
Chapter 8

WAVES IN ISOTROPIC

PLASMA

8.1 Introduction

In this chapter, we use the fluid equations and Maxwell’s equations to study
wave propagation in cold and “warm” isotropic (unmagnetized) plasmas. For
“cold” plasmas we simply ignore the restoring forces due to plasma particle kinetic
energy (pressure). This is valid provided the wave phase veloicty is much greater
than the average particle thermal velocity. It is often a good approximation,
though as we have seen, pressure is important for low phase-velocity MHD waves.

8.2 Basic Equations

For each component of the plasma we have Maxwell’s equations and the fluid
equations

∂n

∂t
+ ∇.(nu) = 0 (8.1)

m
du

dt
= q(E + u×B) − mνu. (8.2)

As in the previous chapter, we linearize about our uniform and time-independent
background and assume harmonic plane wave solutions. Series expansion about
equilibrium values n0, u0, E0, B0 and keep only first order perturbations u1,
E1, B1 etc. The perturbations are the wave-related quantities. Since we are
assuming the plasma is unmagnetized, a considerable simplification is obtained
by setting B = 0 so that

n = n0 + n1 B = B1 E = E1 u = u1. (8.3)
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The three important equations for a cold unmagnetized electron gas (immobile
ions) become (show this)

−iωmeu = −eE − meνu (8.4)

k×E = ωB1 (8.5)

ik×B1 = µ0(−en0u − iωε0)E) (8.6)

The equation of state is unimportant because we have ignored pressure effects.

8.3 Isotropic electron gas

Equation (8.4) immediately gives

u =
e

m(ν − iω)
E. (8.7)

Combining with Eq. (8.5) and Eq. (8.6) we find

k×(k×E) = − iωµ0e
2n0

me(ν − iω)
E − ω2

c2
E. (8.8)

We now separate E into its “longitudinal” component parallel to k (the direction
of propagation) and the “transverse” component in the plane normal to k:

E = El + Et (8.9)

This decomposition in shown in Fig. 8.1. From the figure, we have

El k

EEt

Figure 8.1: The longitudinal and transverse electric field perturbations for waves

in a cold electron plasma are decoupled

k×El = 0 (8.10)

k×(k×Et) = −k2Et (8.11)
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and Eq. (8.8) becomes

−k2Et = −
[

iωµ0e
2n0

me(ν − iω)
+

ω2

c2

]
(El + Et) (8.12)

which separates into an equation for the longitudinal component

[
ω2

pe

c2(1 + iν/ω)
− ω2

c2

]
El = 0 (8.13)

and the transverse component

−k2Et =

[
ω2

pe

c2(1 + iν/ω)
− ω2

c2

]
Et. (8.14)

In the absence of collisions, Eq. (8.13) gives

ω2 = ω2
pe (8.15)

which is the expression describing electron plasma oscillations encountered in
earlier chapters. As we have seen, these oscillations are elctrostatic in character
and non-propagating, since ω is independent of k.

For the transverse component, Eq. (8.14) reduces to

vφ =
ω

k
=

c

(1 − ω2
pe/ω

2)1/2
. (8.16)

When ω < ωpe, vφ is imaginary and this wave is evanescent (transports no energy).
For ω > ωpe, vφ > c and the wave group velocity is

vg =
∂ω

∂k
=

c2

vφ

(8.17)

and we find
vφvg = c2. (8.18)

As seen in Fig. 8.2 the transverse wave is dispersive, and for ω � ωce vφ → c.
At such high frequencies, even electrons cannot respond and the plasma appears
transparent.

8.3.1 Poynting flux

Closely related to the concept of group velocity is the Poynting flux which is the
power carried by an electromagnetic wave (the Poynting vector) averaged over a
wave cycle:

〈S〉 ≡ 1

2µ0

�(E×B∗). (8.19)
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Figure 8.2: Phase velocity versus oscillation frequency for the transverse elec-

tron plasma wave. Note reciprocal behaviour of vg and vφ and the region of

nonpropagation.

The transverse wave has magnetic component [see Eq. (8.5)]

B1 = (k×E)/ω (8.20)

where E ≡ E1 so that

〈S〉 =
1

2µ0ω
�[E×(k∗×E∗)]

= n̂
1

2µ0ω
�[k∗E(r, t)E∗(r, t)]

= n̂
E2

2µ0ω
�{k∗ exp [i(k − k∗)z]} (8.21)

where n̂ is the unit vector in the direction E×B and, for transverse electron
plasma waves, k is real depending on ω > ωpe or ω < ωpe.

It follows that

〈S〉 = 0 ω < ωpe

= n̂
1

2
ε0E

2 vg ω > ωpe (8.22)

and power is transported at vg.
At ω = ωpe, vφ → ∞, λ = 2π/k → ∞ and the index of refraction n = ck/ω →

0. This is called a cutoff. An electromagnetic wave launched into a plasma that
encounters a cutoff (for example due to a changing electron density profile) is
reflected. This fact can be used to measure the plasma refractive index profile
using a technique known as reflectometry.
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Example

Consider the ionisphere: ne ∼ 1 × 1011 m−3, ωpe/2π = 3 MHz. Only electro-
magnetic waves with frequency greater than 3MHz can penetrate the ionisphere
(hence we can see the stars). Radio waves can travel around the world, mak-
ing successive bounces from the ionispheric layer (but not TV). For typical lab
plasmas ne ∼ 1 × 1019 m−3, ωpe/2π = 28 GHz.

8.3.2 Effect of collisons

If collisons are included, the longitudinal dispersion becomes

ω2 + iνω + ω2
pe = 0 (8.23)

or
ω = [−iν ± (4ω2

pe − ν2)1/2]/2. (8.24)

For any ν, the imaginary part of ω = ωr + iωi is negative so that the wave is
exponentially damped.

For the transverse wave, the dispersion relation becomes

k2c2 = ω2 − ω2
pe + iω2

pe(ν/ω)

1 + (ν/ω)2
. (8.25)

It is straightforward to show that for this wave, the imaginary part of k is positive
(see Fig. 8.3) and the wave is damped.

ν/ω1 2 3 4 5 6

ωpe
2 /4ωc attenuation 

coefficient

Im(k)

Figure 8.3: The form of the complex wavenumber for transverse electron plasma

waves.
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8.4 Inclusion of Plasma Pressure

It is very instructive to study the modifications to the electron plasma wave dis-
persion when finite pressure effects are included. The linearized electron equation
of motion now becomes

n0me
∂u

∂t
= −n0eE −∇p (8.26)

where we now ignore collisions and use the equation of state to link the pressure
and the density:

∇p =
γp

ρ
∇ρ. (8.27)

Since vth 
 ω/k, the electrons cannot dissipate energy through collisions and the
wave motion is adiabatic. In one dimension N = 1, the ratio of specific heats
becomes γ = (2 + N)/N = 3 so that

∇p =
γnkBTe

nme

∇(nme) = 3kBTe∇n1 (8.28)

where we have used ∇n0 = 0 (uniform background).
Once again, assuming harmonic plane wave propagation, Eq. (8.26) becomes

−iωn0meu = −n0eE − i3kBTekn1

where vector notation is no longer required (one dimensional wave). By restricting
attention to one dimension, this treatment looks only at the longitudinal electron
plasma wave.

To proceed further, we can eliminate the wave electric field E using Poisson’s
equation

∇.E =
e(ni − ne)

ε0

→ ikE = −en1

ε0

(8.29)

to obtain

−iωn0meu = −n0e
(
− en1

ε0ik

)
− i3kBTekn1.

The linearized continuity equation allows to eliminate n1

∂n1

∂t
+ n0∇.u = 0 → iωn1 = ikn0u (8.30)

with the result

−iωn0meu =

(
n0e

2

ikε0

− ik3kBTe

)
kn0u

ω

which can be solved for ω2:

ω2 = ω2
pe +

(
3kBTe

me

)
k2. (8.31)
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This is just the Bohm-Gross dispersion relation that we encountered in Sec. 2.7
We can express this in an alternative way as

ω2 = ω2
pe + k2V 2

Se

VSe ≡
(

3kBTe

me

)1/2

(8.32)

and VSe is the electron sound speed.
The longitudinal electron plasma wave is now a propagating wave with group

velocity

vg =
∂ω

∂k
=

k

ω
V 2

Se (8.33)

and

vgvφ = V 2
Se. (8.34)

Had we included ion moions, we would need to replace ω2
pe in Eq. (8.31) with

ω2
pe + ω2

pi. We would also find that the corresponding ion longitudinal oscillation
would have the same phase velocity as the ion acoustic wave obtained using the
MHD equations. At very low frequencies, the ion acoustic wave has phase velocity
vφ ≡ VSp where the plasma sound speed is given by

VSp =

(
γekBTe + γikBTi

mi

)1/2

. (8.35)

Usually one takes γe = 1 (very low frequency - isothermal electrons) and γi = 3
(adiabatic ions).

The combined dispersion relations for the electron and ion acoustic wave
modes in a warm isotropic (unmagnetized) plasma are shown in Fig. 8.4. Their
properties are summarized in the table below.

Low k High k

electron acoustic Constant frequency ωpe constant velocity VSe

ion acoustic Constant velocity VSi constant frequency ωpi

Problems

Problem 8.1 An electromagnetic wave of angular frequency ω0 passing through a

cold isotropic plasma having ωpe 
 ω0 has wavelength λ = 2π/k in the plasma

greater than the free space wavelength λ0 = 2π/k0 = 2πc/ω0. Assume that the

wave propagates in the x direction in the plasma and that k(x) is slowly varying in



168

k

ωpe

Wavenumber

ωpi

Angular
frequency

ω

longitudinal
electron wave

transverse
em wave

ion-acoustic wave

sevω= k

spvω= k

ω=ck

Figure 8.4: Dispersion relations for the three wave modes supported in an

isotropic (unmagnetized) warm plasma.

space [due to variation in the plasma density profile ne(x)]. The phase change of the

wave as it moves from (x1, t1) to position (x2, t2) in the plasma is given by

φ =
∫ x2

x1

dx k(x)x − iω0(t2 − t1) (8.36)

where we have taken φ = 0 at point (x1, t1). Show that the difference δφ = φ − φ0

between the phase shift φ suffered by the wave in plasma and the phase φ0 =

k0(x2 − x1) − iω0(t2 − t1) in vacuum is given by

δφ = −reλ0

∫ x2

x1

ne(x) dx

where re is the classical electron radius.


