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ABSTRACT

Descriptions of rock fabric and texture are of great value
to geologists and petrophysicists as they can be used in
facies analysis and in the interpretation of the environ-
ment of deposition. Grain shape and size information
is used to correlate to petrophysical properties. They
are also of importance to the production technologist for
completion design and sand strength/failure prediction.
Textural descriptions are traditionally obtained via petro-
graphic and petrological analysis including thin section
analysis, particle sieving techniques and laser diffraction
studies. All methods have limitations in quantitatively
describing the full 3D rock fabric and assumptions and
interpretations in the processing of data can skew or dis-
tort predictions of textural data.
We have previously demonstrated the ability to image,
visualize and characterise sedimentary rock in three di-
mensions (3D) at the pore/grain scale via X-ray com-
puted microtomography [1, 2]. We now demonstrate the
ability to directly measure rock fabric and texture from
3D digital images of core fragments. The mathemati-
cal procedure to extract individual particles from a full
core image is described and its accuracy demonstrated.
A single core fragment image can yield more than 8,000
individual grains. We describe methods for mathemati-
cally characterizing the individual grains including grain
size (max/min and mode, skewness, sorting, kurtosis) and
shape (sphericity, roundness). These are measured in par-
allel with textural information (sorting, grain contacts,
matrix/grain support).
A comparison of grain size analysis from digital image
data to laser diffraction studies on sister core material
is shown; good agreement between estimates of grain
size is obtained. Comprehensive grain shape data ob-
tained over thousands of grains shows significant vari-

ability within samples and systematic shape changes with
grain size. Measures of grain contacts and grain overlap
area show that many grains are loose within the pack and
larger grains can have coordination numbers greater than
20. Anisotropy in grain orientation is also directly mea-
sured.

The rock fabric and texture derived from digital 3D im-
ages is more comprehensive, systematic and quantitative
than current analysis techniques. This analysis, coupled
with studies of 3D pore structure and the ability to di-
rectly measure petrophysical properties from 3D images,
will enable one to embark on a systematic study of the
effect of grain size, shape and cementation on transport
and elastic properties of core material.

METHODOLOGY

In this section we describe the samples considered in this
study; a simple polymeric foam structure, two soil sam-
ples, a poorly consolidated reservoir core and a poorly
sorted reservoir sand. We briefly describe the methods
used to image the 3D structure of the porous samples and
to identify the distinct phases. We discuss the compu-
tational methods used to extract individual grains from
three dimensional images and discuss the mathematical
tools used to analyse the size and shape of the extracted
grains and the fabric of the samples.

Tomographic Imaging

A high-resolution and large-field X-ray µCT facility has
been used [17, 18, 19] to image the samples. The CT
has a cone beam geometry. Details of the equipment and
experimental methodology used to image the microstruc-
ture of sedimentary rock have been given previously [18,
10, 2]. The resolution chosen is dependent on the grain
size of the material. For grains of 100 − 300µm we find
that 4-10 µm resolution is sufficient.
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Figure 1: A core sample of 7.5mm x 7.5mm cross section
mounted on the tomography rotation stage before imag-
ing.

Samples imaged

Five samples are considered in this study. Details of the
image size and image resolution for each of the samples
is given in Table 1.

1. A microcellular polymeric foam was chosen as a
model system for study. The foam is characterised
by reasonably homogeneous spherical pores em-
bedded within a solid matrix. This system of highly
spherical and rounded pores is used to validate the
fabric and texture analysis algorithms and to illus-
trate reference values for a sphere pack. Slices
through the sample and a 3D rendered image show-
ing the spherical structure of the foams are given in
Fig 2(a) and Fig. 3(a).

2. Two samples (Soil A and B) of unconsolidated re-
golith material from the saturated zone (depth=50.5m)
are considered. The samples come from a fairly
extensive facies that appears homogenous on a cm
scale. XRD analysis shows that the mineral phase
is made up of 88% quartz, 9% montmorillonite and
3% kaolin. A PQ diamond coring technique was
used to remove the material from the ground in a
reasonably undisturbed state. Imaged slices of the
samples are shown in Fig 2(b) and (c) with an alu-
minium tube of diameter 1.5 cm surrounding the
core (left image). We note that the cut of soil A
seems to contain larger grains with some layers ex-
hibiting finer grains (Fig 2(b) right). A 3D ren-
dered image of a small subset of Soil A is shown
in Fig 3(b).

3. A sample of unconsolidated core from a prospec-
tive oil reservoir was considered. Slices of the sam-
ple are shown in Fig 2(d). A 3D rendered image of
a small subset of this sample is shown in Fig 3(c).

4. A single 8 mm diameter plug of a texturally com-
plex sample from a prospective gas reservoir was
examined. The sample exhibited extremely poor

sorting and some clay content. Orthogonal slices
through the original tomogram are shown in Fig. 2(e).

[a]

[b]

[c]

[d]

[e]

Figure 2: Orthogonal slices of the five samples imaged.
(a) Foam, (b) Soil A, (c) Soil B, (d) unconsolidated sand
and (e) poorly sorted sand. The phase surrounding the
granular core in (c) is an injected epoxy resin.
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Table 1: Details of the sample type, tomogram resolu-
tion (µm), image size (voxels), grain phase fraction φgr,
porosity φ and clay/silt fraction φs/c for the samples con-
sidered in this study.

Sample Res. Size φgr φ φs/c

Foam 6.72 10003 72% 28% 0%
Soil 1 17.0 10003 58% 8% 34%
Soil 2 9.4 20003 62% 9% 29%
Uncon. 6.72 10003 70.8% 29.2% 0%
Poor Sort 8.6 10003 78.4% 7.2% 14.4%

Phase Identification

The tomographic image consists of a cubic array of re-
constructed linear x-ray attenuation coefficient values, each
corresponding to a finite volume cube (voxel) of the sam-
ple. An immediate goal is to differentiate the attenuation
map into distinct pore and grain phases for each of the
samples imaged. Ideally one would wish to have a multi-
modal distribution giving unambiguous phase separation
of the pore and various mineral phase peaks. In partic-
ular one would like to obtain a clear bimodal distribu-
tion separating the pore phase from mineral phase peaks.
This simple phase extraction is possible on the polymeric
foam sample. From the original 10003 image we extract
a 456× 456× 912 subset (the region of the image which
contains only foam) for analysis. The intensity histogram
(Fig. 4(a)) shows two distinct peaks associated with the
two phases. The peak centered around 27500 is associ-
ated with the polymeric material. The lower peak around
17000 is associated with the pore phase. For an inten-
sity histogram with two distinct phase peaks it is suffi-
cient to do a simple threshold segmentation at 22500 fol-
lowed by an isolated cluster removal to remove noise ar-
tifacts (isolated phase fragments of ≤ 20 voxels). Com-
parison of the grey-scale and binarised image of a slice
of foam A is shown in Fig. 4(b) and (c). The resultant
solid phase fraction at the measured attenuation cutoff is
(ρ/ρs)image = 28%. This is in good agreement with the
lab measured density of 29%.

Unfortunately in rock and soil samples, the presence of
pores at scales below the image resolution leads to a spread
in the low density signal making it difficult to unambigu-
ously differentiate the pore from the microporous and
solid mineral phases. One also may wish to undertake
three-phase identification– phase separation of the resolv-
able pore phase, intermediate (silt/clay) phase and the
grain phase. To quantitatively analyse tomograms we
have developed a well-defined and consistent method to
label each voxel [20]. The first stage comprises a nonlin-
ear anisotropic diffusion (AD) filter [13] which removes

[a]

[b]

[c]

Figure 3: Rendered 3D images of subsets of samples im-
aged (left) and a typical grain (right). (a) Foam, (b) Soil
A, (c) unconsolidated sand.

noise while preserving significant features, i.e. the bound-
ary regions between the phases. The second stage applies
an unsharp mask (UM) sharpening filter [15] which has
proven itself in practice to be highly effective at sharpen-
ing edges without overly exaggerating the noise. Finally,
the phase separation is performed using a combination of
watershed [23] and active contour methods [3].
We describe the multiphase identification process for Soil
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Figure 4: (a) Intensity histogram for the full image vol-
ume of Sample A. (b) Grey-scale x-ray density map of
a slice of Sample A, and (c) the same slice after phase
separation into pore and solid phases.
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B. From the original 20003 of the soil sample shown in
Fig. 2(c) we extract a 1080 × 1050 × 1900 subset (the
region of the image which contains only the sample) for
phase separation. The intensity histogram for the region
is given in Fig. 5 after filtering. Three phase segmenta-
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Figure 5: Normalized intensity histogram for the full im-
age volume of the Soil B sample.

tion was performed on the image. Absolute thresholds
were chosen for the void phase I < 6500, grain phase
I > 9000 and intermediate (clay/silt) phase 7000 < I <
8500. Phase separation in the ambiguous intensity re-
gions between these phases was then made using the ac-
tive contours and watershed methods to delineate the three
phases. A subset of the central slice along with the resul-
tant pore, clay and grain phases are shown in Fig. 6. The
resultant phase fractions obtained were φpore = 9.4%,
φgrain = 61.7%, φclay/silt = 28.7%. In the other soil
sample and the poorly sorted sand we undertake this three
phase segmentation process and observe a significant clay
fraction (Table 1). The unconsolidated sand is clean and
exhibits only trace amounts of an intermediate phase.

GRAIN EXTRACTION

In sedimentary rocks the solid phase is made up of dis-
tinct grains and cements. However, due to the process of
sedimentation and diagenesis the solid phase will appear
continuous within the image as all grains are in contact
with at least three other grains. One must develop an
automated method to distinguish between particles in an
image. In this section we describe two methods we use
to extract distinct grains from the mineral phase of 3D to-
mographic images. Both methods are based on introduc-
ing grain boundaries at minima of a distance function for
the grain phase. For poorly cemented sands the method
is robust. For more strongly cemented materials (particu-
larly quartz sands with quartz cement) the partitioning is
more difficult and will need to be rigorously tested.

Figure 6: (Top left), Tomographic grey scale data: Top
right, pore phase (black): Bottom left, clay phase (in
white) and bottom right grain phase (white)

Partitioning via Erosion and Voronoi tesselation

The first algorithm is based on an erosion/dilation process
followed by a voronoi partitioning–the method is illus-
trated in Fig. 7 for both a 2D and 3D sample. In this algo-
rithm the grain phase image in Fig. 7(a)-(b) is first eroded
which breaks apart the individual grains (Fig. 7(c)-(d)).
During the erosion process we monitor the number of dis-
tinct grains until a maximum is reached. On reaching this
maximum we assume that the grain phase is now broken
up into all original distinct grains. Each grain is identi-
fied and the original grain shape restored by performing a
dilation (opposite of erosion) back to the original image.
After defining the separate particles, we now partition the
space using the Voronoi tessellation so that each Voronoi
cell contains a rock grain (Fig. 7(e)-(f)). A Voronoi re-
gion associated with a feature is a set of points closer to
that feature than any other features. The Voronoi cells are
first defined by the center of mass of each identified grain
(Voronoi seed) and then by growing the Voronoi seeds
at the same rate via dilation. When the boundary of two
growing seeds meet a planar boundary is defined between
them. The process continues until all the grain phase is
filled. The Voronoi regions associated with each grain
(Voronoi cells) are convex polyhedra in 3D (Fig. 7(e)-
(f)) and the boundary between two adjacent cells is a
plane which defines the overlap between the two distinct
grains. The final grain configuration for the original im-
age shown in Fig. 7(a)-(b) is shown in Fig. 7(g)-(h))

Partitioning via Watershed Algorithm

The first algorithm performs well, but can lead to the loss
of the smallest grains during the erosion process. A sec-
ond algorithm overcomes this limitation; grain identifi-
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Figure 7: (a-b) A segmented image of a grain pack in
(a) 2D and (b) 3D. (c-d) Images (a-b) after erosion. (e-
f) shows the original images after separating the con-
stituent grains via the Voronoi tesselation and (e) shows
the boundaries separing the distinct grains in (a). (g-h)
shows the original grain pack with colours labelling the
distinct grains.

cation is done in a two stage process, which takes Eu-
clidean distance data (distance to the nearest grain bound-
ary) of the grain phase as input. The basic assumption is
that the boundaries between grains which are not isolated
coincide with the watershed surfaces of the Euclidean
distance function [23]. The entire grain space can be
thought of as the union of spheres centred on every grain
voxel. Each sphere radius is given by the Euclidean dis-
tance value of the voxel at its centre. We first identify all
the voxels that are not covered by any larger Euclidean
spheres. Each one of these voxels, which are at max-
ima of the distance function in their local neighbourhood,
forms a seed that will grow into a single grain in the next
stage of the algorithm.

The watershed transformation [7] is performed by region
growing, in which each region starts as a single seed voxel.

Voxels that lie on the boundaries of the regions are pro-
cessed in reverse Euclidean distance order, i.e. voxels
with high distance values are processed first. When a
voxel is processed, it is assigned to the region on whose
boundary it lies, or, if it lies on more than one region
boundary, the region whose boundary it first became part
of. At the end of the algorithm, the grain space will
be partitioned into grains whose boundaries lie on the
watershed surfaces of the Euclidean distance function.
The algorithm is parallelised using an implementation of
the ”time warp” discrete event simulation protocol [22].
The resultant grain separation is nearly identical to the
Voronoi based partitioning, but includes more informa-
tion on smaller grains.

GRAIN SIZE, SHAPE AND TEXTURE

The granular image is now separated into distinct grains
which are stored in a simple database with information
on the coordinates of each grain center of mass, the co-
ordinates of all voxels of each grain, the number of neigh-
bouring grains and all neighboring grain labels along with
grain overlap information. From the individual grain data
a number of grain size, shape, texture and fabric proper-
ties can be derived.

Grain Size distribution

From the set of individual grains identified one can im-
mediately define a comprehensive sediment size distri-
bution and distribution measures including median and
mean grain size, sorting, skewness and kurtosis. The
grain volume is measured by counting the voxels in each
distinct grain. Size according to the Wentworth grade
scale is reported. In this grading scale one considers a
logarithimic grading [11] based on:

φg = − log
2
d , (1)

where d is the particle size in mm. Here we define size
via the volume of the particle and report the nominal di-
ameter d of the sphere having the same volume as the
particle. Grain size distribution descriptors for each sam-
ple are defined according to Folk and Ward [6]:
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where φ̄g is the mean of the grain size distribution, Mdφg

its median, sorting is given by the standard deviation σ,
Sk and K are Skewness and Kurtosis, and φgn

indicates
the nth percentile of φg .

Grain Shape derived from Spherical Harmonics

In this section we discuss how to mathematically char-
acterize the shape of any arbitrary particle and we apply
this mathematical description to the particles extracted
from the 3D images. Unfortunately the discrete or vox-
elated representation of particles leads to significant er-
rors in any calculation related to the surface of the par-
ticle due to the roughness of a voxelated surface. For
example the digital surface area of a sphere is 50% larger
than the actual value. Work on a range of oblate and pro-
late spheroids [8] shows the error can vary from 28% to
43%. The procedure we use to more accurately generate
the 2D surface of each 3D particle is based on spheri-
cal harmonic shape descriptors of the grain surface. This
method has been previously used to approximate molec-
ular orbital surfaces [5], to characterize the shape of an
asteroid [28] and to estimate the shape of cement parti-
cles [8] from digital images.
To approximate the rough surface of a voxelated object to
a continuous and smooth surface via spherical harmonics
we first determine the position of all the surface points
in terms of polar coordinates. This is done by finding
the center of mass (Cm) of the object and the line seg-
ments (R) starting from the Cm and ending at the in-
terface between the particle (solid phase) and the back-
ground (pore phase), at all given spherical polar coordi-
nate angles (θ and φ). The angles are chosen based on
120-point Gaussian quadrature [16]. This method of find-
ing the surface points works only for particles in which
the line segment connecting the center of mass to the sur-
face crosses the interface only once; the grain is convex.
The function R(θ, φ), the spherical harmonics form a
complete set:

r(θ, φ) =
∞
∑

n=0

n
∑

m=−n

anmY m
n (θ, φ); −n≤m≤ n (2)

where Y m
n (θ, φ) is a spherical harmonic function of or-

der (n,m) and (anm) are the Fourier coefficients. The
accuracy of spherical harmonic analysis with respect to
the number of coefficients n used in the spherical har-
monic expansion, has been previously studied in [8]. De-
pending on the resolution of the digital image, different n
are needed to estimate the shape properties of the object
within a reasonable agreement with the exact (analytical)
results. We have found, in agreement with [8], that for
grains of more than 1000 voxels, the error in the esti-
mation of the granular shape is low for n ' 20. This
was tested on a range of analytic shapes. For example,

error analysis on ellipsoids of revolution of 20000 vox-
els led to a decrease in the error in the surface area from
28% (voxel-based) to 2% (spherical harmonics, n = 20).
From this description of the grain we can more accurately
quantify sphericity and roundness.

Sphericity

Sphericity measures the degree to which a particle ap-
proaches a spherical shape. Quantitatively, sphericity was
defined by Wadell [24] as the ratio of the particle’s vol-
ume to the volume of a circumscribing sphere which may
be taken as the volume of a sphere with a diameter equal
to the longest axis of the particle;

ΨW = 3

√

Vp

Vcs
. (3)

A more accurate definition of sphericity involves mea-
suring the three linear dimensions of the grains. From
measurement of volume, surface area and curvature of
each grain we derive an equivalent regular triaxial ellip-
soid with Long, Intermediate and Small axes dL and dI

and dS respectively. Sphericity is then rewritten as;

Ψ = 3

√

dSdI

d2

L

. (4)

This definition is known as intercept sphericity. Sneed
and Folk [21] introduced maximum projection sphericity
as a modification to Wadell’s definition. Their objection
to Wadell’s sphericity was that although it correctly mea-
sures the degree to which a particle approaches a sphere,
it does not correctly express the dynamic behavior of the
particle in a fluid. They believed that the sphericity of a
particle should express its behavior in a fluid where par-
ticles tend to orient themselves with their maximum pro-
jection area normal to the flow. They defined sphericity
as;

ΨP =
3

√

d2

S

dLdI
. (5)

We report both the intercept and the maximum projec-
tion sphericity on the smooth surface of grains defined
via spherical harmonics.

Roundness

Roundness is a shape characteristic related to the distance
traveled by a particle prior to its deposition [14]. Ex-
perimental studies indicate that roundness is related to
the degree of abrasions and wear suffered by the particle.
A qualitative definition of roundness refers to the sharp-
ness of the corners and edges of the grain. However the
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main problem in determining the roundness is recogniz-
ing the corners. There have been many propositions for
an accurate and efficient method to measure roundness
[26, 25, 12]. They are based on a visual comparison of in-
dividual grains which leads to a number of problems; first
the number of grains studied is limited, secondly they are
based on 2D projection images and thirdly, it is objective
– different operators may estimate different roundness.
We measure the roundness of the particles by deriving
the Maximum Covering Sphere map [4, 9, 2] for each
grain: define locally for every point within the grain, the
diameter of the largest sphere which fully lies within the
grain and covers that point (Fig. 8). To measure the cur-
vature over the whole grain we find the maximal cover-
ing sphere along the surface of the grain and summing
over all surface patches derive the average curvature Cav

for the grain. The roundness of the grain is then defined
by Cav × R where R is the maximally inscribed sphere
within the grain.

[a] [b]

Figure 8: Illustration of the measurement of the round-
ness of the grains. In [a] a 2D slice of a the poorly con-
solidated reservoir core is shown with the grains in black.
In [b] the corresponding field of maximal covering radii
is shown for the granular phase with the gray scale pro-
portional to covering disk radius (brighter indicates larger
covering radii).

It is assumed that roundness of rock particles is a prop-
erty independent of sphericity [24] and it is common to
analyse grain shape data via a Sphericity/Roundness plot
introduced by Powers [14] (see Fig. 9) and hereafter re-
ferred to as a Powers plot.

Shape Class

Other classifications of the shape of grains are used in
sedimentology. One common classification is based on
the measure of the three primary axes of each grain and
gives an indication of the relative length of these axes;
from oblate (disk-shaped), equant (sphere or cube-like),
to bladed, and prolate (rod-shape). This shape relation is
plotted in a diagram commonly called a Zingg diagram
[27]. The long, intermediate and small axes of each grain
is measured as described previously.

Figure 9: Sphericity/Roundness relation-
ship as given in [14]. Image obtained from
http://www.carboceramics.com/tools/trphysical.html.

GRAIN FABRIC ANALYSIS

In this section we describe the methodology for obtaining
fabric data from the grain images including quantifying
the grain packing characteristics (grain to grain contacts,
grain overlap area) and orientation.

Grain Connectivity

One of the most important characteristics of packing is
the frequency with which grains touch each other. From
the grain partitioning algorithm one can immediately iden-
tify all grain-to-grain contacts within the full volume. Due
to potential biasing at the boundaries we do not consider
any grain that is in contact with the edge of the image
volume.

Grain Overlap

The total overlap area between grains can also be derived
directly from the grain partitioning throughout the full
volume. This leads to an estimate of the degree of ce-
mentation of the rock. The shape of the grain contact is
not ascertained by the algorithm. Due to the nature of the
partitioning algorithm, illustrated in Fig. 7, most contacts
are long (are approximately planar). Concave/convex and
sutured contacts cannot be discerned. The measure of the
grain overlap area does allow one to differentiate tangen-
tial contacts (small overlap areas) to long contacts.

Grain orientation

From measurement of the three primary axes of the grains
one can obtain grain orientation information. We report
the orientation of the primary axis dL of each grain to
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describe the degree of preferential orientation within the
granular medium.

RESULTS

Here we describe the results for the fabric and texture
analysis on the five tomographic samples. The total num-
ber of grains imaged in each sample is given in Table 2.
The rock and soil samples all include over 4000 imaged
grains.

Table 2: Statistics derived from the images of the five
samples. We give the number of grains captured per im-
age (No.). We also report the mean volume of the grain,
the median grain size, the dispersion (sorting or stan-
dard deviation), the skewness and kurtosis of the grain
size distribution. All properties are defined in φg units
(Eqn.(1)) and based on the definitions of Folk and Ward
[6].

Foam Soil1 Soil2 Uncon PoorSort

No. 1521 5063 5795 8310 4103
φ̄g 1.74 1.01 1.58 2.70 2.62

Mdφg
1.68 1.10 1.50 2.66 2.69

σ .37 .35 .52 0.42 1.04
Sk 0.07 -0.07 0.30 0.24 -.45
K 1.09 .97 1.01 1.21 1.30
Z 6.02 5.23 5.63 5.10 7.45

Foam sample

The foam, characterised by reasonably homogeneous spher-
ical pores embedded within a solid matrix and a reason-
ably narrow distribution of the bubble sizes, is used to
validate the fabric analysis algorithms and to give refer-
ence values for a homogeneous sphere pack. The analy-
sis is performed on the pore phase as this phase mimics a
homogeneous spherical grain pack. Data in Table 2 indi-
cates that the system is well sorted, is slightly positively
skewed and mesokurtic. In Fig. 10 we summarise the
grain size data; the grains are primarily of medium grade
with some fine grades (1 < φg < 3).
In Fig. 11 we summarise the grain shape data; we find
that, as expected, the sphericity and roundness of the ’grains’
are both close to 1.0. The data for all grains superim-
posed on the Power plot shows that all grains lie in the
upper right region. The data on the Zingg diagram also
lies strongly in the upper right quadrant further underlin-
ing the strongly compact spherical shape of the ’grains’.
In Fig. 12 and Table 2 we summarise the grain fabric data.
The average connectivity of the grains is Z̄ = 6.02 and

0 1 2 3
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Figure 10: Grain size data for the ideal foam system.

we observe a homogeneous coordination number distri-
bution in Fig. 12(a) with a maximum coordination num-
ber of Zmax = 11. The grain overlap area distribution in
Fig. 12(b) is homogeneous with the average overlap area
of the order of .04 mm2. Despite the homogeneity of the
system a very strong anisotropy is observed in the grain
orientation (Fig. 12(c)). This is consistent with the manu-
facturing process which is based on an extrusion process
and leads to slight shearing of the system resulting in a
small but consistent elongation of the foam structure in
one direction.

Soil Sample A

Data in Table 2 is based solely on the statistics measured
on the resolved grains which lie within the sand grade
scales (very coarse → very fine). The results indicate that
the first soil system is well to very well sorted, is near
symmetrical and mesokurtic. In Fig. 13 we summarise
the grain size data; the grains are primarily of coarse and
medium grade (0 < φg < 2) .
In Fig. 14 we plot data from a laser particle size exper-
iment on a sister core of the soil sample. The particle
size data shows a bimodal distribution with a significant
fraction (29.1%) of the grains lying in the silt/clay range
and most of the remaining grains within the coarse to
medium sand grades. The binarization of this core (recall
Table 1) led to an estimate of the intermediate phase vol-
ume (clay/silt fraction) as 34% in reasonable agreement
with the particle size data. We compare the histogram
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Figure 11: Grain shape data for the ideal foam system.
(a) Sphericity and (b) roundness are plotted as a func-
tion of grain volume. (c) Sphericity/roundedness and (d)
Zingg diagram for the system.

from the digital image data to the data from the parti-
cle size analysis for the sand fraction in Fig. 13(b). The
agreement is good.

In Fig. 15 we summarise the grain shape data. The Spheric-
ity data lies between values of 0.4 and 0.7 with a slight
bias to larger sphericity for larger grains. The roundness
data lies in the rounded to well rounded range with larger
values observed for smaller grains. The data for all grains
superimposed on the Powers plot shows a spread of grain
shape across the sample. The data on the Zingg diagram
also varies over a wide range indicating the breadth of
grain shapes measured on this sample.

In Fig. 16 and Table 2 we summarise the grain fabric data.
The average connectivity of the grains is Z̄ = 5.23 and
we observe a broader coordination number distribution
in Fig. 16(a). No grains of Z < 3 are noted as expected
since a stable packing for any grain would initially have
a minimum of 3 neighbours. The peak in the distribu-
tion lies at a coordination number of Z = 3 and more
than 50% of the grains have a Z ≤ 4. Z = 3 corre-
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Figure 12: Grain fabric data for the homogeneous foam;
(a) coordination number distribution and (b) overlap area
distribution. In (c) the orientation of the longest axis is
shown along a hemisphere– there is a strong preference
for a single direction. The direction of the elongated axis
is shown for each grain and the length of the lines is pro-
portional to the equivalent radius of the grain.

sponds to a loose grain and Z = 4 is the minimum co-
ordination number in 3D for a grain to be stable. The
large number of grains of low coordination indicates that
many grains may be loose within the pack and may in-
dicate that the pack is weakly grain supported or matrix
supported. We also note that a small number of grains
exhibit very high coordination. In Fig. 16(b) we plot the
coordination number versus grain volume. We note that
the grains of high coordination correspond to the grains
of largest volume as expected. In Fig. 17 we show two
snapshots from a rendered 3D movie of a highly coordi-
nated (Z = 22) grain showing that many smaller grains
are attached to this large grain. The grain overlap area
distribution in Fig. 16(c) is positively skewed with the
mean overlap area of the order of .4 mm2. No anisotropy
in the grain orientation is observed in Fig. 16(d)– the di-
rection of the longest axis seems equally weighted along
all orientations.

Soil Sample B

In contrast to Soil A, data in Table 2 indicates that the
second soil system is only moderately sorted, is strongly
positively skewed and mesokurtic. This highlights the
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Figure 13: Grain size data for the first soil sample. In
(b) we also show the grain size distribution for the sand
fraction obtained by laser particle sizing (Fig. 14 on a
sister plug). The agreement is excellent.

heterogeneity in this soil despite the proximity of the two
samples. In Fig. 18 we summarise the grain size data; the
grains are primarily of medium grade with some coarse
and fine fractions (0 < φg < 3). A small amount of very
fine/silt fraction (φg = 4− 6) is also observed. We again
can compare this analysis to the data from laser particle
sizing on a sister core by overlaying the histogram from
the digital data onto the data from the particle size anal-

Figure 14: Grain size data for soil sample obtained by
laser particle sizing.
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Figure 15: Grain shape data for the first soil sample. Ar-
rangement as in Fig. 11.
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Figure 16: Grain fabric data for soil A sample.
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Figure 17: Two images of a highly coordinated grain (or-
ange) and its neighbouring grains from a rendered 3D
movie.

ysis for the sand fraction in Fig. 18(a). The digital data
is now biased to lower grain sizes compared to both the
Soil A sample and the laser data. This again highlights
the heterogeneity in grain sizes within this soil.
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Figure 18: Grain size data for the second soil sample.

In Fig. 19 we summarise the grain shape data. Similar
to the data for Soil A (recall Fig. 15), sphericity data lies
between values of 0.4 and 0.7 with a very slight bias to
larger sphericity for larger grains. The roundness data
lies in the rounded to well rounded range with larger val-
ues observed for smaller grains. The data for all grains
superimposed on the Power plot shows a similar spread
of grain shape across the sample. The data on the Zingg
diagram also varies over a wide range indicating the breadth
of grain shapes measured on this sample.
In Fig. 20 and Table 2 we summarise the grain fabric
data. The average connectivity of the grains is Z̄ =
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Figure 19: Grain shape data for the second soil sample.
Arrangement as in Fig. 11.

5.63 and we observe a slightly broader coordination num-
ber distribution in Fig. 20(a) than in Fig. 16(a). The
peak in the distribution lies at a coordination number of
Z = 3 and Z = 4 again indicating that a large num-
ber of grains are loose or potentially loose within the
pack. The grain overlap distribution in Fig. 20(b) is pos-
itively skewed with the mean overlap area of the order of
.4 mm2. No anisotropy in grain orientation is observed
(Fig. 20(c)).

Unconsolidated Reservoir Core

Data in Table 2 indicates that the unconsolidated reser-
voir sand is well sorted, exhibits slight positive skewness
and is platykurtic. In Fig. 21 we summarise the grain size
data; the resolved grains are primarily of a fine to very
fine grade (2 < φg < 4). No experimental laser particle
sizing data was available for this core.
In Fig. 22 we summarise the grain shape data. The Spheric-
ity data lies between values of 0.7 and 0.9. The roundness
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Figure 20: Grain fabric data for soil B sample.

data lies primarily between 0.4 and 0.6 (rounded grains)
and shows a bias to larger values observed for smaller
grains. The data for all grains superimposed on the Power
plot shows a similar grain shape within the sample. The
data on the Zingg diagram lies primarily in the compact
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Figure 21: Grain size data for the unconsolidated reser-
voir core sample.
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Figure 22: Grain shape data for the unconsolidated reser-
voir core sample. Arrangement as in Fig. 11.

quadrant.
In Fig. 23 and Table 2 we summarise the grain fabric data.
The average connectivity of the grains is Z̄ = 5.10 and
we observe a broad coordination number distribution in
Fig. 23(a). This low Z̄ = 5.10 may indicate the loose-
ness of the packing despite the high grain volume frac-
tion. Also the peak in the distribution lies at a coordina-
tion number of Z = 3, 4 indicating that a large number
of grains are loose within the pack. The grain overlap
distribution in Fig. 23(b) is narrow and positively skewed
with the mean overlap area of the order of .04 mm2. No
anisotropy in grain orientation is observed (Fig. 23(c)).

Poorly Sorted Core

Data in Table 2 indicates that the unconsolidated reser-
voir sand is very poorly sorted σ = 1.04, is strongly
negatively skewed and very platykurtic. In Fig. 24 we
summarise the grain size data; the resolved grains vary
from very coarse to a very fine grade (−1 < φg < 4).
Again no laser particle sizing data was available for di-
rect comparison.
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Figure 23: Grain fabric data for the unconsolidated reser-
voir core sample.
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Figure 24: Grain size data for the poorly sorted reservoir
core sample.

In Fig. 25 we summarise the grain shape data. The grains
are not spherical with sphericity values of 0.4 to 0.7. The
roundness data lies primarily between 0.5 and 0.9 (rounded
to well rounded grains) and as seen previously, shows
a bias to larger values for smaller grains. The data for
all grains superimposed on the Power plot shows a broad
distribution of grain shape within the sample. The data on
the Zingg diagram lies primarily in the prolate quadrant.
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Figure 25: Grain shape data for the poorly sorted reser-
voir core sample. Arrangement as in Fig. 11.

In Fig. 26 and Table 2 we summarise the grain fabric data.
The average connectivity of the grains is Z̄ = 7.24 and
we observe a very broad coordination number distribu-
tion in Fig. 26(a). Again, the peak in the distribution
lies at a coordination number of Z = 3 but one also ob-
served some grains (largest) with coordination numbers
of Z ≥ 60. The grain overlap distribution in Fig. 26(b)
is broad, strongly skewed with the mean overlap area
per grain of the order of .3 mm2. We observe some
anisotropy in the grain orientation in Fig. 26(c). It is not
clear if the axis corresponding to the preferential align-
ment of the grains is along the bedding plane of the core.
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Figure 26: Grain fabric data for poorly sorted sample.

CONCLUSIONS

1. We demonstrate the ability to directly measure rock
fabric and texture from 3D digital images of rock
fragments. We describe two methods to distinguish
individual grains from a complex image. We then
describe methods for the characterisation of indi-
vidual grains including grain size data (max/min,
mean, median, mode, skewness, sorting and kur-
tosis), grain shape data (sphericity, roundness) and
textural information (sorting, grain contacts, ma-
trix/grain supported). Current measures of grain
size and shape are often based on visual compar-
isons for 2D projections and are subject to opera-
tor bias. The rock fabric and textural data obtained
from 3D images is more comprehensive, system-
atic and quantitative than current analysis techniques.

2. We characterise five individual samples including a
model foam and 4 sedimentary samples. The sam-
ples encompass a broad spectrum of grain fabric
and texture. The resultant analysis on up to 8000
grains per image gives a wide distribution of grain
size and sorting values. Grain size data based on
the Wentworth scale are analysed from very fine
sands/silts through to very coarse sands. Compar-

ison of grain size data from the digital method to
data from laser particle sizing on a sister core sam-
ple is consistent.

3. Grain shape data varies considerably across sam-
ples. The model homogeneous system is very strongly
rounded and spherical. The sedimentary systems
vary from subrounded to well rounded and have
sphericity values from 0.3 − 0.9. Systematic vari-
ations in grain shape are noted with grain size. A
plot of the roundness and sphericity for all grains
within a sample allows one to gauge mean particle
shape as well as the spreads in the measures.

4. Grain fabric data varies with sorting and consol-
idation. The three poorly consolidated sedimen-
tary systems all have mean connectivity of 5.1 <
Z < 5.6. In contrast the more cemented and poorly
sorted sand exhibits a higher connectivity Z = 7.45.
All samples exhibit a large number of grains with
coordination number of Z = 3 which corresponds
to a loose grain. Grain overlap areas are measured
and may be linked to the degree of cementation of
a rock.
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