
Chapter 9

WAVES IN COLD

MAGNETIZED PLASMA

9.1 Introduction

For this treatment, we will regard the plasma as a cold magnetofluid with an
associated dielectric constant. We then derive a wave equation using Maxwell’s
equations. Assuming a harmonic solution will then give a dispersion relation that
describes all possible propoagating wave modes consistent with our assumptions.
An alternative approach that is more tedious but which can offer greater physical
insights is to solve the fluid equations of motion together with Maxwell’s equations
as we did for low frequency ion waves. In this chapter, we’ll take the former
approach, pointing out the important physics where appropriate.

9.2 The Wave Equation

We start with Maxwell’s equations, which we write as

∇×E = −∂B

∂t
(9.1)

∇×B = µ0

(
j + ε0

∂E

∂t

)

= iµ0ωε0

(
j

iωε0

− E

)

= −iµ0ωε0

(
↔
I +

i
↔
σ

ε0ω

)
E

= −iµ0ω
↔
ε E (9.2)
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where we have used the relation j =
↔
σ E (Ohm’s law for high frequency be-

haviour) and the definition of the dielectric tensor given by Eq. (5.30). The
plasma physics is all contained in the dielectric tensor — see Chapters 4 and 5.

To generate the wave equation, we take the curl of Eq. (9.1) and substitute
from Eq. (9.2):

∇×∇×E = − ∂

∂t
∇×B

= µ0ω
2ε0

↔
K .E

=
ω2

c2

↔
K .E (9.3)

where ↔
K≡↔

ε /ε0 = relative susceptibility tensor

For plane wave solutions, the wave equation gives

ik×(ik×E) − ω2

c2

↔
K .E = 0 (9.4)

or

n×(n×E)+
↔
K .E = 0 (9.5)

where

n =
c

ω
k (9.6)

is the refractive index vector. Note that n =|n |= ck/ω = c/vφ or

ω

k
≡ vφ =

c

n
. (9.7)

Since wave frequency doesn’t change, this implies that λ = λ0/n where λ0 is the
free space wavelength.

9.3 The Dielectric Susceptibility Tensor

From Eq. (5.31) and Eq. (5.34) we can write the dielectric susceptibility tensor
in the form

↔
K=




S −iD 0
iD S 0
0 0 P


 (9.8)

where the reasons for using the nomenclature S, P , D as opposed to ε1,ε2 and ε3

will be apparent later. The components are given explicitly by the formulae [see
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Eq. (5.34)]

S = 1 +
i

ωε0

σ⊥ (9.9)

D = ∓ 1

ωε0

σH (9.10)

P = 1 +
i

ωε0

σ0. (9.11)

where the minus sign is for ions and positive for electrons and where we use the
conductivity components for high frequency electric fields given by Eq. (5.27)
with ν replaced by −iω as described in Sec. cond-tvf or directly using Eq. (4.53).
Thus for S we obtain (for electrons)

S = 1 +
i

ωε0

ine2

meω

ω2

ω2 − ω2
ce

= 1 +

(
ne2

meε0

)
1

ω2 − ω2
ce

= 1 − ω2
pe

ω2 − ω2
ce

.

Including both ions and electrons gives

S = 1 − ∑
i,e

ω2
p

ω2 − ω2
c

. (9.12)

In a similar way, we obtain

D =
∑
i,e

± ω2
pωc

ω(ω2 − ω2
c )

(9.13)

P = 1 − ∑
i,e

ω2
p

ω2
(9.14)

where the plus sign is for ions and minus for electrons.

9.4 The Dispersion Relation

We have so far dealt with the second term of Eq. (9.5). Let us now simplify
the first term and so develop a dispersion relation for waves characterized by

the tensor
↔
K. We assume the wave is propagating at an angle θ to the ambient

magnetic field B = B0k̂ and, without loss of generality, that the propagation
vector lies in the x–z plane. The geometry is shown in Fig. 9.1.



172

nz B

k, n

x

nx

θ

Figure 9.1: The geometry for analysis of plane waves in cold magnetized plasma.

With this setup, we obtain

n×E =

∣∣∣∣∣∣∣
î ĵ k̂
nx 0 nz

Ex Ey Ez

∣∣∣∣∣∣∣
= î(−nzEy) − ĵ(nxEz − nzEx) + k̂(nxEy) (9.15)

and

n×(n×E) =

∣∣∣∣∣∣∣
î ĵ k̂
nx 0 nz

−nzEy nzEx − nxEz nxEy

∣∣∣∣∣∣∣
= înz(nxEz − nzEx) − ĵ(n2

xEy + n2
zEy) + k̂nx(nzEx − nxEz)

=




−n2
z 0 nxnz

0 −(n2
x + n2

z) 0
nxnz 0 −n2

x







Ex

Ey

Ez


 . (9.16)

Combining Eq. (9.8) and Eq. (9.16) finally allows Eq. (9.5) to be expressed in
matrix form:




S − n2
z −iD nxnz

iD S − n2
x − n2

z 0
nxnz 0 P − n2

x







Ex

Ey

Ez


 = 0 (9.17)

This represents a set of three simultaneous equations for the components of
E It has a non-trivial solution (E �= 0) if and only if the determinant vanishes.
In evaluating this determinant, we let nx = n sin θ, nz = n cos θ and n2

x +n2
z = n2

to obtain the dispersion relation for waves propagating in a cold, magnetized,
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collisionless plasma (in the sense that the propagation frequencies greatly exceed
colision frequencies):

(S−n2 cos2 θ)(S−n2)(P−n2 sin2 θ)−D2(P−n2 sin2 θ)−n4 sin2 θ cos2 θ(S−n2) = 0.
(9.18)

We now make the following definitions

R = S + D Right (9.19)

L = S − D Left (9.20)

S = (R + L)/2 Sum (9.21)

D = (R − L)/2 Difference (9.22)

P Plasma (9.23)

To solve Eq. (9.18) we first eliminate cosine terms in favour of sine terms and
isolate sin2 θ on the left side. Similarly we express the result with cos2 θ as the
argument of the equation. We then divide the two expressions to finally obtain
the cold wave dispersion relation (show this)

tan2 θ =
P (n2 − L)(n2 − R)

(n2 − P )(RL − n2S)
(9.24)

9.5 Propagation Parallel to B

In this case, θ = 0 and we immediately obtain the two separate dispersion re-
lations n2 = L and n2 = R. To investigate the nature of the wave (i.e. its
polarization properties), we see that Eq. (9.17) gives (using nx = 0)

(S − n2)Ex − iDEy = 0

iDEx + (S − n2)Ey = 0

PEz = 0. (9.25)

Since P = 0 represents a simple plasma oscillation and not a wave motion, we
have Ez = 0. In other words, the propagating mode must be transverse electric.
The ratio of Ex and Ey is obtained from the first two equations as

iEx

Ey

=
n2 − S

D
=

D

n2 − S

⇒ (n2 − S)2 = D2

⇒ (n2 − S) = ±D (9.26)

or n2 = S ± D = R or L as before. Thus

iEx

Ey

= ±1 (9.27)
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so that Ex and Ey are ninety degrees out of phase and the R and L waves are
respectively right and left hand circularly polarized. These polarizations match
the cyclotron orbits of the charged plasma particles.

For concreteness, let us consider the left hand wave.

n2 =
c2

v2
φ

= L = 1 − ∑
i,e

ω2
p

ω(ω ∓ ωc)
(9.28)

where the minus sign is for ions and the positive for electrons. The signs reverse
for the right handed wave. For a single ion species we obtain

c2

v2
φ

= 1 − ω2
pe

ω(ω + ωce)
− ω2

pi

ω(ω − ωci)
. (9.29)

9.5.1 Resonances, cutoffs and limiting behaviour

A wave resonance occurs when the phase velocity vanishes (its wavenumber be-
comes infinite). At a wave resonance, energy is deposited by the wave and the
wave is absorbed. For the left hand wave this occurs at the ion cyclotron frquency
ωci. For the right hand wave, the resonance is at ωce.

A wave cutoff occurs when the phase velocity becomes infinite (its wavenum-
ber vanishes). At a wave cutoff, the incident wave is reflected from the plasma.
Now vφ = c/n → ∞ ⇒ n → 0. The behaviour of the wave field near a cutoff or
resonance is shown in Fig. 9.2

From Eq. (9.24), n = 0 ⇒ L = 0, R = 0. The cutoff frequencies for the left
and right waves are then given by (ignoring ion motions)

ω0L =
[
−ωce + (ω2

ce + 4ω2
pe)

1/2
]
/2

< ωce (ωpe
>∼ ωce typically) (9.30)

ω0R =
[
ωce + (ω2

ce + 4ω2
pe)

1/2
]
/2 (9.31)

= ω0L + ωce

> ωce. (9.32)

From the dispersion relation for the left hand wave we obtain

vφL =
(

ω

k

)
L

=
c(1 + ωce/ω)1/2

(1 + ωce/ω − ω2
pe/ω

2)1/2
(9.33)

= real ⇒ propagating for ω > ω0L

= imaginary ⇒ evanescent for ω < ω0L

Had we retained ion motions we would have found vφL to be real also in the
frequency range ω < ωci(< ω0L).
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Figure 9.2: (a) Near a cutoff, the wave field swells, the wavelength increases and

the wave is ultimately reflected. (b) near a resonance, the wavefield diminishes,

the wavelength decreases and the wave enrgy is absorbed.

For the right hand wave,

vφR =
(

ω

k

)
R

=
c(1 − ωce/ω)1/2

(1 − ωce/ω − ω2
pe/ω

2)1/2
(9.34)

This is real for ω > ω0R and ω < ωce.

At low frequencies, the left hand and right hand waves merge to become the
torsional Alfvén wave propagating along B at phase velocity VA. This behaviour
is shown in Fig. 9.3 which plots the phase velocity versus frequency for waves
propagating parallel to the field.

At high frequencies ω 	 ωce Eq. (9.29)

c2

v2
φ

= 1 − ω2
pe

ω2
. (9.35)

This is the dispersion relation for an electromagnetic wave in an unmagnetized
plasma (as might be expected). Note that the phase velocity is greater than c
for this wave. When the wave frequency is much greater than both magnetic and
plasma frequencies, we obtain vφ = c and the wave is an electromagnetic light
wave that is insensitive to the presence of the conducting plasma.
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Figure 9.3: A plot of wave phase velocity versus frequency for waves propagating

parallel to the magnetic field for a cold plasma.

9.5.2 Some examples

The Whistler wave

For ω < ωce, the phase velocity for the right handed wave increases with fre-
quency. It can also be shown that this is so for the group velocity vg. A lightning
strike in the atmosphere produces an electromagnetic pulse that can excite a
broad spectrum of plasma waves in the ionisphere. Because of the dispersion, the
higher frequency waves (10-15 kHz) will be guided by the earth’s magnetic field
to an observer more quickly than the lower frequency components resulting in a
tone that descends by ∼10 kHz in a matter of seconds. The characteristic note
was often heard by early investigators of ionispheric emissions.
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Faraday rotation

Above ω0R both left and right handed waves propagate, but at different phase
velocities along the magnetic field. After crossing the plasma, the phase of the left
hand wave has increased more than the right because of its lower phase velocity
(it takes longer to get there). The resulting wave emerging from the plasma will
have had its plane of polarization rotated as shown in Fig. 9.4. The total rotation
angle ψ van be used to measure the internal magnetic field:

ψ ∝
∫ L

0
d
 neB‖d
 (9.36)

B0

EL ER

+ =

+ =
θ/2

θ

RH

RH

LH

LH

EREL

Figure 9.4: The principle of Faraday rotation for an initially plane polarized wave

propagating parallel to the magnetic field.

9.6 Propagation Perpendicular to B

In this case, the solutions to Eq. (9.24) are simply

n2 = P

n2 = RL/S. (9.37)

We examine the two solutions in turn.
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9.6.1 The ordinary wave

For this wave, we have n2 = P which reads

n2 =
c2

v2
φ

= 1 − ∑
i,e

ω2
p

ω2

= 1 − ω2
pe

ω2
− ω2

pi

ω2

≈ 1 − ω2
pe

ω2
. (9.38)

Because the propagation vector is perpendicular to B, we have nx = n and nz = 0
and Eq. (9.17) becomes


S −iD 0
iD S − n2 0
0 0 P − n2







Ex

Ey

Ez


 = 0. (9.39)

For the ordinary mode, (P−n2)Ez = 0 requiring Ez �= 0 for a non-trivial solution.
The wave field Ez is parallel to B so that electron motions are unimpeded by
the magnetic Lorentz force. This dispersion relation is thus the same as for an
unmagnetized plasma. The alignment of the wave fields are shown in Fig. 9.5.

B0

y

k x
B1

Ez

Figure 9.5: The ordinary wave is a transverse electromagnetic wave having its

electric vector parallel to B.

9.6.2 The extraordinary wave

For the extraordinary wave, Eq. (9.39) gives

SEx − iDEy = 0
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iDEx + (S − n2)Ey = 0

⇒ Ex

Ey

=
iD

S
. (9.40)

This wave is elliptically polarized with an electric field component in the direction
of k. Since we have a component Ex ‖ k, this wave is partly electrostatic and
partly electromagnetic. The nature of the wave field is displayed in Fig. 9.6

Ex

z

Ey

k B0⊥

yB0

B1

E⊥

k

Rotation of E⊥ in either direction

x

Figure 9.6: The relationship between the propagation vector, magnetic field and

wave components for the extraordinary wave. The wave exhibits an electric field

in the direction of motion and so is partly electrostatic in character.

9.6.3 Resonances, cutoffs and limiting behaviour

It is clear that the ordinary wave is cutoff (n2 = 0) for frequencies ω < ωpe. At
these frequencies, electrons are free to move along the magnetic lines of force to
shield out the electric field of the incident wave which is then refelcted.

The extraordinary wave exhibits cutoffs at R = 0 (ω = ω0R) and L = 0
(ω = ω0L). It also shows a resonance at S = 0 (n → ∞). That is, when

S = 1 − ω2
pe

ω2 − ω2
ce

− ω2
pi

ω2 − ω2
ci

= 0. (9.41)

For ωpi 
 ωpe we see that the resonance occurs at the so-called upper-hybrid
frequency

ωUH = (ω2
pe + ω2

ce)
1/2. (9.42)
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Had ion motions been included we would have found another resonance at a lower
frequency, the lower hybrid frequency

ωLH ≈ (ωciωce)
1/2. (9.43)

To highlight the role of the various resonances etc., the explicit dispersion
relation for the extraordinary wave can be written as (no ion motions)

n2 =
c2

v2
φ

=
(ω2 − ω2

0L)(ω2 − ω2
0R)

ω2(ω2 − ω2
UH)

(9.44)

= real for ω > ω0R

= real for ω0L < ω < ωUH

(9.45)

Figure 9.7 shows the various branches for waves propagating perpendicular to
the magnetic field. Oscillations at almost constant frequency occuring at ωUH =
(ω2

pe + ω2
ce)

1/2 are the equivalent of plasma oscillations at ωpe in the absence of
a magnetic field. The magnetic field gives an additional restoring force to the
usual electric force and hence an increase in the oscillation frequency results. Of
course ω → ωpe as the B-field vanishes.

Problems

Problem 9.1 Consider electromagnetic wave propagation parallel to the magnetic

field. Show that the group velocities for the left and right hand circularly polarized

waves are given by

vgL =

(
∂ω

∂k

)
L

=
2c(ω + ωce)

3/2[ω(ω2 + ωωce − ω2
pe)]

1/2

2ω(ω + ωce)2 − ωceω2
pe

and

vgR =

(
∂ω

∂k

)
R

=
2c(ω − ωce)

3/2[ω(ω2 + ωωce − ω2
pe)]

1/2

2ω(ω − ωce)2 + ωceω2
pe

Make a plot of phase velocity and group velocity for the right hand wave as a function

of frequency, showing resonance and cutoff frequencies. Show that the group velocity

vanishes at these frequencies.

Problem 9.2 Show that the Faraday rotation angle, in degrees, of a linearly polar-

ized transverse wave propagating along B0 is given by

θ = 1.5 × 10−11λ2
0

∫ L

0
B0(z)n0(z) dz
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Figure 9.7: A plot of wave phase velocity versus frequency for waves propagating

perpendicular to the magnetic field for a cold plasma.

where λ0 is the free-space wavelength, n0 is the plasma density and L is the path

length in the plasma. Assume ω2 	 ω2
p, ω

2
c .

Problem 9.3 Derive Eq. (9.44).
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