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Suppression of Turbulence by Self-Generated and Imposed Mean Flows
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The first direct experimental evidence of the suppression of quasi-two-dimensional turbulence by mean
flows is presented. The flow either is induced externally or appears in the process of spectral condensation
due to an inverse cascade in bounded turbulence. The observed suppression of large scales is consistent
with an expected reduction in the correlation time of turbulent eddies due to shearing. At high flow
velocities, sweeping of the forcing-scale vortices reduces the energy input, leading to a reduction in the

turbulence level.
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An inverse turbulent cascade is a remarkable phenome-
non of an energy transfer towards large scales which
(somewhat counterintuitively) can be thought of as a pro-
cess of turbulent self-organization [1]. Inverse cascades
take place in two-dimensional (2D) and rotating flows, in
magnetized plasma, for waves on the fluid surfaces, etc.
[2,3]. In a bounded domain, an inverse cascade may create
a mode coherent across the whole system [4—11]. How
such a mode influences the turbulence that feeds it is a
question of both fundamental and practical importance.
For example, experiments in turbulent magnetized plasma
reveal a correlation between the onset of strong mean flows
and the reduction in the levels of turbulent fluctuations.
This is often observed near transport barriers in plasma
where turbulent diffusion is greatly reduced, leading to a
better plasma confinement [12]. Turbulence suppression by
flows has become an important direction in magnetized
plasma research, since it offers a very effective method of
turbulence control [13,14]. The suppression of turbulence
by a coherent large-scale structure (condensate) has also
been observed in a numerical simulation of optical turbu-
lence and Bose-Einstein condensation [7]. Yet, despite its
wide recognition in plasma physics and attempts to extend
its application to other fields (see, e.g., [15]), the phenome-
non of turbulence suppression by flows is not that familiar
in hydrodynamics [16].

It was suggested that mean flows may affect turbulence
via a shear flow suppression [17-19]. When a turbulent
eddy is placed in a stable laminar flow whose velocity
varies perpendicular to the flow direction, it becomes
stretched and distorted. The shear suppression can be
viewed as a reduction in the eddy’s lifetime when the
shearing rate w, exceeds the inverse eddy lifetime w,7, >
1.

In this Letter, we present experimental results which
show that mean flows do suppress turbulence in quasi-2D
fluid flows. Turbulence suppression is observed due to the
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self-generated mean flow during spectral condensation of
turbulence and also in the presence of externally imposed
large-scale flow. We present the first experimental evidence
of the two mechanisms of turbulence suppression: shear
decorrelation and a new mechanism due to sweeping of the
force-generated vortices by the mean flow.

The experimental setup is similar to that described in
Refs. [8,10]. A turbulent flow is generated in stratified thin
layers of fluids. A heavier nonconducting fluid (Fluorinert
FC-71, specific gravity of SG = 1.8) is placed at the
bottom of the container. Then a lighter 4 mm thick con-
ducting fluid, a NaCl water solution (SG = 1.03), is placed
on top. A spatially varying magnetic field B normal to the
fluid surface, produced by a 24 X 24 matrix of permanent
magnets (10 mm spacing), interacts with the electric cur-
rent flowing through the top layer. This results in 576 J X
B-driven vortices which interact to produce the turbulent
flow. To visualize the flow, imaging particles (polyamid,
50 pm diameter, specific gravity of 1.03) are suspended in
the top layer and are illuminated by a (1 mm) laser sheet
aligned parallel to the free surface of the fluid. Laser light
scattered by particles is filmed from above using a video
camera at 25 frames per second. A cross-correlation-based
particle image velocimetry technique is used to obtain the
velocity fields from the sequence of video frames.

Test particles travel in the horizontal x-y plane over
distances of more than 100 mm without leaving the
1 mm thick laser sheet that illuminates them (without
drifting in the vertical z direction). Thus, the ratio of the
vertical velocity component to the horizontal ones is small:
V./ Vyy <0.01, which confirms that the flow is quasi-2D.

A self-generated coherent flow can develop spontane-
ously during spectral condensation of the bounded 2D
turbulence [1]. It is related to the ability of 2D turbulence
to self-organize and support an inverse energy cascade [1].
In a large domain, an inverse cascade proceeds up to the
integral scale Ay =~ €'/2u =32 where u is the linear damp-
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ing and € is the energy dissipation rate. When Ay is larger
than the size of the boundary L, energy accumulates at the
box scale, and self-generation of a large-scale single vortex
occurs. This phenomenon has been confirmed in numerical
simulations [4,6,9,11] and has been observed in experi-
ments [5,8,10]. For given u and €, the easiest way to
achieve spectral condensation is to reduce the size of the
boundary to satisfy A = L. In this experiment, square
boundaries of different sizes of L = 90-120 mm were
used. The spectral condensation leads to the onset of the
self-generated mean flow, which interacts with the back-
ground turbulence.

In the other experiment described below, the boundary
box substantially exceeded the integral scale, by about a
factor of 3 (L = 300 mm). We refer to this configuration as
“unbounded” turbulence. In this case, the mean flow was
generated externally using a large permanent magnet.

First, we consider the effect of the self-generated flow on
the bounded (L = 110 mm) turbulence. The time evolu-
tion of the total kinetic energy of the 2D turbulent flow is
shown in Fig. 1(a). The inverse energy cascade leads to the
development of larger eddies and to the growth of the
kinetic energy of the system. By about 10 s, the kinetic
energy reaches 80% of its maximum value. By this time,
several large-scale coherent vortices develop in the flow, as
seen in Fig. 1(b). These vortices persist for 4—5 turnover
times (~10 s) before they start merging. After this transient
stage, large vortices merge to form a single coherent vor-
tex, which then persists in a steady state [Fig. 1(c)]. This
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FIG. 1 (color online). (a) Time evolution of the total kinetic
energy and instantaneous velocity fields measured at
(b) t =13 s and (c) t = 71 s. (d) Spectrum of the total spectral
energy of the flow at t = (9-17) s. (e) Spectra of the turbulent
velocity fluctuations before, ¢t = (9—-17) s (open squares, N =
200), and after the formation of a single large vortex, t =
(61-79) s (solid circles, N = 400).

stable vortex imposes mean flow, which affects 2D
turbulence.

We compare the turbulence spectra during the transient
stage, at t = (9-17) s, and after the single vortex forma-
tion, at ¢ = (61-79) s. The analysis time in the transient
stage is limited to 8 s, during which the flow is quasisteady.
The wave number spectra are averaged over N = 200
realizations (400 in the steady condensate regime) of the
“instantaneous’ velocity fields (computed every 40 ms
using two consecutive video frames):

N
Ew(k) = 1/N > F(V)F V), ey
n=1

where F denotes Fourier transform and F* is its complex
conjugate. This is a total spectrum which includes both
mean and fluctuating velocity. Before the large vortex
formation, this spectrum shows a power-law scaling of
E(k) « k=3 both above and below the forcing wave number
k=350 m~! [Fig. 1(d)]. Such a scaling, which was al-
ready observed in the experiments in the spectral conden-
sate regime [10] and in numerical simulations [11,20-22],
apparently contradicts the E(k) o k~5/3 spectrum expected
for the inverse energy cascade inertial range [1]. It was
suggested in Ref. [11] that a k=3 power law is due to the
presence of large-scale persistent vortices rather than due
to the turbulent cascade. To eliminate that effect, we sub-
tract from the instantaneous velocity the mean (V) =
1/NSN_, V(x,y) obtained by averaging over N instanta-
neous fields V(x, y). The resulting spectra

N
Ep() = 1/NS F(V = (WF'(V =(V)), ()
n=1

computed for two time intervals before and after the gen-
eration of the single vortex, are shown in Fig. 1(e). Such a
subtraction, proposed in Ref. [11], leads to a spectrum less
steep than k3, somewhat close to k=573,

After the formation of the single vortex, turbulence
levels are significantly reduced for the wave numbers in
the range of k < 160 m~'. The explanation of this will be
given below. The level of turbulent fluctuations changes
less between k = 160 m~! and the injection scale kp =
350 m~!. That interval is too short to distinguish between
Ej(k) o« €3k™5/3 and Ej (k) « €/7k that one may ex-
pect, assuming that the scale-independent energy transfer
is of the order of the shear time 7. One can see that, in the
forward cascade range (k = k), fluctuations are also re-
duced. This reduction at small k is significant (up to a
factor of 10) and reproducible.

Now we discuss the results in unbounded 2D turbulence
with and without an externally imposed large-scale flow. A
large magnet (40 X 40 mm?) placed 2 mm above the free
surface imposes a large-scale vortex flow, which slowly
decays (for approximately 60 s) after the magnet is re-
moved. Instantaneous velocity fields before and after the
generation of this mean flow are shown in Figs. 2(a) and
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FIG. 2 (color online). Instantaneous velocity fields of un-
bounded turbulence (a) and in the presence of an externally
generated large-scale azimuthal flow. The size of the box corre-
sponds to the analyzed fraction of the fluid cell 0.18 X 0.18 m?2.
Spectra of turbulence are computed with mean flow subtracted:
before the large flow is imposed (open squares, N = 400) and in
the presence of the mean flow (solid circles, N = 200). Third-
order structure functions without (open squares) and with (solid
circles) externally imposed mean flow (d).

2(b). Energy spectra shown in Fig. 2(c) are computed after
subtracting the mean flow, using Eq. (2). Both with and
without the large vortex, spectra are close to the k53
scaling. The mean flow reduces the spectral power of the
turbulent fluctuations everywhere within the inverse cas-
cade range by a factor of 8.

In the presence of the self-generated large vortex, the
observed reduction in the spectral power of turbulent ed-
dies is consistent with the mechanism of the shear turbu-
lence suppression. We estimate the shear suppression
criterion s = w7, > 1 as follows. The turnover time of
an eddy of the scale lis 7, = [/{|8V(])|) = 1/S,(I), which
is estimated from the mean velocity difference across I:
S8V(l) = V(rg + ) — V(ry). The angular brackets denote
the averaging over all possible positions r, within the
boundary box (or within the computation box in the un-
bounded case), and S; = (8V) is the first-order structure
function averaged over 100 velocity fields.

To estimate the shearing rate of the large-scale mean
flows, both self-generated [Fig. 1(c)] and externally forced
[Fig. 2(b)], the polar coordinate system with its origin in
the center of the vortex is used. The azimuthal component
of the velocity V, dominates the flow after the vortex is
formed. Its radial distribution is shown in Figs. 3(a) and
3(c). In the case of the self-generated flow, radial coordi-
nates r = 0 and r = 0.05 m correspond to the vortex cen-
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FIG. 3 (color online). Mean azimuthal velocity of the flow
after the large-scale vortex generation (a),(c) and the derivative
of its angular velocity (b),(d) during spectral condensation of the
bounded turbulence (a),(b) and in the case of externally forced
unbounded flow (c),(d).

ter and to the square boundary, respectively. In the case of
the externally driven flow, r = 0.09 m corresponds to the
size of the imaged area of unbounded turbulent flow. It is
seen that the amplitude of velocity of the externally forced
flow is a factor of 2 higher than in the self-organized case.
The shearing rate is determined as follows:

w, = 1dQ/dr, 3)

where [/ is the radial extent of the eddy. The derivative of
the radially localized angular velocity ) = V,/r is deter-
mined as dQ/dr = (1/r)(dV,/dr) — (V,/r*), which is
zero for the solid-body mean flow rotation and nonzero
for the sheared flow. Figures 3(b) and 3(d) show dQ/dr for
the self-generated and the externally driven shear flows,
respectively. Since both w, and 7, grow with [, the shear
affects larger scales first.

For the case of the self-generated flow d€)/dr =
15 (ms)~!, S, = 8 X 1073 m/s, and the shearing parame-
ter s = 2 X 10%/2. The criterion for the shear suppression
s > 1 is satisfied for the scales / > 0.022 m. This gives an
estimate of the affected wave number range k = 7/l <
145 m™!, which is in agreement with the observation of the
turbulence suppression in the wave number range of k =
160 m~! seen in Fig. 1(e).

For the externally forced mean flow dQ/dr=
22 (ms)~!, S, =2 X 1073 m/s, and the shearing parame-
ter s = 1.1 X 10*/2. The suppression criterion is satisfied
for the scales [ > 0.0095 m, which extends very close to
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the forcing scale /; = 9 mm (k; = 350 m~'). Again, this
is in agreement with our observation that the spectral
energy is reduced everywhere within the inverse energy
cascade inertial range [Fig. 2(c)].

The externally driven flow must be strong enough to
affect the energy flux through the k < k inertial range. To
test this, we computed the third-order structure function
S5(1) = (8V(1)*) to estimate the energy flux € from the
Kolmogorov law S3(I) = —(3/2)el. Similarly to S, S is
computed by averaging over the boundary box and then by
averaging S5 in time over 100 subsequent velocity fields. It
should be noted that §V (/) represents here the longitudinal
velocity increment 6V)|([), defined in Kolmogorov’s theory
[2]. Also, S5 is computed allowing positive and negative
values of the velocity increments 8V (). Such computa-
tions require very large statistical averaging to obtain con-
verged results. We obtained satisfactory convergence for
the steady-state unbounded turbulence and for the turbu-
lence in the presence of the slowly decaying externally
driven flow. The result is illustrated in Fig. 2(d). Both
before and after the mean flow is imposed, S5 is a linear
function of the scale /. As a result, the energy flux € =
—(2/3)85/1 is constant to within 15% for all scales in the
energy inertial range. This flux e is reduced in the presence
of the flow by 1 order of magnitude compared to the case
without the flow.

The reduction in the energy flux can be attributed to two
phenomena in this case. First, it is the shearing of the
forcing-scale vortices discussed above. However, the
force-connected vortices (with k = k) must be more re-
sistant to shearing than the inertial scale eddies at k < k.
Second, the force-fed vortices are swept by the mean flow
relative to the magnets, which must also reduce the energy
input. One can define a dimensionless sweeping parameter
SW = w,, T,, Where the sweeping rate is given by w,,, =
Vy/l. Since sw = (V,/I)(1/S;) ~ Vy(el)™'/3, sweeping
acts more efficiently on the smaller scales (while shearing
is more effective on larger scales). At the forcing scale [,
this parameter is sw = 0.75 for the self-generated flow, and
itis sw = 7 with the externally forced mean flow. Thus, the
sweeping can be responsible for the reduction in the energy
flux through the inverse cascade range in the presence of an
externally induced flow. The dominant role of sweeping in
this case is also supported by the fact that the spectrum of
the inverse cascade remains k /3, just shifted down as
shown in Fig. 2(c). Such modifications to the spectrum are
also consistent with a tenfold decrease in the energy flux e,
since E(k) = C,€?3k 5. Let us stress the qualitative
difference between Fig. 1(e) (strong decrease at small k)
and Fig. 2(c) (uniform decrease for all k) which shows that
there are two mechanisms of suppression. Sweeping may
also be responsible for the reduction in the enstrophy flux
through the forward cascade (k > k) in the presence of the
self-generated flow [see Fig. 1(e)]. In this case, we could

not obtain statistically converged computations of S3 dur-
ing spectral condensation to compare € before and after the
formation of the large vortex. New experiments with sub-
stantially higher spatial resolution of the velocity field
(currently under way) will address this issue.

We have shown that turbulence in quasi-2D flow is
significantly reduced in the presence of a large coherent
vortex. In the case of a self-generated vortex, larger scales
are affected more than the smaller ones. This qualitatively
agrees with the description of the shear turbulence sup-
pression mechanism as a reduction in the eddy lifetime
[17]. In the presence of the externally imposed flow, two
effects may be responsible for the observed strong reduc-
tion in the turbulence level. The vortex sweeping by the
mean flow seems to play an important role here. In this
case, the shape of the spectrum is not modified, but the
(inverse) spectral energy flux is substantially reduced.
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