happen
again and again, thus producing many local maxima of the field.
Indeed, there are many frequencies in a random initial condition
and interactions between “Akhmediev breathers” of various fre-
quencies are unavoidable. In this respect, we should mention that
the situation is a little different from the collision of two Peregrine
solitons. Each is localized in two directions, and so it would then
be less likely to have two of them located in the same position. Ad-
ditionally, they need longer distances to develop, since the growth
rate for them tends to zero and these waves grow according to a
power law.

To answer the question of what is the nature of rogue waves,
we solved the NLSE with initial conditions in the form of a plane
wave with a random modulation. Thus, all frequencies within the
instability band will be amplified, but the overall maximum of the
field remains limited. We investigated all local maxima of the gen-
erated field and chose the ones that have the highest amplitude at
the crest. We then analyzed some absolute maxima and compared
them with the result of exact solutions in the form of (i) the col-
lision of two “Akhmediev breathers” and (ii) second-order rational
solutions. Comparisons show clearly that all of these maxima can
be interpreted in terms of the above collisions.

The results that we present in this Letter can equally well be
applied to the ocean waves and waves in optical fibers [25,26]. In
contrast to the undesirable rogue waves in the ocean [1,27], gener-
ation of high energy pulses is one of the ultimate goals of modern
optics [28,29]. The knowledge of the mechanisms of creation of the
rogue waves allows us to generate them deterministically rather
than relying on chaotic initial conditions. Indeed, the first order
solutions of NLSE or “Akhmediev breathers” have been already ob-
served by Van Simaeys, Emplit and Haelterman [19]. Observation of
higher order solutions is just a question of adding more harmon-
ics into the initial modulation and adjusting properly the length of
the fiber. Thus, from technical point of view this does not seem to
be very difficult.

2. Numerical simulations with initial conditions in the form
of a plane wave + random noise

The integrability of the nonlinear Schrödinger equation was dis-
covered by Zakharov and Shabat [30]. As numerous applications
were found, the equation became quite popular. In normalized
form, it can be written as:

i
∂ψ

∂x
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0 (1)

where x is the propagation distance and t is the transverse vari-
able. This notation is standard both in nonlinear fiber optics [31]
and in the theory of ocean waves [3]. Note that ψ represents the
envelope of a physical solution, and, in optics, its squared modu-
lus represents a measurable quantity, viz. intensity. For the ocean
waves, we assume [14] that there is a carrier wave with wave-
length λ(≈ ω−1) comparable to the central region of the envelope.
So the actual water height, relative to the equilibrium sea-level,
would be |ψ | cos(ωt). The potential energy of a segment in t , of
width �t , is then proportional to |ψ |2�t . Therefore, this value for
ocean waves acts like the intensity in optics.

We used, as the initial condition when solving Eq. (1), a plane
wave with random noise superimposed on it, viz.

ψ(x = 0, t) = [
1 + μ f (t)

]
(2)

where f (t) is a normalized complex random function whose stan-
dard deviation is σ = 1/

√
3. When multiplied by μ, this gives the

standard deviation for the whole function (2). Deviations from the
average amplitude, 1, can be relatively high. However, the spectral
amplitudes at each frequency component are still very small in
comparison with the zero spectral component. It is important that
both real and imaginary parts of the function f (t) are independent
random variables, each with a Gaussian correlation function.

To be specific, the real and imaginary parts of f (t) are con-
structed independently in the following way. The numerical dis-
cretization of either the real or imaginary parts of f (tk) is
obtained from a sequence of random numbers uniformly dis-
tributed in the interval [−1,1], correlated with a Gaussian,
(2/

√
πτ)exp [−2(k/τ )2]. When τ = 0 in this expression, the ran-

dom sequence is completely uncorrelated. When τ �= 0, the cor-
relation is proportional to the mean width in the t-direction of
the random waves. Initially, at the linear stage of evolution, the
spectral components propagate with a variety of velocities, i.e. at
almost any angle relative to the start line, x = 0. As τ is inversely
proportional to the width of the initial spectrum, the results of
evolution should depend on whether this spectrum is wider or
narrower than the spectral band of modulation instability. The lat-
ter is defined by the amplitude of the plane wave. In our case the
amplitude is 1, so the spectral band for modulation instability is
twice 2.

A typical example of the initial condition (2) is shown in Fig. 2.
The spectrum of this initial condition is shown in Fig. 3(a). The
component at f = 0 has been removed from the figure as it ex-
ceeds the rest of the spectral components by several orders of
magnitude. According to the above estimate, the initial spectrum
is located completely within the spectral band of modulation in-
stability, so that all spectral components will be amplified. The
spectra at later stages of the evolution (see Fig. 3(b)) are wider
due to the four-wave mixing processes. The initial field ampli-
tudes are normalized to give a mean value of the field intensity
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Fig. 2. Typical example of a small fraction of the initial condition (see Eq. (2)) in the
form of a plane wave perturbed by a random function f (t) (dotted blue line) with
an amplitude of μ = 0.6, where the mean width of the irregularities is τ = 3.9. The
full temporal interval is much wider and extends from t = −1000 to t = 1000. The
red solid curve shows part of the field modulus, |ψ |, at x = 12.06 where it reaches
its highest value, viz. 5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

Fig. 3. Spectra of (a) the initial condition, and (b) the field at x = 12.06.

equal to 1, i.e. 〈|ψ(0, t)|2〉 = 1. As a consequence of the conserva-
tion of energy, this magnitude is a constant during the propaga-
tion.

Initially, each spectral component of the random perturbation
within the instability band grows exponentially, but, at a later
stage, we arrive at an average excited state of the ocean surface.
Due to the recurrence phenomenon for each modulation instability
wave [16], the field amplitudes remain finite. We are interested in
the highest amplitudes of the resulting “ocean surface”. In each nu-
merical run, we singled out the maximum values of the field which
can potentially be “rogue waves”. Namely, at each x, we found the
absolute maximum of the function |ψ(x = const, t)| and plotted it
against the x value. The corresponding plot for the initial condition
presented in Fig. 2 is shown in Fig. 4. At some points, the maxi-
mum of the function can become the crest of the wave, i.e. a local
maximum in the two directions, x and t . The highest maximum in
the plot of Fig. 4 can be considered as the most ferocious “rogue
wave”. This happens, in this numerical example, at x = 12.06. The
part of the field amplitude with this maximum is shown, in red,
in Fig. 2. The position where the maximum appears is completely
random, of course.
Fig. 4. The maximum of the chaotic field φ(t) = |ψ(x = const, t)| vs. propagation
distance, x, for the case of the initial condition partially represented in Fig. 2. Note
that the average amplitude of the two-dimensional field, |ψ(x, t)|, is around 1, i.e. it
is much lower. The highest maximum in this simulation is 5. It appears at x = 12.06.

Fig. 5. First-order rational solution (Eq. (3)).

The highest amplitude that appears in this numerical run is
close to 5. This amplitude cannot be associated with any of the
first-order solutions since the maximum amplitude in that case
is 3. The latter is attributed to the first-order rational solution
(Peregrine soliton):

ψ =
[

1 − 4
1 + 2ix

1 + 4x2 + 4t2

]
eix. (3)

This solution is shown in Fig. 5. All solutions in the present Letter
are normalized in such a way that the starting plane wave has the
amplitude equal to 1. Due to the conservation of energy, the av-
erage amplitude always remains equal to 1. Then the amplitudes
at the wave crests are found relative to this value. This is impor-
tant because all the exact solutions written below have the same
reference background amplitude. The latter can be rescaled when
necessary (see scaling transformation in [22]).

It is worth noting that 5 is exactly the amplitude of the second-
order rational solution of the NLSE [24]. For the sake of complete-
ness, we present this solution here:

ψ =
[

1 − G + iH

D

]
eix (4)

where G , H and D are given by:

G = − 3

16
+ 3

2
t2 + t4 + 9

2
x2 + 6t2x2 + 5x4,

H = x

(
−15

8
− 3t2 + 2t4 + x2 + 4t2x2 + 2x4

)
,
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Fig. 6. Higher-order rational solution (Eq. (4)).

D = 3

64
+ 9t2

16
+ t4

4
+ t6

3
+ 33

16
x2 − 3

2
t2x2

+ t4x2 + 9

4
x4 + t2x4 + x6

3
.

This solution is shown in Fig. 6. Because its maximum amplitude is
equal to 5, it can, in principle, explain the high amplitudes that we
observed in the numerical simulations. However, we should take
into account that this solution is a nonlinear superposition of two
rational solutions of first-order. As each of them is localized both
in x and t directions, their appearance at the same position simul-
taneously would be an extremely rare event. So, we have to look
for other possibilities.

3. Akhmediev breathers and their collisions

As an alternative, we consider the collision of two ABs. These
are extended in the t direction, so such a collision would have
a higher chance of occurring in a chaotic wave field. In fact, the
superposition of any two solutions close to the top of the triangle
in Fig. 1 would result in a maximal amplitude close to 5. In order
to construct this solution, we will use the Darboux transformation.

The condition of integrability of the NLSE is the compatibility
of the two following linear equations:

Rt = lJR + UR,

Rx = l2JR + lUR + 1

2
VR, (5)

where U, J and V are the following matrices:

U =
[

0 iψ∗
iψ 0

]
, J =

[
i 0
0 −i

]
, (6)

V =
[−i|ψ |2 ψ∗

t−ψt i|ψ |2
]

, (7)

while R is a column matrix

R =
[

r
s

]
(8)

and l is a complex eigenvalue.
Eqs. (5) establish a one-to-one correspondence between the so-

lutions of the NLSE and the solutions of the linear system. The
linear system can be solved with ease for the case of trivial so-
lutions of the NLSE such as the zero solution or the plane wave
solution. In order to deal with more complicated solutions, we
can start with one of the above as a “seeding solution” and use
it in Darboux transformations to obtain more complicated ones.
The zero solution allows us to construct the hierarchy of multi-
soliton solutions [32], while the plane wave solution results in the
hierarchy of solutions related to modulation instability [34].

The eigenvalue l in Eqs. (5) is practically an arbitrary complex
number (within certain limits) that appears as the parameter of
the family of solutions that are going to be constructed. In the
case of the solutions related to modulation instability, the real part
of the eigenvalue is the “velocity” of the solutions, i.e. the an-
gle that the one-dimensionally localized solution forms with the
x-axis, while the imaginary part characterizes the frequency of the
periodic modulation. As we are going to build the solution that is
a collision of two first-order breathers, we select two solutions of
the family and thus we need two eigenvalues, i.e. l = l1 and l = l2.
For higher-order solutions to exist, these eigenvalues have to be
different.

Following Ref. [34], we shall assume that the seeding solution
of the NLSE is a plane wave of amplitude 1, i.e.:

ψ0 = exp(ix). (9)

Two linear functions r = r(x, t) and s = s(x, t) that make the sys-
tem (5) compatible with ψ = ψ0 are

r = {
A exp

[
i(2χ + κt + lκx)/2

]
− B exp

[−i(2χ + κt + lκx)/2
]}

exp(−ix/2),

s = {
A exp

[
i(−2χ + κt + lκx)/2

]
+ B exp

[−i(−2χ + κt + lκx)/2
]}

exp(ix/2) (10)

where χ = 1
2 arccos( κ

2 ), κ = 2
√

1 + l2 and A and B are constants
of integration, where we can embed the arbitrary center (x0,t0) of
the solution, namely

A = exp
[
(+ilκx0 − iκt0 − iπ/2)/2

]
,

B = exp
[
(−ilκx0 + iκt0 + iπ/2)/2

]
. (11)

The phase shifts of π/4 are added to center the solutions at the
origin when the translation values are zero. Below, we shall as-
sume, without loss of generality, that x0 = 0 and t0 = 0.

Substituting A and B into (10) we find:

r1 = {
exp

[
(2iχ1 + iκ1t − iπ/2 + il1κ1x)/2

]
− exp

[
(−2iχ1 − iκ1t + iπ/2 − il1κ1x)/2

]}
exp(−ix/2),

s1 = {
exp

[
(−2iχ1 + iκ1t − iπ/2 + il1κ1x)/2

]
+ exp

[
(2iχ1 − iκ1t + iπ/2 − il1κ1x)/2

]}
exp(ix/2), (12)

where κ1 = 2
√

1 + l21, χ1 = 1
2 arccos(κ1/2). We have added the

subscript 1 to r, s and to the rest of variables, as they refer to
the eigenvalue l = l1. For the second eigenvalue, l = l2 (see below),
all subscripts 1 have to be changed to 2.

The nontrivial solution that is found at the first step of the Dar-
boux scheme is given by:

ψ1 = ψ0 + 2(l∗1 − l1)s1r∗
1

|r1|2 + |s1|2 . (13)

Substituting r1 and s1 into this equation is a straightforward pro-
cedure. Explicit forms are given in Appendix A. A typical solution
obtained when the complex eigenvalue l has both real and imag-
inary parts being nonzero is shown in Fig. 7. As discussed above,
the real part of l1, here labelled v , is responsible for the velocity
of the breather, i.e. it defines the angle between the line of max-
ima of the solution and the t-axis. Here, the peaks of this periodic
solution are located at a finite angle to the t axis.
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Fig. 7. Single Akhmediev breather with nonzero velocity (Eq. (13)). The eigenvalue
is: l1 = 0.08 + i0.9.

Fig. 8. Single Akhmediev breather with zero velocity (Eq. (14)). It corresponds to the
eigenvalue l1 = i0.9.

For a purely imaginary eigenvalue l1 = iν1, i.e. l1i = ν1, we have
v = 0, d1r = 0, χ1i = 0 and κ1i = 0 and we can further simplify the
solution, as cos(2χ1r) = κ1r/2. We obtain:

ψ1 =
[

1 − κ2
1 cosh δ1x + 2iκ1ν1 sinh δ1x

2(cosh δ1x − ν1 cosκ1t)

]
exp

[
i(x + π)

]
, (14)

where δ1 = ν1κ1 and κ1 = 2
√

1 − ν2. It is shown in Fig. 8. Direct
substitution shows that Eq. (14) satisfies the NLSE for all values of
its parameter. This solution was found previously [16,21,23] using
a different technique. The value of κ1 defines the frequency of the
modulation along the t-axis. It can change from zero to 2. This

is the range of modulation instability, while δ1 = κ1

√
1 − κ2

1 /4 is

its growth rate. Taking the limit as κ1 → 0 directly gives the first-
order rational solution (3).

The higher-order solution that combines two independent fre-
quencies of modulation, κ1 and κ2, can be found using the next
step of the Darboux transformation. In order to do that, we use
the solutions r and s with a different eigenvalue, l = l2. The con-
stants x02 and t02 are again taken as zero, x02 = 0, t02 = 0.

r2 = {
exp

[
(2iχ2 + iκ2t − iπ/2 + il2κ2x)/2

]
− exp

[
(−2iχ2 − iκ2t + iπ/2 − il2κ2x)/2

]}
exp(−ix/2),

s2 = {
exp

[
(−2iχ2 + iκ2t − iπ/2 + il2κ2x)/2

]
+ exp

[
(2iχ2 − iκ2t + iπ/2 − il2κ2x)/2

]}
exp(ix/2). (15)
Fig. 9. Collision of two Akhmediev breathers with zero velocities (Eq. (17)). The
eigenvalues are: l1 = i0.6 and l2 = −i0.7.

These linear functions produce a solution of the NLSE that is
similar to (14). The solution of the linear set which corresponds to
the higher-order NLSE solution can be written in terms of r1, s1,
r2 and s2:

r12 = (l∗1 − l1)s∗
1r1s2 + (l2 − l1)|r1|2r2 + (l2 − l∗1)|s1|2r2

|r1|2 + |s1|2 ,

s12 = (l∗1 − l1)s1r∗
1r2 + (l2 − l1)|s1|2s2 + (l2 − l∗1)|r1|2s2

|r1|2 + |s1|2 . (16)

The higher-order solution of the NLSE then is:

ψ12 = ψ1 + 2(l∗2 − l2)s12r∗
12

|r12|2 + |s12|2 . (17)

For the explicit form of (17) we refer to Appendix B.
This solution is shown in Fig. 9 for ν1 = 0.6 and ν2 = 0.7.

Hence, the frequencies are κ1 = 1.6 and κ2 = 1.43. These frequen-
cies are incommensurate. Thus, the superposition has one absolute
maximum. With our choice of the integration constants, it is lo-
cated at the origin. Even in this case, the central maximum of the
solution is relatively high. It is certainly higher than the crests of
other wavelets in the solution. This maximum will reach the value
5 when both κ ’s approach 1.

A typical higher-order solution for the case of complex eigen-
values is shown in Fig. 10. The eigenvalues here are: l1 = 0.05 +
i0.9 and l2 = −0.05 + i0.9. The real part of each eigenvalue ±0.05
is its “velocity”. Thus, two ABs collide at a certain angle to each
other. In this geometry, when the velocities are finite and differ-
ent, the two breathers always collide in the space (x, t). Thus the
probability of creating a rogue wave is much higher than in the
case of the higher-order rational solution.

Qualitatively, the central part of the profile in each case looks
very similar to the higher-order rational solution. This is not un-
usual because the rational solutions are limiting cases of the ABs
in the infinite period limit. However, the probability of the over-
lapping in the two-dimensional space of the high-order rational
solutions is very low, while ABs will necessarily collide, at least at
one point. If they are moving with finite velocities, then their col-
lision is very similar to the collision of two solitons, except for the
direction of the localization and the periodicity of each breather.

4. Comparison of numerical simulations with the exact solutions

The above results show that it is indeed possible that “rogue
waves” can be attributed to higher-order solutions. In order to
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Fig. 10. Collision of two Akhmediev breathers with nonzero velocities (Eq. (17)).
Eigenvalues are: l1 = 0.05 + i0.9 and l2 = −0.05 + i0.9.

Fig. 11. (Dashed blue line) Amplitude profile of the chaotic wave along t around the
point of the highest maximum amplitude in Fig. 4. It is compared with (dotted red
line) the higher-order rational solution of the NLSE (Eqs. (4)) and (green solid line)
with the collision of two ABs (Eq. (17)) with l1,2 = ±0.05 + 0.99. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

confirm this conclusion, we made a detailed comparison of the
wave profile that appears in the simulations using random initial
conditions with the exact profiles defined by the analytic solu-
tions. These plots are presented in Figs. 11 and 12 along the t
and x directions, respectively. In each plot, the dashed blue line
is taken from the numerical simulations. The exact rational solu-
tion (Eq. (4)) is shown by the dotted red line, while the collision
of two Akhmediev breathers is shown by the green solid line.

The conclusion is that the amplitude profile around the peaks
indeed closely resembles both the second-order rational solution
and the result of the collision of two ABs. The central part of the
peak accurately follows each of the exact profiles. The discrepancy
in the tails of the peak are due to random smaller amplitude waves
surrounding the peak.

A qualitative description of the solution that starts with a ran-
dom function on the top of a plane wave would be the following.
As our model is integrable, the solution consists of the nonlinear
superposition of first-order periodic waves (see Fig. 1), Akhme-
diev breathers, Ma solitons and Peregrine solitons. Periodic waves
within and beyond the instability bandwidth maintain constant
amplitude and comprise a background for soliton-like solutions.
Soliton-like solutions have a chance to collide and increase the am-
plitude of the wave upon a collision. Rational solitons are localized
in each direction. Their dynamics is relatively simple: they ap-
pear from nowhere and disappear keeping a fixed location (in the
moving frame). Thus, the appearance of the higher-order rational
solution has a very low probability. Consequently, we mainly have
Fig. 12. Amplitude profiles around the highest maximum along the x-direction. The
notations are the same as in Fig. 11.

to consider collisions of Ma solitons and Akhmediev breathers. Ma
solitons are not created in our initial conditions, since we are con-
sidering relatively low amplitude perturbations to a plane wave.
Thus, we are left with only collisions of ABs. The latter appear from
small perturbations and reach finite amplitudes due to modulation
instability somewhere in the middle of the simulations.

Generally, there would be many spectral components within
the bandwidth with various small amplitudes for each component.
Thus, each component will grow at a separate rate, creating ABs.
The latter collide upon evolution, creating higher-order solutions,
as shown in the previous section. The collision of each pair creates
a maximum with the value of up to 5. Triple collisions may hap-
pen but they have much lower probability. If any wave is created
with the amplitude higher than 5, it can be the result of a triple
collision.

5. More detailed numerical simulations

In order to quantify the probabilities of appearance for various
values of the maxima, we considered two different initial condi-
tions. In each case, we used the common value of τ = 3.9, but
for μ, we used μ = 0.1 in one case while μ = 0.6 in the sec-
ond one. For these two cases, we plotted the number of maxima
appearing in each simulation within small fixed intervals of ampli-
tude, namely 0.05. Only maxima above a lower limit of 1.5 were
counted. The total number of maxima in each case equals 1.3 mil-
lion. In order to reach these numbers, we used wide intervals along
the t axis, in conjunction with long simulations over propagation
distance, x. Each simulation was repeated 50 times with new ini-
tial conditions that correspond to the same values of τ and μ.
These massive simulations allowed us to reach several thousands
of maxima within each small segment of amplitudes.

The results are presented in Fig. 13. The gray area corresponds
to the value μ = 0.1 while the vertically hatched area stands for
μ = 0.6. For more clarity, the upper part of each histogram is col-
ored (on-line only) in blue and red, respectively. The inset shows
separately the part of the same curves corresponding to the high-
est values of the maxima. The vertical axis here is highly magnified
in order to see the smaller number of maxima.

These results clearly show that higher initial amplitudes, μ,
shift the probability of appearance of wave maxima to higher val-
ues. The highest amplitudes that we observed in the simulations
with μ = 0.6 are around 5. The absolute maximum is always lim-
ited – a result which agrees with the conclusions of reference [33].
This means that the collision of two ABs is sufficient to explain the
appearance of rogue waves.

In order to look deeper into this problem, we separately studied
the influence of the two parameters that fix the initial conditions
that we are using, namely, the mean height (μ) and the mean
temporal width (τ ) of the initial waves. For each pair of values of
these parameters, we repeated the above-mentioned process, with
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Fig. 13. The number of maxima in each segment of a particular wave amplitude
for two simulations with different values of μ (μ = 0.1 – blue line, gray area) and
(μ = 0.6 – red line, vertically hatched area). The inset shows a magnification of the
same plot for higher values of the peak amplitude. Clearly, the peak amplitudes can
reach higher values as μ increases. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this Letter.)

Fig. 14. Probability distribution of peak amplitudes for various values of (a) τ and
(b) μ.

a number of realizations that was high enough to collect more
than a million maxima for each case. The number of maxima in
a certain interval around a given value of the amplitude (A), was
divided by the length of the interval and the total number of max-
ima to obtain the corresponding density of probability, p(A). These
are presented in Figs. 14(a) and 14(b). In order to observe more
clearly the probability of getting rogue waves, the region of high
amplitude is magnified 600 times in the y-direction.

In Fig. 14(a), μ = 0.1 and three different values of τ are con-
sidered. The red solid line is for τ = 1.5, the dashed green line is
for τ = 6, and the dotted blue line is for τ = 30. The maximum
amplitudes in these cases are around 5. The probability of getting
higher amplitudes increases as τ increases. Thus, when the initial
excitation of the “ocean” is relatively low, the appearance of rogue
waves can be completely explained by the collision of two ABs. The
small difference in the probabilities for various values of τ can be
explained by the different spectral components of the wave exci-
tation falling within the modulation instability band. This becomes
clear if we recall that the parameter τ , which describes the cor-
relation length of the initial noise, is inversely proportional to the
width of its spectrum.

In Fig. 14(b), we fixed τ = 12, and dealt with three different val-
ues of μ. The red solid line is for μ = 0.1, the green dashed line
for μ = 0.5, and the dotted blue line for μ = 0.8. This plot once
again shows a clear tendency to reach higher maximum ampli-
tudes at larger values of μ. For μ = 0.5 and 0.8, there are chances
to observe the maxima around 5.5 and even 6.5. These amplitudes
are clear evidence of the occurrence of triple AB collisions. Ap-
parently, this can happen for highly excited states of the ocean
surface, when the initial amplitudes of noise are comparable with
the plane wave amplitude.

6. Conclusions

In conclusion, we have shown that when modeling chaotic
waves in the ocean by the nonlinear Schrödinger equation, one of
the possible explanations for the appearance of rogue waves is the
collision of two Akhmediev breathers. Triple collisions can also be
observed but their probability is much lower.
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Appendix A. Explicit expressions for the solution of first-order

We can separate κ j and χ j (for j = 1,2) into real and imagi-
nary parts: κ j = κ jr + iκ ji , χ j = χ jr + iχ ji . These are given explic-
itly:

χ jr = 1

2
arccos

(
κ jr

p j + q j

)
,

and

χ ji = −1

2
arccosh

(
p j + q j

2

)
,

where

p j =
√(

1 + κ jr

2

)2

+ κ2
ji

4
,

and

q j =
√(

1 − κ jr

2

)2

+ κ2
ji

4
.

We can rewrite each function (Eq. (12)) r1 and s1 in terms of
one trigonometric function with a complex argument:

r1 = 2ie−ix/2 sin(G), s1 = 2eix/2 cos(H),

where

G = Ar + i Ai, H = Br + iBi,

with four real functions Ar, Ai, Br, Bi which in turn are given by
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Ar = χ1r + 1

2
(κ1rt + d1r x) − π

4
,

Ai = χ1i + 1

2
(κ1it + d1i x),

Br = −χ1r + 1

2
(κ1rt + d1r x) − π

4
,

Bi = −χ1i + 1

2
(κ1it + d1i x).

Here d1 = d1r + id1i = l1κ1, so d1r = v1κ1r − l1iκ1i and d1i = v1κ1i +
l1iκ1r .

Thus, we get:

ψ1 =
[

1 + 8il1i

D1
cosh(Bi − iBr) sinh(Ai + i Ar)

]
eix, (18)

where

D1 = cos(2Br) − cos(2Ar) + cosh(2Ai) + cosh(2Bi). (19)

For complex eigenvalue l1 = v1 + il1i , we get

ψ1 = F1 + i F2

D3
eix (20)

where the real functions are given by:

F1 = 2 cosh
(
κ1rl1i x + κ1i(t + v1x)

)(
cosh(2χ1i) − 2l1i sin(2χ1r)

)
+ 2 cos

(
κ1il1i x − κ1r(t + v1x)

)(
2l1i cosh(2χ1i) − sin(2χ1r)

)
,

F2 = 4l1i
(
cos(2χ1r) sinh(κ1it + κ1rl1i x + κ1i v1x)

− sin
(
κ1il1i x − κ1r(t + v1x)

)
sinh(2χ1i)

)
and

D3 = 2 cosh(κ1it + κ1rl1i x + κ1i v1x) cosh(2χ1i)

− 2 cos(κ1rt − κ1il1i x + κ1r v1x) sin(2χ1r).

These equations can be simplified slightly more by noting that

cos(2χ1r) = κ1r/(p1 + q1)

while

cosh(2χ1i) = (p1 + q1)/2.

However, this is not really necessary. Thus, we have the solution of
the first order with nonzero velocity (20) in terms of real variables.
When v1 = 0, this solution reduces to Eq. (14).

Appendix B. Higher-order explicit solution

Just as for r1 and s1, we can rewrite the linear functions r2 and
s2 using single trigonometric functions with a complex argument:

r2 = 2ie−ix/2 sin(C), s2 = 2eix/2 cos(D),

where the arguments C = Cr + iCi, D = Dr + iDi , for real functions
Cr, Ci, Dr, Di which in turn are given by

Cr = χ2r + 1

2
(κ2rt + d2r x) − π

4
,

Ci = χ2i + 1

2
(κ2it + d2i x),

Dr = −χ2r + 1

2
(κ2rt + d2r x) − π

4
,

Di = −χ2i + 1

2
(κ2it + d2i x),

where d2 = d2r + id2i = l2κ2. Linear functions r2 and s2 can also be
written in terms of trigonometric and hyperbolic functions of real
arguments:
r2 = [
2i cosh(m2 + χ2i) sin(u2 + χ2r)

− 2 cos(u2 + χ2r) sinh(m2 + χ2i)
]

exp

(
− ix

2

)
,

s2 = 2
[
cos(u2 − χ2r) cosh(m2 − χ2i)

− i sin(u2 − χ2r) sinh(m2 − χ2i)
]

exp

(
ix

2

)
, (21)

where u2 = (κ2rt + d2r x)/2 − π
4 and m2 = (κ2rt + d2i x)/2.

The higher-order solution of the NLSE is:

ψ12 = ψ1 + 2(l∗2 − l2)s12r∗
12

|r12|2 + |s12|2 (22)

where

r∗
12e−ix/2 D1/2

= −4l1i cosh(Bi − iBr) cosh(Di + iDr) sinh(Ai + i Ar)

+ [
(v2 − v1 + il1i − il2i)

(
cos(2Ar) − cosh(2Ai)

)
+ (v1 − v2 + il1i + il2i)

(
cos(2Br) + cosh(2Bi)

)]
× sinh(Ci + iCr)

and

s12e−ix/2 D1/2

= −4il1i cosh(Bi − iBr) sinh(Ci − iCr) sinh(Ai + i Ar)

+ [
(v2 − v1 + il1i + il2i)

(− cos(2Ar) + cosh(2Ai)
)

+ (v2 − v1 − il1i + il2i)
(
cos(2Br) + cosh(2Bi)

)]
× cosh(Di − iDr)

where D1 is given by Eq. (19).
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