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Dynamics and interaction of pulses in the modified Manakov model
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Abstract

The two-component vector nonlinear Schrödinger equation, with mixed signs of the nonlinear coefficients, is considered. This equa-
tion is integrable by the inverse scattering transform method. The evolution of a single pulse and interaction of pulses are studied. It is
shown that the dynamics of a single pulse is reduced to the scalar nonlinear Schrödinger equation of focusing or defocusing type, depend-
ing on the initial parameters. It is found that the interaction of pulses results in the appearance of additional solitons and bound states of
several solitons. The asymptotic field profile in the non-soliton regime is also obtained.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A set of coupled nonlinear Schrödinger (NLS) equations
is a basic model for various physical processes [1]. For
example, it describes the propagation of a light beam with
arbitrary polarization in a self-focusing medium [2], the
continuum limit of the one-dimensional Hubbard model
[3], the averaged dynamics of optical pulses in dispersion-
managed fibers [4], and the dynamics of a Bose–Einstein
condensate consisting of two kinds of atoms [5,6]. In many
cases, as a result of the dynamics, the vector field forms a
bound state of scalar solitary waves. The latter can be
either a pulse-like wave, with zero values of a component
at x!1 (bright solitons), or a localized dip on a constant
background (dark solitons). We recall that bright and dark
solitons are the fundamental modes of the scalar focusing
and defocusing NLS equations, respectively.

Let us consider a set of coupled NLS equations in the
following form:
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iw1;Z þ Dw1;XX þ 2cða11jw1j
2 þ a12jw2j

2Þw1 ¼ 0;

iw2;Z þ Dw2;XX þ 2cða21jw1j
2 þ a22jw2j

2Þw2 ¼ 0;
ð1Þ

where w1(X,Z) and w2(X,Z) are the envelopes of the field
components, X and Z are the spatial and evolutional vari-
ables, respectively, c and aj,k are the nonlinearity parame-
ters, and the dispersion coefficient D is taken to be the
same in the both components. It has been found [7] that
the system (1) is integrable by the inverse scattering trans-
form (IST) method, if either a11 = a12 = a21 = a22, or
a11 = a21 = �a12 = �a22. Assuming such relations between
the coefficients ajk and taking |ajk| = 1, one can write Eqs.
(1) in dimensionless form as the generalized Manakov sys-
tem [2]:

iq1;z þ q1;xx þ 2ðjq1j
2 þ rjq2j

2Þq1 ¼ 0;

iq2;z þ q2;xx þ 2ðjq1j
2 þ rjq2j

2Þq2 ¼ 0;
ð2Þ

where z = Z/Zc, x = X/Xc and qj = wj/wc, and r = ±1.
Here Zc ¼ X 2

c=D, wc = (D/c)1/2/Xc and Xc is the character-
istic scale in X, e.g. the initial pulse width.

Recent studies [1,2,8,9] have mostly concentrated on the
case r = 1, which we call the conventional Manakov (CM)
equations. There are a few works relating to the case
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r = �1 (see papers [7,10,11] and references therein), which
we refer to as the modified Manakov (MM) model. The
integrability of Eq. (2) with r = �1 was demonstrated in
Refs. [7,10]. Exact solutions, corresponding to pairs of
bright and dark scalar solitons are given in Ref. [10]. The
known solutions, along with the new ones, are listed in
Ref. [11].

In real physical systems described by Eqs. (1), it is
usually assumed that the cross-phase modulation coeffi-
cients are equal, i.e. a12 = a21. In order to obtain such
a case in Eq. (2), one can consider the fields q1 and qH

2

(the complex conjugate of q2). Then for r = �1, the
component q1 operates in the anomalous dispersion
region, while qH

2 is in the normal dispersion one. The
self-modulation coefficients are positive, while the cross-
phase modulation coefficients are negative. Such a set
of the coefficients can be realized in optical materials
with quadratic nonlinearity. It has been shown [12] that
the wave–wave interaction with a large phase mismatch
is described by equations similar to Eqs. (1). The model
(2) with r = �1 can also be obtained as the continuous
limit of some discrete systems or in the description of
systems with periodic modulation of parameters. A first
example is the dynamics of vector solitons in waveguide
arrays [13–16]. Another relevant system is a chain of
drops of a binary Bose–Einstein condensate (BEC)
trapped in an optical lattice [17–21]. An appropriate
description of periodic or discrete systems can be imple-
mented in terms of modulated Bloch waves (see e.g.
[16]). Choosing different carrier frequencies for the com-
ponents, one can obtain dispersion coefficients with
opposite signs. The nonlinear parameters can be tuned
by using appropriate media or by applying external
fields. In the case of a BEC, the values and signs of
the nonlinear coefficients can be changed by an external
magnetic field (the Feschbach resonance). Then, the
large-scale excitations are described by Eqs. (2) with
r = �1.

In the present paper we study the evolution of pulses in
the modified Manakov model, Eq. (2) with r = �1. The
paper is organized as follows. In Section 2, we outline the
IST method for Eqs. (2). In Section 3, we consider the
dynamics of a single pulse and the interaction of two
pulses. Using IST theory we obtain equations which
describe the asymptotic state of the system. Section 4 sum-
marizes the main results of the paper.

2. The inverse scattering transform method

In this section, we give an overview of the IST method
for Eqs. (2) [7,10]. We follow the approach developed in
Refs. [8,22] for the CM model and for the vector NLS
equation, respectively. We write all the equations in a form
that can be applied both to the CM and MM models.

We start from the set of the two coupled NLS equations
(2). In the rest of the paper we mainly consider the case
r = �1. However, parameter r is retained explicitly in
the equations, so that the results will be applicable to both
cases, viz. r = 1 and r = �1. The system (2) is a particular
case of a set of matrix equations

iQz ¼ Qxx � 2QRQ;

iRz ¼ �Rxx þ 2RQR;
ð3Þ

which is integrable by the inverse scattering transform
(IST) method (see overview in Ref. [22]). Here Q is an
N · M matrix and R is an M · N matrix. Eqs. (3) reduce
to the MM system if N = 1, M = 2, and R = � J0Q�, and
to the CM equations if N = 1, M = 2, and R = �Q�, where

J0 ¼
1 0

0 �1

� �
;

and � means Hermitian conjugate.
The integrability of Eqs. (2) means, in particular, that

there exist two linear equations [10]

fx ¼ Uf ; f z ¼ Vf ; ð4Þ
so that the compatibility condition

Uz � V x þ ½U ; V � ¼ 0 ð5Þ
results in Eqs. (2). Here f is a three-component vector, U
and V are 3 · 3 matrices, and [U,V] � UV � VU. Eqs. (4)
can be written explicitly in the following form [10]

f1;x þ ikf1 ¼ q1f2 þ q2f3;

f2;x � ikf2 ¼ �qH

1 f1;

f3;x � ikf3 ¼ �rqH

2 f1;

ð6Þ

and

f1;z ¼ ½�2ik2 þ iðjq1j
2 þ rjq2j

2Þ�f1 þ ð2kq1 þ iq1;xÞf2

þ ð2kq2 þ iq2;xÞf3;

f2;z ¼ ð�2kqH

1 þ iqH

1;xÞf1 þ ð2ik2 � ijq1j
2Þf2 � iqH

1 q2f3;

f3;z ¼ rð�2kqH

2 þ iqH

2;xÞf1 � irq1qH

2 f2 þ ð2ik2 � irjq2j
2Þf3;

ð7Þ
where k is the spectral parameter. The IST method pro-
vides detailed information about the system (see e.g. Ref.
[23]), including an infinite set of invariant quantities, fam-
ilies of exact solutions and characteristics of the long-time
behavior.

The initial-value problem for Eq. (2) can be solved, in
principle, by using Eqs. (6) and (7) (see e.g. Refs. [22,23]).
To do this, one first needs to solve the direct scattering
problem (6) with functions q1(x, 0) and q2(x, 0). The solution
gives the scattering data at z = 0. The evolution, in z, of the
scattering data is determined from Eqs. (7). Finally, one
needs to reconstruct the functions q1(x,z) and q2(x,z) from
the scattering data at time z by solving the inverse scattering
problem. Below, in this section, we present the main equa-
tions of the IST method for Eqs. (2).

Let U and W be the solution matrices [2,8] for Eq. (6)
with the following boundary conditions, respectively
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Uðx! �1; kÞ ¼
e�ikx 0 0

0 eikx 0

0 0 eikx

0
B@

1
CA;

Wðx! þ1; kÞ ¼
e�ikx 0 0

0 eikx 0

0 0 eikx

0
B@

1
CA: ð8Þ

Then the scattering matrix S = [sij] is defined as [2,8]

Uðx; kÞ ¼ Wðx; kÞST; ð9Þ
where superscript T means the matrix transpose. One can
show that matrix S is unitary for real k, i.e. S�S = I, where
I is the unit matrix.

The scattering data include the continuous spectrum and
the bound-state (discrete) spectrum (see e.g. Refs. [22,23]).
The former is related to the elements of the scattering matrix
as q1(k) = s12(k)/s11(k) and q2(k) = s13(k)/s11(k) for real k.
The latter consists of N zeros kn, n = 1,2, . . . ,N, of the ele-
ment s11(k) in the upper half of the complex k-plane, and a
set of normalization constants C1n ¼ s12ðknÞ=s011ðknÞ and
C2n ¼ s13ðknÞ=s011ðknÞ, where s011 � ds11=dk. From Eq. (7)
and the definition of S, one can find (c.f. Refs. [8,22]) the evo-
lution of the scattering matrix elements, so that, for real k

ozs11ðkÞ ¼ 0; ozq1 ¼ 4ik2q1; ozq2 ¼ 4ik2q2; ð10Þ
and for bound states

ozkn ¼ 0; ozC1n ¼ 4ik2
nC1n; ozC2n ¼ 4ik2

nC2n: ð11Þ
The inverse scattering problem for the set (6) requires us

to solve the following set of linear integral equations (c.f.
Refs. [8,22]):

F 1ðx;kÞ ¼ e1þ
XN

n¼1

e2iknx

ðk� knÞ
½F 2nðxÞC1nþ F 3nðxÞC2n�

þ 1

2pi

Z 1

�1

e2inx

n� ðk� i0Þ ½F 2ðx;nÞq1ðnÞ

þ F 3ðx;nÞq2ðnÞ�dn;

ðF 2ðx;kÞ;F 3ðx;kÞÞ ¼ ðe2; e3Þ �
XN

n¼1

e�2ikH

n x

ðk� kH

n Þ
F 1nðxÞðCH

1n;rCH

2nÞ

þ 1

2pi

Z 1

�1

e�2inx

n� ðkþ i0ÞF 1ðx;nÞ

� ðqH

1 ðnÞ;rqH

2 ðnÞÞdn; ð12Þ
where F 1nðxÞ ¼ F 1ðx; kH

n Þ, (F2n(x),F3n(x)) = (F2(x,kn), F3(x,
kn)), n = 1, . . . ,N, e1 = (1,0,0)T, e2 = (0,1,0)T, and e3 =
(0,0,1)T. To close the system, one needs to add equations
for Fkn(x). These can be obtained by evaluating the first
of Eq. (12) at k ¼ kH

n and the second one at k = kn. Then
the solutions of Eq. (2) are found from

ðq1ðx; zÞ;q2ðx; zÞÞ ¼ � 2i
XN

n¼1

e�2ikH

j x eT
1 F 1nðxÞ

� �
ðCH

1j;rCH

2jÞ

� 1

p

Z 1

�1
e�2inx eT

1 F 1ðx;nÞ
� �

ðqH

1 ðnÞ;rqH

2 ðnÞdn;

ð13Þ

where ½eT
1 F � gives the first element of the vector F.
If an initial condition for Eqs. (2) is taken such that the
scattering data consist of the discrete spectrum only, i.e.
q1(k) = q2(k) = 0, then Eq. (12) turn into a set of algebraic
equations

F 1jðxÞ ¼ e1 þ
XN

n¼1

e2iknx

ðkH

j � knÞ
½F 2nðxÞC1n þ F 3nðxÞC2n�;

ðF 2jðxÞ; F 3jðxÞÞ ¼ ðe2; e3Þ �
XN

n¼1

e�2ikH

n x

ðkj � kH

n Þ
F 1nðxÞðCH

1n; rCH

2nÞ;

ð14Þ
where j = 1, . . . ,N. By solving this set of equations, a gen-
eral N-soliton solution for Eq. (2) can be found. If there
is only one zero, k1 = n + ig of s11(k), then Eqs. (11), (13)
and (14) result in a one-soliton solution (c.f. Refs. [8,22]):

q1 ¼ 2gp1 sechy expðihÞ;
q2 ¼ 2gp2 sechy expðihÞ;

ð15Þ

where

y ¼ 2gðxþ 4nzÞ � log
b0

2g

� �
; h ¼ 4ðg2 � n2Þz� 2nx;

p1 ¼ �iCH

11ð0Þ=b0; p2 ¼ �irCH

21ð0Þ=b0;

b0 ¼ ½jC11ð0Þj2 þ rjC21ð0Þj2�1=2
:

The real (imaginary) part of the zero k1 is related to the
soliton velocity (amplitude or inverse width).

If an initial condition decreases sufficiently quickly at
x! ±1, then the solution evolves into a set of solitons
and linear waves (‘‘radiation’’) [1,22,23]. The latter decreases
in amplitude and spreads in space. Therefore, in many cases,
and particularly when the real parts of the zeros, kn, are dif-
ferent, the field consists of a set of well-separated solitons in
the form of Eq. (15). However, the evolution of the contin-
uous spectrum is also important, especially if the initial con-
ditions are such that solitons are not generated.
3. Dynamics of pulses

Let us now study the dynamics of a single pulse and of a
pair of them. For simplicity, we consider pulses of rectan-
gular shape, since this allows us to solve the problem ana-
lytically. We will be interested only in asymptotic behavior
at large z. Since the spectral parameters for the continuous
and discrete spectra, k and kn, do not depend on z, it is suf-
ficient to solve only the direct scattering problem equation
(6). We use [c.f. Eqs. (8) and (9)] as boundary conditions

f1

f2

f3

0
B@

1
CA ¼

1

0

0

0
B@

1
CAe�ikx at x! �1;

f1

f2

f3

0
B@

1
CA ¼

s11e�ikx

s12eikx

s13eikx

0
B@

1
CA at x! þ1; ð16Þ
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because the scattering data can be found from these three
elements, s11, s12, and s13, of the scattering matrix.

Now we introduce the norm I(q1,q2) � |q1|2 + r|q2|2,
which will play an important role in the further analysis.
For the MM model, this parameter corresponds to the dif-
ference between the component intensities, while for the
CM system, it represents the total intensity of the field.
Also note that, for real q1(x, 0) and q2(x, 0), if k is an eigen-
value of Eq. (6), then �kw is also an eigenvalue. This means
that for real potentials, eigenvalues migrate to the upper
half of k-plane by crossing the real axis either along the
imaginary axis, or in pairs with opposite values of their real
parts.

If I is smaller than a certain threshold value, then no
solitons appear (see Section 3.1). In order to describe
the pulse dynamics in this case, one should obtain the
parameters q1 and q2, solve Eq. (12) for F1, F2, and F3,
and then find the field from Eq. (13). Fortunately, the
asymptotic state of the field at z!1 can be found easily
from the coefficient s11(k) (c.f. Ref. [23]). Similarly to the
NLS equation [23], in the absence of solitons, the solution
of the Manakov equations at z!1 can be written in a
self-similar form as

q1ðx; zÞ � z�1=2y1ðY Þ exp½ihðY ; zÞ þ i/1ðY Þ�;
q2ðx; zÞ � z�1=2y2ðY Þ exp½ihðY ; zÞ þ i/2ðY Þ�;

ð17Þ

where

hðY ; zÞ ¼ z
Y 2

4
þ 2½y2

1ðY Þ þ ry2
2ðY Þ�

log z
z

� �
; Y ¼ x=z:

Functions y1(Y), y2(Y), /1(Y) and /2(Y) are slowly varying
functions, therefore the solution Eq. (17) represents a
smooth variation of the plane wave solution. The norm I

of the field at z!1 is related to s11(k) by:

I ¼ jq1ðx; zÞj
2 þ rjq2ðx; tÞj

2 � 1

z
ðjy1ðY Þj

2 þ rjy2ðY Þj
2Þ

� � 1

4pz
log s11 �

x
4z

� 	


 


2 ð18Þ
3.1. Single pulse

We consider an initial condition in the form of a single
rectangular pulse (j = 1,2):

qjðx; 0Þ ¼
Qj expð2imxÞ; x ¼ ½x1; x2�;
0; otherwise;

�
ð19Þ

where Q1 and Q2 are complex constants and m is real. It is
clear that Eqs. (2), with initial condition (19), are reduced
to the scalar NLS equation. Depending on the values of
Q1 and Q2, the corresponding NLS equation can be either
focusing or defocusing. We present the results for a single
pulse in order to show how one can control the pulse
dynamics by changing the initial polarization.

For this initial condition, we define the parameter
I0 = I(z = 0) = |Q1|2 + r|Q2|2, which is used below. The
solution of Eqs. (6) with the potential (19) and boundary
conditions (16) gives (c.f. Ref. [2])

s11ðkÞ ¼ eiðkþmÞw cosðjwÞ � iðkþ mÞ
j

sinðjwÞ
� �

;

s12ðkÞ ¼ �e�iðkþmÞðx1þx2Þ Q
H

1

j
sinðjwÞ;

s13ðkÞ ¼ �re�iðkþmÞðx1þx2Þ Q
H

2

j
sinðjwÞ;

ð20Þ

where j2 = (k + m)2 + I0, w = x2 � x1. The scattering coef-
ficients in Eq. (20) have the same form for r = 1 and
r = �1. Therefore, provided that I0 > 0, one can directly
use the results of paper [2], which were obtained for the
CM equations, for the MM system. They can be summa-
rized as follows [2]:

(i) For the case m = 0, which is applicable for items (i)–
(iv), all zeros of s11(k) = 0 in the upper half-plane
are pure imaginary, kn = ign. This means that the
velocities of emerging solitons are equal to zero [c.f.
Eq. (15)].

(ii) The number NS of zeros, or the number of solitons,
depends only on the product I1=2

0 w, I0 > 0. It is given
by NS ¼ int½I1=2

0 w=pþ 1=2�, where int[ . . . ] denotes the
integer part of the argument. The parameters of the
solitons, found from kn and Eq. (15), depend on both
w and I0.

(iii) If 0 < I1=2
0 w < p=2, then no solitons appear, so that

all initial energy is transformed into radiation.
(iv) If p=2 < I1=2

0 w < 3p=2, then only one soliton emerges,

while if I1=2
0 w > 3p=2, the asymptotic field represents

a bound state of NS solitons, NS P 2.
(v) If m50, then the zeros of s11(k) have the same real

parts, kn = �m + ign, so that all emerging solitons
move with the same velocity, 4m.

The values I0 < 0 are specific to the MM system. The ini-
tial potential with such parameters results in only a contin-
uous spectrum of the scattering problem (6), so that the
pulse will decay dispersively and no solitons will appear.
In this range of I0, the defocusing component of the field
dominates, and this prevents the creation of bright solitons.
Fig. 1a shows the dependence of the relative norm �I �
I/I(Y = 0) multiplied by z on Y = x/z, as found from(20)
and (18). One can see that these profiles are similar to sinc
function, which is an asymptotic state of the linear Schrö-
dinger equation with the initial condition (19). Numerical
simulations of the MM Eqs. (2) show that the self-similar
profile is formed quickly, especially when |Q2|� |Q1|. The
value of the peak norm, I(Y = 0), as a function of |Q2|, is
presented in Fig. 1b. A comparison of the results for
z = 1 and z = 10 shows that Eq. (18) applies, starting from
z � 1. The agreement between the numerical simulations
and the theoretical prediction is quite good. Minor devia-
tions indicate that the asymptotic state has not been
reached by that time.
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Fig. 1. Parameters of the asymptotic field for a single-pulse initial
condition (19) with Q1 = 2, w = 1 and different values of Q2: (a) the
relative norm �I , found from Eqs. (20) and (18), and multiplied by z, as a
function of x/z; Q2 = 1.5 (solid line), Q2 = 2.5 (long dashed line) Q2 = 4
(short dashed line). (b) The amplitude I(0) of the norm multiplied by z as a
function of Q2. The line is calculated using Eqs. (20) and (18), while the
points are a result of numerical simulations of Eqs. (2), and the circles
(stars) correspond to z = 1 (z = 10).
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To summarize, in this section we have shown that if
I0w2 > p2/4, then the initial condition (19) evolves into NS

solitons (and radiation). The parameters of the solitons
are found from the zeros of s11(k) given by Eq. (20). As
was mentioned, the MM system with initial condition
(19), reduces to the scalar focusing NLS equation, provided
that I0w2 > p2/4. A detailed study can be found in Ref. [23],
for example. If I0w2 < p2/4, the initial pulse transforms into
radiation only, and the distribution of the field is described
asymptotically according to Eqs. (18) and (20). Therefore,
if the larger amount of energy is in the first component,
|Q1| > |Q2|, then the system behaves like the scalar focusing
NLS equation, while if |Q1| < |Q2|, it corresponds to the
defocusing case. As we will see in the next section, this con-
clusion does not apply to the interaction of pulses. On the
other hand, we have shown that one can control the
parameters of the emerging solitons by changing the initial
amplitude of the second component. Large values of Q2

suppress the creation of solitons.
Let us estimate the parameters in dimensional units. To

our knowledge there are no experiments corresponding to
the MM system. However, as mentioned in Section 1, this
system can be realized in an array of 1D waveguides. There-
fore, we adopt parameters close to those used in experiments
on waveguide arrays [13], namely, that the array period
along x-axis d = 5 lm, the coupling constant between adja-
cent waveguides C = 1000 m�1 and the nonlinear coefficient
c = 5 m�1 W�1. Then the diffraction coefficient in Eq. (1) is
found to be D � C d2 = 2.5 · 10�8 m. Let the initial beam
width win = 25 lm, and the characteristic scale Xc = win.
Then the power and the propagation distance scales are
Ic � |wc|

2 = 8 W and Zc = 2.5 cm, respectively. The thresh-
old value of the peak power Ith for the creation of a soliton
is defined as Ith = (p2/4)Ic � 20 W.

3.2. Interaction of pulses

In this section, we study the interaction of two pulses.
We take two rectangular pulses separated by the distance
L � x3 � x2 as the initial condition:

qjðx; 0Þ ¼
Qja expð2imaxÞ; x ¼ ½x1; x2�;
Qjb expð2imbxÞ; x ¼ ½x3; x4�;
0; otherwise;

8><
>: ð21Þ

where Qja and Qjb are complex constants, j = 1, 2, ma and mb

are real, x1 6 x2 6 x3 6 x4, and the indices a and b refer to
the first and second pulses, respectively. Then the solution
of the direct scattering problem (6) gives (see also Ref. [9])

s11ðkÞ ¼ eiðkþmaÞwa eiðkþmbÞwa
sinðjawaÞ sinðjbwbÞ

jajb

� f½ja cotðjawaÞ � iðkþ maÞ�½jb cotðjbwbÞ
� iðkþ mbÞ� � ðQH

1aQ1b þ rQH

2aQ2bÞe�2iðkþmaÞx2

� e2iðkþmbÞx3g; ð22Þ

where j2
a ¼ k2 þ jQ1aj

2 þ rjQ2aj
2 ¼ k2 þ I0a, a = a or b,

wa = x2 � x1 and wb = x4 � x3. The first term in the curly
brackets in Eq. (22) represents the product of correspond-
ing terms for single boxes [c.f. Eq. (20)]. The second term in
the brackets in Eq. (22) can be associated with nonlinear

interference. It is due to this term that the result from the
two-pulse initial condition is not a simple sum of the
dynamics originating from each pulse.

The interaction of pulses in the CM system was studied
in the paper [9] (see also [24,25]). The main conclusions
were the following [9]:

(i) The zeros of s11(k) can be complex with non-zero real
parts, even for two real initial pulses, i.e. for real Qja

and Qjb, and ma = mb = 0. This means that solitons
with non-zero velocities appear. The parameters of
the solitons, such as the amplitude and velocity,
strongly depend on the parameters of the initial
pulses, as well as on the separation distance L.

(ii) The number NS of emerging solitons for some separa-
tion distances can be larger then the sum of emerging
solitons from each of the two pulses. For fixed param-
eters of the initial pulses, NS can vary as L changes.
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These conclusions are also valid, in general, for the MM
system. Let us analyze some particular cases. For the rest
of this section, we take ma = mb = 0, and wa = wb = 1, and
we consider only the MM system. The procedure is similar
to that in Section 3.1. Thus, one solves for the zeros of
s11(k), Eq. (22). When they exist, they define the parameters
of the emerging solitons. If the initial condition generates
no solitons, then Eqs. (18) and (22) can be used for the
reconstruction of the asymptotic state of the field.

3.2.1. The case Q1a
Q2a
¼ Q1b

Q2b
¼ a

Such initial conditions are particular cases of a more
general initial condition in the form:

q1ðx; 0Þ ¼ aq2ðx; 0Þ; ð23Þ
where a is a complex constant. Then the vector NLS Eq. (2)
reduces to the scalar one for the function q1(x,z) or q2(x,z),
and another field is found from the relation q1(x,z) =
aq2(x,z). If |a| = 1, then both components propagate as
linear waves.

The interaction of solitons in the scalar focusing and
defocusing NLS equations is a well-studied problem (see
e.g. [26,27]). Usually, the pulses were considered in the
form of hyperbolic secants with the amplitudes approxi-
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Fig. 2. Thresholds for soliton generation from initial condition (21) with
different values of Q1b. Parameters are L = 0, wa = wb = 1, (a) Q2b = 0,
and (b) Q1b = 0.
mately equal to the inverse widths in dimensionless units
[c.f. (15)]. In other words, each pulse was taken to be close
to the one-soliton solution. The interaction of pulses that
have an arbitrary relation between the amplitude and
width, i.e. pulses consisting of several solitons, were consid-
ered only recently [24,25]. An application of the IST
method to pulses with rectangular shape allows one to ana-
lytically solve the problem of the interaction.
3.2.2. The case QH

1aQ1b ¼ QH

2aQ2b

Particular examples of such initial conditions are
Q1a = Q2b = 0 or Q2a = Q1b = 0, which correspond to the
interaction of pulses which are initially in different compo-
nents. In the general case, as follows from Eq. (22), the
nonlinear interference term disappears. The parameter
s11(k) is now expressed in a factorized form so that the dis-
crete spectrum can easily be found. In fact, for such initial
conditions, only one pulse of these two can produce soli-
tons, while the other will dispersively decrease. The number
of solitons corresponds to that for a single pulse. If
I0aw2 < p2/4 and I0bw2 < p2/4, then the initial condition
evolves into dispersive waves. The asymptotic state for
such initial conditions can be found from Eqs. (18) and
(22).
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3.2.3. The case Q2b = 0

It is difficult to find a simple expression, similar to that
in the case of a single pulse (see Section 3.1), for the num-
ber of emerging solitons. We have found, computationally,
the thresholds for soliton generation by numerically solving
the equation s11(k) = 0. The result for L = 0 in the plane
(Q2a,Q1a), considering Q1b as a parameter, is presented in
Fig. 2a. The non-soliton area is between two lines of the
same type. For Q1b = 0, the threshold is found from
Q1a = ±[p2/(4w2) � |Q2a|2]1/2. We also show, as a reference,
the lines Q1a = ±Q2a. The plot is symmetric about Q2a = 0.
One can see that with an increase of Q1b, the boundaries
approach each other. This is obvious, since the energy of
the first (focusing) component increases. For Q1b = 0, if
|Q1a| is larger than the threshold value, then a single soliton
with zero velocity appears. For Q1b > 0, a single soliton
appears above the upper boundary, while below the lower
boundary, a pair of solitons with opposite velocities can
appear. A sign change of Q1b results in a sign change of
the boundary values.

Let us now consider the dependence of the dynamics on
the separation distance L. We take the following initial
conditions: (Q1a,Q2a) = (2,1), (Q1b,Q2b) = (2,0) and wa =
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and (e,f) L = 12. The numbers in (c) indicate the corresponding numbers of th
wb = 1. The eigenvalues kn = nn + ign, found from a numer-
ical solution of Eq. (22), are shown in Fig. 3a. The numbers
near the curves correspond to the eigenvalue numbers.
Note that Re[k2] = �Re[k3], Re[k4] = �Re[k5], etc. Recall
that 2gn ¼ ðA2

1n � A2
2nÞ

1=2 is related to the peak norm of
the nth soliton [c.f. Eq. (15)], where A1n and A2n are the
amplitudes of the field components of the nth soliton.
Parameter 4nn is the velocity of the nth soliton. For L [

0.56, only one pure imaginary root exists, k1 = ig1. At
L = 0.56, 3.26, 6.0, 8.8 . . . pairs of solitons with opposite
velocities appear. We have shown only the first five eigen-
values. At L J 11.5, Re[k2] = Re[k3] = 0, so that the three
pure imaginary eigenvalues give rise to a bound state of
three solitons. With an increase in L, g1! 0.638 and
g2! 0.248, which are the eigenvalues of well-separated
pulses. All other eigenvalues kn, n P 3, tend to zero at large
L.

Fig. 3b shows the result for (Q1a,Q2a) = (1,2) and (Q1b,
Q2b) = (2,0). Only three eigenvalues exist for 0 < L < 8.
Note that the parameters of the a-pulse are such that it
does not generate solitons, however as a result of the
interaction between pulses, a pair of solitons appears.
Those solitons have very small amplitudes, but since they
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correspond to non-dispersive packets, they should be taken
into account. Of course, for larger values of Q1a, the ampli-
tudes of additional solitons will be more appreciable.

The dynamics presented in Fig. 3a has been checked by
a direct numerical simulation of the MM system (2). Fig. 4
shows the evolution of the field components for initial con-
ditions corresponding to Fig. 3a at different separation dis-
tances. We use a standard split-step method [1] with
absorbing boundary conditions. One can see that three sol-
itons exist at L = 2 (Figs. 4a and b), where one soliton is
static and the other two solitons with smaller amplitudes
propagate in opposite directions. The evolution of q2 is
obviously asymmetric, because of the asymmetry of the ini-
tial condition of that component. The dynamics for L = 6
is presented in Figs. 4c and d. One can distinguish one sta-
tic and three pairs of moving solitons, though the compo-
nent q2 of some solitons is very small. We recall that
L = 6 is the threshold where a new pair of solitons appears.
Therefore, the asymptotic amplitudes of the sixth and the
seventh solitons are zero. As seen from Figs. 4c and d,
the amplitudes of these solitons indeed decrease during
the propagation in z, from 0 to �5. At L = 12 (see Figs.
4e and f), there is the three-soliton solution and also several
moving solitons. This is consistent with Fig. 3a. The ampli-
tudes of moving solitons are smaller than those for L = 2
and L = 6. The amplitude of the static pulse oscillates with
large deviations. This is typical for a bound state of several
solitons.

Fig. 5 shows the dependence of the peak norm A2
11 � A2

21

of the first (largest) soliton on z, where A11 and A21 are the
peak amplitudes of the components. Horizontal lines corre-
spond to the asymptotic values (c.f. Fig. 3a). The asymp-
totic values for L = 6 and L = 12 are close to each other,
so only one line is shown. One can see good agreement
between the theory and numerical simulations of Eq. (2).
The result for L = 12 is unexpected. Although the initial
pulses are far from each other, they result in a bound state
of three solitons, while for shorter separation distances,
only single solitons emerge.
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Fig. 5. The dependence of the peak norm A2
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on z for L = 2 (solid line), L = 6 (dashed line), and L = 12 (dotted line), as
found from numerical simulation of Eq. (2). The thin horizontal lines are
asymptotic values 4g2. Initial conditions are the same as in Fig. 3a.
3.2.4. The case Q1b = 0

The thresholds for soliton generation for this case, when
L = 0 and wa = wb = 1, are presented in Fig. 2b. The plot is
symmetric about Q1a = 0. A change in the sign of Q2b

results in a symmetry reflection about Q2a = 0. Above the
threshold and at Q2a [ 2, a single soliton with zero veloc-
ity appears, while at Q2a J 2, two moving solitons appear.
This explains the non-monotonic dependence of the thresh-
old near this point. As in the previous case, the non-soliton
area decreases with an increase in Q2b.

The dependence of the eigenvalues on L is shown in
Fig. 6. Let us first consider the following initial condition
(Q1a,Q2a) = (2,1), (Q1b,Q2b) = (0, 2), and wa = wb = 1 (see
Fig. 6a). Only the first four eigenvalues are shown in the
figure. At L [ 6.7, the eigenvalues k1 and k2 correspond
to oppositely moving solitons with the same amplitude.
At L J 6.7, the real parts of the eigenvalues become
zero, so that a bound state of two solitons is formed.
At large L, k1! 0.248, which corresponds to a soliton
emerging from an a-pulse, while all the other eigenvalues
tends to zero.

The dependence of the eigenvalues for (Q1a,Q2a) =
(1,2), (Q1b,Q2b) = (0, 2) and wa = wb = 1 is presented in
Fig. 6b. Note that neither the a-pulse nor the b-pulse, when
considered separately, results in solitons. However, the
L
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interaction between them produces the solitons, though
they have very small amplitudes.

As follows from Fig. 2, the variation of the field in the
second component changes the parameters of the emerging
solitons, and therefore the interaction of pulses. One can
see from Figs. 3 and 6 that bifurcations occur for separa-
tion distances L � 2–10. For the system parameters men-
tioned at the end of Section 3.1, this corresponds to
L � 50–500 lm.

4. Conclusions

We have considered the evolution of rectangular pulses
in the modified Manakov system, Eq. (2) with r = �1.
The study is based on the inverse scattering transform
method. Namely, we have solved the direct scattering
problem and have shown how the asymptotic state of
the system can be found from the scattering data. We
have demonstrated that both the parameters of solitons
and the asymptotics of the field in the non-soliton regime
can be recovered from the coefficient s11(k). We have con-
sidered single-pulse and two-pulse initial conditions. We
found that the case of the single-pulse initial condition
reduces to the scalar (focusing or defocusing) form. The
interaction of two pulses separated by an intermediate
distance may result in the appearance of additional mov-
ing solitons and in the formation of bound states of sev-
eral solitons.

In contrast to the CM system, the MM model is not
symmetric relative to the transformation q1 M q2. There-
fore, the dynamics strongly depends on the initial distri-
bution of the energy between the components. The
propagation of pulses in the MM system can be similar
to that in linear, focusing or defocusing media. We have
shown that by changing the field in the second compo-
nent, one can control the parameters of solitons emerging
from a single pulse. For large initial values of |Q2|, it is
even possible to suppress the creation of solitons, so that
the initial pulse decays dispersively. As has been shown in
Section 3.2, one can also change the interaction of pulses
by varying the field in the second component. Therefore,
such a two-component scheme can be used for data
manipulation. The first component plays the role of a
data carrier, while the second component is used as a con-
trol of the signal. The distance between adjacent beams
should be larger than �10win in order to avoid the crea-
tion of additional beams.

It can also be interesting to study the dynamics of
waves with different boundary conditions, for example
with non-zero values of q2 at x! ±1. In this case, a
basic solution of Eq. (2) is represented as a pair of bright
and dark solitons. However, such a case requires the
reformulation of the inverse scattering method and sepa-
rate studies.
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