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Abstract.

We present a data mining technique for the analysis of geometrically ordered
multichannel data and show an application using poloidal Mirnov arrays installed
in the H-1 heliac. The procedure is mostly automated, and scales well to large
datasets.

Timeseries data are split into short time segments to provide time resolution,
and each segment is represented by a singular value decomposition (SVD). By
comparing power spectra of the temporal singular vectors, singular values are
grouped into subsets which define fluctuation structures. Thresholds for the
normalised energy of the fluctuation structure and the normalised entropy of the
SVD are used to filter the dataset.

We assume that a distinct class of fluctuations is localised in the space of
phase differences ∆ψ(n, n + 1) between each pair of nearest neighbour channels.
An expectation maximisation clustering algorithm is used to locate the distinct
classes of fluctuations, and a cluster tree mapping is used to discover the well
defined clusters.

Using this method, we present the various classes of magnetic fluctuations
seen in RF powered hydrogen/helium plasmas throughout a wide range of
configurations of the H-1 magnetic geometry.

1. Introduction

The H-1 flexible heliac [1, 2] is a three field-period helical axis stellarator with major
radius R = 1 m and minor radius 〈r〉 = 0.2 m. Optimisation of the H-1 power supplies
for low current ripple allows precise control of the ratio of secondary (helical, vertical)
coil to primary (poloidal, toroidal) coil currents, resulting in a finely tunable magnetic
geometry. Slight variation in the current ratio between shots (plasma discharges)
in a sequence corresponds to a high resolution parameter scan through magnetic
configurations (ie: rotational transform profile, magnetic well). The programmable
control system allows for repetition rates of around 30 shots per hour, limited by data
acquisition time and magnet cooling time.

Automated parameter scans allow for the generation of arbitrarily large datasets,
requiring alternative methods of analysis. For a method of analysis to be scalable
with the size of the dataset, manual interaction should be limited to operations on
the dataset as a whole. The application of data mining techniques is widespread
among diverse fields of scientific research such as astronomy, bioinformatics and the
geosciences [3] where large datasets are commonplace. Generally, in fusion research
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a small number of shots are analysed in a campaign due to the complexity of the
experiment and the high cost of operations. In the present work, we show a data
mining process for the identification of classes of magnetic fluctuations using data
from Mirnov coils in H-1 for a helical current ratio (κh) parameter scan and offer an
interpretation of the results.

Perhaps the most challenging aspect in the application of data mining procedures
is the pre-processing stage [4], that is the sufficient preparation of the dataset for
the main algorithm to be effective. Here, we use the singular value decomposition
(SVD) of the magnetic fluctuation data for short time segments, and apply energy-
and/or entropy-based filters on the dataset. The filtered data are then processed by
a clustering algorithm to distinguish classes of fluctuations by their phase structure.

In section 2 we explain the algorithm used for the data mining process, in section
3 we implement our method to analyse results from a configuration scan on the H-1
heliac, and a discussion of the results follows in section 4.

2. Method

Shown below is our algorithm for data mining classes of fluctuations from raw
multichannel timeseries data:

Algorithm 1 Discovering fluctuation structures

for each shot in campaign do

for each time segment in shot do

take SVD of the set of RMS normalised channel timeseries
calculate entropy H of singular values
group singular values with similar power spectra into fluctuation structures
for each fluctuation structure in time segment do

calculate normalised signal energy of the fluctuation structure p
calculate nearest neighbour phase differences ∆ψ(n, n+1) at peak frequency
using the inverse SVD

end for

end for

end for

apply filters to dataset: H < H ′, p > p′

perform clustering algorithm on the set of fluctuation structures in the space of ∆ψ
select well defined clusters using cluster tree mapping

Each step up to, and including, the filtering process is part of the the preprocessing
stage, where the dataset is conditioned for the clustering process. For each shot i,
the Nc × Ns data matrix Si has Nc rows of scalar timeseries channels; Ns is the
number of samples. To provide time resolution the data are split into short time
segments Si,j ≡ Si(j∆t ≤ t < (j + 1)∆t) with N ′

s = ∆t/fs samples where fs is
the sample frequency. For each time segment we take the SVD of the ordered set of
RMS normalised data, represented by the factorisation 〈Si,j〉RMS = UAV ∗. Here, the
columns of U and V contain the spatial (topo) and temporal (chrono) singular vectors
respectively and the diagonal matrix A contains the Na = min(Nc, N

′
s) singular values.

The convention is for the singular values to be sorted in decreasing monotonic order.
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We calculate the normalised entropy H of the singular values ak in A [5]:

H =
−

∑Na

k=1 pk log pk

logNa
, (1)

where pk is the dimensionless energy:

pk =
a2

k

E
, E =

Na∑

k=1

a2
k. (2)

The extreme case of H = 0 occurs when there is only one non-zero singular value,
meaning Si,j has separable spatial and temporal singular vectors (i.e. a standing
wave). In the other extreme, H = 1 and all singular values are equal, which occurs
when Si,j consists only of noise. The scalar quantity H can be used to filter physically
interesting signals from noise without any investigation of the structure of Si,j .

We define a fluctuation structure α as a subset of singular values which have
chronos with similar frequency power spectra. We measure the similarity between two
chronos with a normalised cross-correlation γα,β ≡ 〈|uα ⋆ uβ |2〉/〈|uα ⋆ uα| · |uβ ⋆ uβ|〉,
where uα⋆uβ denotes the cross-correlation between chronos uα and uβ. The structures
are built as follows: starting with the largest unallocated singular value aζ , the set
of unallocated singular values aξ for which γζ,ξ > γmin define a structure. This is
repeated until all singular values have been allocated to a fluctuation structure. The
normalised energy p of a structure is defined as the sum of the normalised energies of
its constituent singular values. In general, fluctuation structures will consist of several
singular values. For example, a rotating mode has two singular values which have
their topos and chronos phase-shifted by π/2.

To distinguish fluctuation types, we use the set of phase differences between
nearest neighbour channels. For each fluctuation structure αl we take the inverse
SVD to get S′

i,j,l, where singular values not in the structure are set to zero. The phase
difference ∆ψ(n, n + 1) between nearest neighbour channels n, n + 1 is evaluated at
the dominant frequency of the fluctuation.

We then apply filters to the dataset in order to remove noise. In the general
case, we require the signal entropy to be below some threshold H ′, 0 < H ′ ≤ 1, and
the normalised energy of the fluctuation structures to be greater than some value p′,
0 ≤ p′ < 1. A randomly selected subset of the data can be used to reduce computation.

We assume that a class of fluctuations is localised in the Nc-dimensional space
of ∆ψ(n, n + 1). We use a clustering algorithm to locate the classes of fluctuations,
in this case an expectation maximisation (EM) clustering algorithm as implemented
in the WEKA suite of data mining tools [6]. The EM algorithm is a method for
estimating the most likely values of latent variables in a probabilistic model. Here we
assume that each type of fluctuation can be described by a Nc-dimensional Gaussian
distribution in ∆ψ−space where the latent variables are the mean µi and standard
deviation σi for each cluster i.

Given the initial conditions, in the form of random initial µi and σi values
for a prescribed number of clusters, the EM algorithm consists of two steps which
repeat until a convergence criterion is met. Firstly, the expectation step assigns
to each datapoint a probability, or expectation value, of belonging to each cluster
which is calculated with the Gaussian distribution function. Secondly, µi and σi are
recalculated using the new expectation values as weight factors.

The WEKA algorithm cannot calculate metrics in cylindrical coordinates, so
we map the ∆ψ−space from the Nc-dimensional torus to a 2Nc-dimensional cube
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[−1, 1]2Nc by taking the sin(∆ψ) and cos(∆ψ) components. The 10-fold cross-validated
log-likelihood ratio is used as a measure of how well the cluster assignments fit the data.
The cross-validation process involves partitioning the dataset into random subsamples
and comparing results from each subset to avoid oversensitivity to outliers in the
data. The likelihood is the conditional probability of obtaining the cluster means and
standard deviations given the observed data.

The identification of the correct number of clusters NCl, or of which ones are
important, is a task that is by no means trivial to automate. We have found a cluster

tree mapping to be a practical tool for identifying the important clusters. The cluster
tree displays all clusters for each NCl below some value, with the clusters for a given
NCl forming a single column. Each cluster is mapped the cluster in NCl − 1 with
the largest fraction of common datapoints. Cluster branches which do not fork over a
significant range of NCl are deemed to be well defined. The point where well defined
clusters start to break up again suggests that NCl is too high.

3. Experiment

We now describe the implementation of algorithm 1 for configuration scan data from
the H-1 heliac. The present work involves analysis of magnetic fluctuation data from
sets of Mirnov coils at three toroidal locations. Two of these sets (at toroidal angle
φ = 44◦, 284◦) are identical 20-coil poloidal arrays, as shown in Figure 1. The coils
are 100 turns with diameter of 3.2 mm and inductance of 20µH, electrostatically
shielded and isolated from the vacuum region by a bean-shaped stainless steel tube of
diameter 12.7 mm and thickness of 1.2 mm. The skin-depth frequency fδ of the tubing
is 130 kHz, and the digitisation Nyquist frequency fN is 500 kHz. The third set of
Mirnov coils is a 5-coil linear array above the plasma at φ = 35◦, where the coils have
same geometry but lie in a thinner stainless steel tubing with fδ ∼ 220 kHz. Due
to calibration issues, this array is not used for toroidal mode number determination,
however it can still be used for cluster definitions. Figures 1(a) and 1(b) show the
locations of the Mirnov coils in the poloidal arrays and computed flux surfaces for the
κh = 0 and κh = 1 configurations respectively. The positions of the coils have been
chosen so that they encompass the last closed flux surface (LCFS) for all accessible
magnetic geometries. As a result, for most configurations there are a few coils in sub-
optimal locations. For the present analysis, we normalise the signal amplitudes and
classify fluctuations by their phase structure, taking into account the shifting magnetic
coordinates of the coils though the configuration scan as shown in 1(c). The set of
available Mirnov coils for this campaign was M44 = [1, 2, 3, 4, 7, 8, 9, 10, 15,16,17,18],
M284 = [1, 2, 3, 5, 7, 8, 9, 10, 15,17,18,19,20], and M35 = [2, 4, 5].

A scan through magnetic geometry was performed by varying the ratio of helical
coil to main coil current (κh). The range of 0 < κh < 1 with ∆κh = 0.01 corresponds
to a range of rotational transform at the axis (edge) of 1.122 (1.234) <  ι0(a) < 1.436
(1.445) with ∆ ι0(a) = 0.0031 (0.0021). The transform profile changes from monotonic
positive shear ( ι′ > 0) at κh = 0 to central reversed-shear at κh = 1. In the vaccum
field model used here, the magnetic well increases from 0.4 % to ∼ 5.0 % over this
range, with a local magnetic hill at the outer edge for low κh, as shown in figure 2;
however recent results from error field mapping suggest a reduced magnetic well with
negligible change to the transform profile [7].

Plasma discharges of 60 ms duration were produced using 50 − 60 kW of 7 MHz
ICRF in a H:He = 3:2 mixture. The ICRF antennas are conformal picture-frame coils
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(a) The κh = 0 configuration.
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(b) The κh = 1 configuration.
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Figure 1. The location of Mirnov coils and flux surfaces in H-1
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Figure 2. The top panel shows the line-averaged electron density for all H,He
shots with standard RF power in the H-1 database, excluding values of κh which
have only a single record this totals 4072 shots. The dots represent the mean
value for a given value of κh, and the error bars are one standard deviation. The
lower panel shows the radial profiles of rational  ι surfaces (—) and magnetic well
(- -) for the range of magnetic geometries 0 ≤ κh ≤ 1.1. The bold line shows the
last closed flux surface (LCFS).
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located 3−4 cm outside the last closed flux surface [2,8]. The primary coils produce a
base magnetic field of B0 = 0.46 T, which is the same for all shots in the scan. Plasma
parameters for these discharges are typically ne = 1 − 2 × 1018 m−3, Te ∼ 10 − 20 eV
and Ti < 100 eV. The normalised plasma pressure β = 2µ0p/B

2 is quite low, ≪ 1 %,
so that the magnetic flux surfaces are those of the vacuum configuration.

A complication to the data mining procedure arises in the case of a magnetic
configuration scan as the magnetic coordinates of the Mirnov coils depend on the
configuration. If we were to use the phase difference between coils for analysis, then
the changing magnetic angles of the coils would introduce a hidden variable throughout
the configuration scan; hence we map the phase differences to κh-averaged (virtual coil)
angles instead, where the angles are evaluated at the outermost flux surface. During
the preprocessing stage, we use γmin = 0.8 to define fluctuation structures, apply an
energy threshold p′ = 0.4. From this dataset, 2000 randomly selected datapoints are
used in the clustering step with the remainder mapped back to the clusters once the
clusters are defined.

The cluster tree representation is shown in figure 3 in the frequency and magnetic
configuration (κh) coordinates. The Gaussians distributions of nearest neighbour
phase differences which define the clusters are shown in figure 4. As NCl is increased
the clusters become more well defined by thinner Gaussian distributions. At NCl = 3
we have the well defined clusters 5 and 6 centred on the  ι( ι′ = 0) = 4/3 and 5/4
configurations respectively. The branch stemming from cluster 9 at NCl = 4 contains
modes with (n,m) = (0, 0). At NCl = 10 the  ι( ι′ = 0) = 7/6 and 6/5 configurations
are represented by clusters 54 and 50 respectively, while cluster 51 is associated with

 ι ≃ 7/5.

4. Discussion

We note that the frequency spectra seen in the Mirnov signals have corresponding
ne fluctuations which are observed with an electronically scanned interferometer [9],
as shown in figure 5; however, it is not possible to do an accurate correlation
between Ḃ and ṅe with these diagnostics. The fluctuations cannot be attributed
simply to magnetic island activity as at least some fluctuations remain active for
clusters with  ι( ι′ = 0) & n/m where the (n,m) rational surface is not present.
The dependence of fluctuation frequency on rotational transform is suggestive of
torsional Alfvénic activity. The global Alfvén eigenmode (GAE) frequency lies
below the Alfvén continuum which, in a cylindrical model, has a lower boundary
of fGAE = (2π)−1(m/R)| ι− n/m|vA, where vA = B/

√
4πρ is the Alfvén velocity, ρ is

the mass density, and R is the major radius [10, 11].
Shown in figure 6 are the observed Mirnov frequencies compared to GAE

frequencies scaled by a factor of λ = 1/3 for two configurations in cluster 5. The
existence of the (n,m) = (4, 3) rational surface within the plasma volume for
configurations below κh = 0.74 introduces a root in the radial fGAE profile; in this
case we take the frequency below the local maximum (at 〈r〉 ∼ 0.12 m in figure 6(a)).
The scale factor λ may be explained by an increased effective mass density caused
by neutral collisions or the presence of impurities, although the scale factor is smaller
than expected for these phenomena. Also, comparisons between Alfvén eigenmodes
computed for cylindrical and stellarator geometries have shown the latter can exist at
lower frequency [12]. A very small offset δι ≃ 7 × 10−3 from the vacuum rotational
transform profile from is required for an optimal fit to the GAE scaling. It is likely
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Figure 3. Cluster tree representation of the Mirnov data. The sum of clusters
in each column is the entire data set.

this transform offset is due to error fields or the presence of toroidal currents which,
though not measured during this campaign, have been observed at these configurations
in lower field argon discharges.

Frequency in cluster 5 is shown to scale with  ι and ne in figure 7(a) with λ and δ ι
corrections applied. The structure of cluster 6 (figure 7(b)) is more complicated;
it shows the same gradient d(f

√
ne)/d| ι − δ ι − n/m| = mA as cluster 5, where

A = B/(4π3/2Rm
1/2
i ), however frequency offsets ∆a and ∆b are also present. There is

a coincidental change in the radial transform profile between the two slopes of cluster 6,
with the κh < 0.4 (∆a) side having a monotonic profile (see figure 2) and the κh > 0.4
(∆b) side having a zero-shear region within the plasma volume. The difference in
profile may account for the different values of ∆a and ∆b through different inaccuracies
of the cylindrical model assumption or variation in toroidal current profile.

We have assumed throughout that a class of fluctuations can be described by
a Gaussian distribution in ∆ψ−space. While such an assumption is necessary for
the EM clustering algorithm, there are alternative algorithms which do not include
assumptions about the shape of clusters at the expense of additional computation.
We have obtained the same qualitative results with an agglomerative hierarchical
clustering algorithm which we will now describe in brief. As an initial condition
each fluctuation structure defines a cluster so that NCl = Nα, where Nα is the
number of fluctuation structures. The two clusters with least distance between
them in ∆ψ−space are agglomerated into a single cluster; this process which maps
NCl → NCl − 1 is repeated until NCl = 1, with cluster definitions being recorded
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Figure 6. GAE scaling for configurations (a) with and (b) without the 4/3
rational surface in the plasma volume using the cylindrical model with R = 1.0 m,
B0 = 0.46 T and mi/mp = 4.0. The top panel shows the electron density profile
and the middle panel shows | ι− δι−4/3| with δι = 7.2×10−3. The bottom panel
has a frequency scaling of λ = 1/3 applied to fGAE in both cases.
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Figure 7. GAE scaling for clusters (a) 5 and (b) 6 located about the  ι ∼ 4/3
and 5/4 configurations respectively. The top panel shows a comparison of fM

√
ne

and λfGAE
√
ne against  ι; the bottom panel compares the density scaling where

A = B/(4π3/2Rm
1/2

i ). The plasma parameters and frequency scaling are the
same as for figure 6.

for each value of NCl. Unlike the EM clusterer, this algorithm requires a distance
calculation between each pair of datapoints giving quadratic computational complexity
O(n2) and making it unsuitable for very large datasets.

Work is beginning on the modelling of these modes in stellarator geometry. This
should reduce the gap between experiment and theory. The spectrum as a whole
appear to be a combination of resistive interchange and Alfvénic activity. Resistive
interchanges have been observed in stellarators across a wide range of parameters [13]
but it is remarkable to observe driven Alfvén eigenmodes in a device with Te < 100 eV.
These instabilities have generally been studied in devices with parameters approaching
those of fusion reactors, however recent results indicate that Alfvén modes can be
excited by thermal ions traveling well below the Alfvén velocity [14].

Finally, we note that although this experiment involves a large number of plasma
discharges with parameters varied from shot to shot, this data mining technique is
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equally amenable to the analysis of steady state operations or long discharges with
variation in plasma properties within the shot.
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