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We report an abrupt change in the diffusive transport of inertial objects in wave-driven
turbulence as a function of the object size. In these non-equilibrium two-dimensional
flows, the turbulent diffusion coefficient D of finite-size objects undergoes a sharp
change for values of the object size rp close to the flow forcing scale Lf . For objects
larger than the forcing scale (rp > Lf ), the diffusion coefficient is proportional to the
flow energy U2 and inversely proportional to the size rp. This behaviour, D∼U2/rp ,
observed in a chaotic macroscopic system is reminiscent of a fluctuation–dissipation
relation. In contrast, the diffusion coefficient of smaller objects (rp < Lf ) follows
D ∼ U/r0.35

p . This result does not allow simple analogies to be drawn but instead
it reflects strong coupling of the small objects with the fabric and memory of the
out-of-equilibrium flow. In these turbulent flows, the flow structure is dominated
by transient but long-living bundles of fluid particle trajectories executing random
walk. The characteristic widths of the bundles are close to Lf . We propose a simple
phenomenology in which large objects interact with many bundles. This interaction
with many degrees of freedom is the source of the fluctuation–dissipation-like relation.
In contrast, smaller objects are advected within coherent bundles, resulting in diffusion
properties closely related to those of fluid tracers.

Key words: particle/fluid flow

1. Introduction

Determining transport of material particles or the advection of larger objects in
turbulence is one of the most enduring problems of hydrodynamics with a broad
range of applications (Monin & Yaglom 1975). For instance, particles of very
different nature (seeds, pollutants, water droplets) can be carried by turbulence
in the atmosphere or transported at the surface of the oceans. Turbulent transport
plays an important role in the long-distance dispersal of seeds (Nathan et al. 2002),
in the development of pollution control strategies (Toschi & Bodenschatz 2009) or in
rain prediction (Falkovich, Fouxon & Stepanov 2002). In the case of larger objects, a
better understanding of turbulent advection is crucial for the development of advanced
sea search-and-rescue algorithms (Breivik et al. 2013).
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The dynamics of a particle advected in any flow depends on how its density and its
size compare with the fluid density and a flow characteristic length scale (Guyon et al.
2001). In laminar flows, this comparison is straightforward since such flows usually
can be described by a single length scale. In contrast, turbulence is described as a
hierarchy of eddies due to the presence of a broad range of scales. It is natural to
ask which of these scales affect the most the dynamics of finite-size particles (Monin
& Yaglom 1975; Kraichnan & Montgomery 1980). This challenging question makes
the prediction of turbulent transport a remarkably difficult problem.

A particle is expected to faithfully follow turbulent fluid motion when it is neutrally
buoyant and its size is smaller than the smallest turbulent eddy (Toschi & Bodenschatz
2009). Such a particle is called a Lagrangian tracer or more commonly a fluid tracer.
The behaviour of fluid tracers in three-dimensional (3D) and two-dimensional (2D)
turbulence has been the subject of intense research during the last 20 years, and
significant advances have been made in the understanding of the Lagrangian properties
of turbulence (Elhmaidi, Provenzale & Babiano 1993; Mordant et al. 2001; Boffetta
& Sokolov 2002; Bourgoin et al. 2006; Toschi & Bodenschatz 2009; Xia et al. 2013,
2014; Xu et al. 2014; Francois et al. 2015b). In contrast, when the advected particle
has a density that is different from that of the fluid and/or is of larger size, it can no
longer be considered as a tracer and it is commonly called an inertial particle. The
dynamics of such particles will deviate from that of the surrounding fluid (Gatignol
1983; Maxey & Riley 1983; Qureshi et al. 2007).

The description of the transport of inertial particles in turbulent flows remains
an open question which requires insights from experimental studies (Toschi &
Bodenschatz 2009). For instance, important experiments in 3D turbulence have
clarified how inertia affects the acceleration statistics of an advected particle or
how it can lead to an apparent clustering of particles (Qureshi et al. 2007; Xu &
Bodenschatz 2008; Toschi & Bodenschatz 2009).

Here we focus on the transport of inertial particles in 2D turbulence. The domain
of application of 2D turbulence has recently been broadened with the realisation that
many 3D flows actually show properties consistent with 2D turbulence (see Falkovich
et al. (2017) and Xia & Francois (2017) for recent reviews). Two-dimensional
turbulence differs from 3D turbulence in many aspects. One important difference
is that energy injected at an intermediate forcing scale Lf is transferred to larger
scales in a process known as the inverse energy cascade (Kraichnan 1967). To date,
experimental effort on inertial particles in 2D turbulence has primarily focused on
particles with sizes much smaller than Lf (Ouellette, O’Malley & Gollub 2008). In
this work we are interested in dispersion of neutrally floating discs placed in the
wave-driven 2D turbulence (von Kameke et al. 2011; Francois et al. 2013). We
investigate the dynamics of these objects in a broad range of sizes rp relative to the
turbulent forcing scale Lf . All these objects disperse diffusively at long times and
their diffusion coefficient D is measured as a function of their radius rp, of the flow
kinetic energy U2 and for different forcing scale Lf . We show that the dependence
of D on these parameters undergoes a sharp change for values of the object size
close to the forcing scale rp ≈ Lf . When rp/Lf is large, objects are dispersed slowly
by the turbulence and the diffusion coefficient D scales as D∼U2/rp. Small objects,
rp < Lf , are dispersed much faster and D scales as D ∼ U/r0.35

p . We show that the
transition is related to the underlying fabric of wave-driven turbulence which consists
of anisotropic river-like structures whose width is comparable to Lf . In the context of
controlling the motion of floating objects by using surface waves (Chen et al. 2014;
Punzmann et al. 2014; Francois et al. 2017), these results offer methods to externally
tune the diffusion coefficient of a floating object at a liquid surface perturbed by
Faraday waves.
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2. Experiments
2.1. Experimental protocol and data analysis

In these experiments, turbulent flows are produced on a liquid surface perturbed by
Faraday waves (Faraday 1831). These parametrically excited waves are generated in a
290 mm diameter circular container filled with water up to its brim (the contact line
is pinned to the wall edge with no meniscus). The container is vertically vibrated by
a computer-controlled electrodynamic shaker. The forcing is monochromatic with a
frequency set in the range fs = 15–60 Hz. The amplitude of the vertical acceleration
a of the container is measured by an accelerometer that provides feedback to the
system motion controller. Above a critical vertical acceleration, parametrically excited
waves, or Faraday waves, appear at the liquid–gas interface. When the Faraday waves
are steep, the wave motion is disordered (Xia, Shats & Punzmann 2010; Francois
et al. 2015a). We study the flows generated by these waves (Hansen et al. 1997; von
Kameke et al. 2011; Francois et al. 2013, 2015a) in the range of vertical accelerations
a that correspond to the supercriticality factor of 0.5< ε < 3, where ε = (a− ath)/ath
and ath is the instability threshold of the Faraday waves. This method of turbulence
generation relies on the ability of waves to generate vorticity at the fluid surface
(Punzmann et al. 2014; Francois et al. 2014, 2017).

In this study, we are interested in the dispersion properties of large floating discs
placed in the wave-driven flows. The liquid surface is seeded with microscopic floating
tracers to visualise horizontal fluid motion. We use surfactant to reduce the particle
propensity to aggregate. A high-resolution video camera (Andor Zyla) is used to
record the motion of fluid tracers and large floating discs. The large floating discs are
printed on a high-resolution 3D printer (Ultimaker 2+). The floaters studied here have
a radius rp in the range of rp= 0.5–40 mm and are made of a thermoplastic polymer
(acrylonitrile butadiene styrene (ABS)). The density of the polymer matches that
of water and the disc thickness is 0.5 mm. After printing, the floaters are carefully
rinsed using water with surfactant and are kept in a water beaker for 24 hours to
ensure they release any residual substances that could potentially pollute the water
surface. In steep waves the floating disc might get gradually covered with a thin film
of water; to ensure the top of the disc remains dry throughout the experiments, their
top surfaces were coated with Teflon.

Quantitative data analysis of the flow and the dynamics of the large discs is
performed by using particle image velocimetry (PIV) and particle tracking velocimetry
(PTV) algorithms (Francois et al. 2014). The flow characterisation (based on both
PIV and PTV) was performed with tracers with a diameter of either 50 µm or
150 µm. No effect of the tracer size was detected on these measurements: the two
types of tracers provide very similar Eulerian and Lagrangian descriptions of the
flow. For the PTV measurements, a typical sample of trajectories consists of 2000
trajectories. The PIV technique is used to obtain velocity fields of the horizontal fluid
motion. During experiments, the motion of the fluid tracers is recorded at a frame rate
of 120 frames per second to characterise flows of root-mean-square (r.m.s.) velocity
0.01<U< 0.05 m s−1. For most of the data based on the PIV technique presented in
the main text, the field of view used for the analysis is 80 mm× 80 mm. The spatial
resolution is 100 µm per pixel. The velocity fields are computed on a 100 × 100
spatial grid (grid mesh size is ≈0.8 mm), with a 1.6 mm × 1.6 mm interrogation
window size (the interrogation windows overlap). The measurement resolution of the
instantaneous displacement is subpixel.

In the analysis presented in § 3.4, fluid particle trajectories are reconstructed
by integrating the high-resolution velocity field measured using the PIV technique
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(Sokolov & Reigada 1999; Rivera & Ecke 2016). Particle trajectories are obtained
by integrating the equations of motion of particles starting from a given initial point
x(t0), as dx(t)/dt = u(x, t). Here x(t) is a particle 2D coordinate and u(x, t) is the
velocity field measured using PIV. The particles advected by the flow are tracked
using the fourth-order Runge–Kutta method. In this study, the method is used to
reconstruct the trajectories of virtual particles initially placed on a grid with a mesh
size of ≈0.15 mm. On a technical note, this method allows one to overcome the
common experimental limitations of PTV encountered when a high density of fluid
tracers is used, and therefore allows one to probe with accuracy the fine Lagrangian
properties of turbulence such as higher-order statistical moments. As an additional
test, we have also checked that the transport properties (single-particle dispersion and
topological multi-particle descriptor) computed from the integrated trajectories are
identical to those obtained using PTV and reported in Xia et al. (2013) and Francois
et al. (2015b).

2.2. Faraday wave-driven two-dimensional turbulence
Although energy is injected into vertical motion of a liquid, part of this energy is
converted into turbulent horizontal fluid motion via the generation and interaction of
surface vortices (Francois et al. 2014). These wave-driven flows are random, have
no mean velocity and their dynamics is slow compared to the period of vertical
oscillations in the wave. The kinetic energy of the horizontal flow Ef is proportional
to the square of the horizontal velocity fluctuations, Ef ∼ U2 (U is the r.m.s. value
of the fluctuations). The flow forcing scale is Lf = λ/2, where λ is the Faraday
wavelength. Since the wavelength λ is a function of the forcing frequency fs, the flow
forcing scale Lf can be easily tuned by changing fs (Hansen et al. 1997; Francois
et al. 2013). In these experiments, Lf is in the range 4–20 mm. The forcing scale
Reynolds number, Re = ULf /ν (where ν is the kinematic viscosity of water), is in
the range of 45–180.

The r.m.s. fluid velocity U depends on the kinetic energy accumulated over a
broad range of scales, as demonstrated by computing the wavenumber spectrum
of the kinetic energy of the horizontal flow (figure 1a). Two scaling laws can be
identified in these spectra: a k−5/3 scaling for wavenumbers smaller than the forcing
wavenumber kf ≈ 2π/Lf (see also inset of figure 1b), while for larger wavenumbers,
the scaling becomes much steeper and is approximately equal to k−3. The k−5/3

scaling is consistent with Kraichnan’s prediction of a 2D inverse energy cascade. It
indicates that the wave-driven flows support spectral energy transfer from the forcing
scale to large scales (von Kameke et al. 2011; Francois et al. 2013, 2014; Xia &
Francois 2017). The k−3 scaling is consistent with the (direct) enstrophy cascade
range. The kinetic energy of the flow U2 depends almost entirely on the energy
accumulated over the k−5/3 range. The energy injection rate εc in the upscale cascade
can be computed as εc = (E(k)/C)3/2k5/2, where C = 6 is the Kolmogorov constant.
Figure 1(b) shows εc as a function of the wave supercriticality factor ε. It is found
that εc increases strongly with ε and its behaviour can be approximated by εc ∼ ε

3.
The Taylor-microscale Reynolds number ReΛ = UΛ/ν can be estimated using the
Taylor microscale Λ=

√
U/Ω , where Ω is the enstrophy of the flow. Quantitatively,

Λ≈ 2 mm in experiments performed at fs = 60 Hz and ReΛ is between 25 and 100.
Faraday flows are indisputably 3D on the time scale of a wave period, yet we

have just discussed the fact that on larger time scales the motion of floating
tracers reproduces properties of 2D turbulence. Recently, the question of the
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FIGURE 1. (Colour online) (a) Wavenumber spectra of kinetic energy Ek(k) of the
horizontal flow for increasing supercriticality parameter ε = (a − ath)/ath. (b) Energy
injection rate εc versus supercriticality parameter ε. Here εc= (E(k)/C)3/2k5/2 is measured
from the energy spectra shown in panel (a); C = 6 is the Kolmogorov constant for 2D
turbulence. Inset: compensated wavenumber spectra Ek(k)/k−5/3 of the kinetic energy.

dimensionality of Faraday flows was addressed by investigating the compressibility
of the horizontal velocity field, in particular its time dependence (Xia & Francois
2017). This approach was based on the computation of a compressibility parameter
that allows one to measure 3D effects quantitatively (Cressman et al. 2004). When
this parameter is averaged over a few wave periods, it takes a value similar to that
measured in double-layer electromagnetically forced turbulence, which is widely
accepted as a good laboratory model of 2D flows. This confirms the quasi-2D and
quasi-incompressible nature of the slow (compared to the wave frequency) horizontal
motion produced by the Faraday waves. Moreover, we also note that the floating
tracers stay homogeneously distributed over the water surface perturbed by Faraday
waves. This is strong evidence that the 2D flow generated by the waves can be
considered incompressible since a compressible surface flow would induce substantial
floater clustering (Cressman et al. 2004).

2.3. Measuring turbulent dispersion in model experiments
The theory of diffusion by turbulent motion dates back to Taylor (1921). Taylor
introduced a conceptual framework in which the single-particle dispersion in
turbulence is governed by the stochastic equation. He discussed the case of a fluid
particle evolving in an unbounded turbulent flow and tackled the behaviour of the
mean-squared displacement (MSD) 〈δr2

〉 = 〈|r(t)− r(0)|2〉, where r(t) is the position
of the particle at time t and 〈 〉 denotes statistical averaging. When the fluid particle
dynamics can be described as a process having a finite velocity variance U2 and a
finite memory characterised by a time scale Tf , an important result is that a transition
exists in the MSD between a so-called ballistic regime and a diffusive behaviour
characterised by a diffusion coefficient D.

This theory gives

〈δr2
〉 ≈U2t2, t� Tf , (2.1)

〈δr2
〉 ≈Dt, t� Tf . (2.2)
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Under the aforementioned conditions, there is a direct kinematic relation between the
MSD and the Lagrangian velocity autocorrelation function. Indeed Tf =

∫
∞

0 ρ(τ) dt is
the Lagrangian integral time, which can be obtained from integrating

ρ(τ)= 〈u(t0 + τ) · u(t0)〉/U2, (2.3)

where u is the velocity vector of the fluid particle. Moreover, the diffusion coefficient
is given by D=U2Tf .

This seminal contribution offers tools for studying turbulent dispersion in model
experiments. However the variables of interest (i.e. MSD and Tf ) have been defined
for unbounded domains and it is therefore interesting to discuss how such quantities
are measured in an experiment which is by nature bounded in space and time.

In this study, we are interested in the dispersion of large floating discs placed in
wave-driven turbulence. The typical time of a measurement is Tm ≈ 20 s and a disc
trajectory is tracked in a 20 cm diameter circular window (the container diameter is
29 cm). Under these conditions, we will show that the motion of large floating discs
becomes diffusive over a range of temporal and spatial scales. Moreover, we note that
the transition from a ballistic to a diffusive regime has already been studied for fluid
tracer particles in similar experimental conditions (Xia et al. 2013).

In the rest of this study, measurements of the diffusion coefficient D, of the disc
velocity variance V2

p and of the autocorrelation function are therefore performed by
adapting Taylor’s original formulation to the finite experimental conditions. We will
compare two time scales that can be independently measured. From the diffusion
coefficient we define Tdisc =D/V2

p , which characterises the transition from ballistic to
diffusive regime in the MSD. We also measure independently the integral time scale
Tp as Tp =

∫ Tm

0 ρ(τ) dt.

3. Results
3.1. Turbulent dispersion of finite-size discs

Figure 2(a,b,d,e) shows trajectories of floating discs placed in the wave-driven
turbulent flows for three different sizes rp. Regardless of their size, the motion of the
floaters is erratic. A typical experimental run consists in recording 2000 independent
trajectories of a disc of radius rp for a given flow energy U2 and a fixed value of the
forcing scale Lf . We use these statistical samples to characterise the single-particle
dispersion of the floating discs. Our main focus is the behaviour of the MSD 〈δr2(t)〉
as a function of the three parameters U2, Lf and rp.

Qualitatively, the motion of all discs shows the same statistical features (figure 2c, f ),
namely: a ballistic regime at short times (〈δr2

〉 ∼ V2
p t2, at t� Tdisc), and a diffusive

behaviour at longer times (〈δr2
〉 = 2Dt, at t� Tdisc). Here V2

p is the velocity variance
measured on the statistical ensemble of trajectories. As mentioned in the previous
section, Tdisc is defined as Tdisc = D/V2

p ; it characterises the transition from ballistic
to diffusive regime in the MSD.

Quantitatively, figure 2(c, f ) reveals several interesting features of the dispersive
behaviour of the discs. Figure 2(c) shows the MSD of two discs with different sizes
when both the forcing scale and the turbulent energy are fixed at Lf ≈ 4.4 mm and
U2
= 5.5 × 10−4 m2 s−2, respectively. The behaviour in the ballistic regime clearly

shows that the velocity variance V2
p of the small disc (rp = 0.11Lf ) is an order of

magnitude larger than that of the large disc (rp= 4.5Lf ), while the characteristic times
Tdisc are roughly the same for both objects. Since D= V2

p Tdisc, the change in V2
p has
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FIGURE 2. (a,b) Trajectories (red dots) of two floating discs in wave-driven turbulent
flows having the same turbulence intensity and the same forcing frequency fs = 60 Hz.
Two floating discs having diameters dp of (a) 4 mm and (b) 40 mm, respectively, are
advected with the turbulent flow. The disc centres are tracked for 15 s (scale bars
in the bottom right corners are 40 mm). (c) Mean-squared displacement of the disc
centres versus time for two particles with diameters 40 mm and 1 mm, respectively. Grey
dashed lines highlight the transition from a ballistic to a diffusive regime. Experimental
parameters: fs = 60 Hz, the flow forcing scale and the turbulent kinetic energy are fixed
at Lf ≈ 4.4 mm and U2

= 5.5 × 10−4 m2 s−2. Data are averaged over 2000 independent
trajectories. (d,e) Trajectories (red dots) of a floating disc of radius rp = 5 mm in
turbulent flows forced at two different frequencies: (d) fs = 15 Hz, Lf ≈ 20 mm and
(e) fs = 60 Hz, Lf ≈ 4.4 mm. Turbulent kinetic energy in both (d) and (e) is fixed at
U2
= 1.1× 10−3 m2 s−2. The disc centres are tracked for 15 s; the scale bar is 40 mm.

( f ) Mean-squared displacement versus time for the 5 mm radius disc measured at two
forcing scales: Lf = 4.4 mm (circles) and Lf = 20 mm (squares). Data are averaged over
2000 independent trajectories.
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a direct consequence on the diffusion: small discs (rp = 0.11Lf ) diffuse much faster
than larger ones (rp = 4.5Lf ).

In contrast, a different parameter is varied in figure 2( f ). It shows the MSD of a
10 mm diameter disc placed in turbulent flows with identical turbulent energy (U2

=

1.1 × 10−3 m2 s−2) but at two different forcing scales Lf . Importantly, the forcing
scale is chosen such that in one case rp < Lf while in the other rp > Lf . The ballistic
regime reveals that the velocity variance V2

p is almost unchanged when Lf is modified,
while Tdisc has clearly changed. Quantitatively Tdisc increases by a factor of 3 when
Lf increases by a factor of 4. Consequently, the disc with small rp/Lf ratio diffuses
faster due to its larger Tdisc.

Figure 2( f ) suggests the existence of a threshold value rp/Lf = 1 separating two
diffusive regimes. To investigate this effect further, we have performed experiments
with discs of different sizes placed in turbulent flows with identical turbulent energy
and forcing scale (U2

= 5.5× 10−4 m2 s−2, Lf = 4.4 mm). The measurements of the
diffusion coefficient D as a function of the disc radius rp are shown in figure 3. The
diffusion coefficient decreases with the radius rp. Most importantly, it turns out that
the threshold value rp/Lf = 1 shows up clearly in this experiment. At high value of
the ratio rp/Lf > 1, the coefficient D is inversely proportional to the radius rp. In the
low-value domain rp/Lf < 1, the dependence is weaker and can be fitted by the scaling
law D ∼ 1/r0.35

p . The coefficient D eventually saturates to a constant value for fluid
tracers.

Figure 2(c, f ) and figure 3 reflect different information about the disc–turbulence
coupling. They show that the dispersive properties of finite-size discs in turbulence
depend on the disc radius rp but also on the flow forcing scale Lf and on how those
two parameters affect the disc kinetic energy and its memory. Our main interest in
this paper is the diffusive regime with a diffusion coefficient given by D = V2

p Tdisc.
To better understand the previous observations, we will study the behaviour of the
velocity variance V2

p and of the characteristic time Tdisc separately.

3.2. Kinetic energy of finite-size discs

In this section we study the dependence of the velocity variance V2
p of the floating

discs on the turbulent flow energy U2, the forcing scale Lf and the disc radius rp.
Figure 4(a) shows the velocity variance V2

p as a function of the flow energy U2

for a broad range of disc sizes and a fixed forcing scale Lf ≈ 4.4 mm. In agreement
with the data shown in figure 2(c), the smaller the size of the disc, the larger V2

p

is. An important feature of all our experiments is that V2
p can be fitted accurately by

V2
p = C × U2. The parameter C = V2

p/U
2 decreases with rp as shown in figure 4(b).

This figure clearly shows a transition in the behaviour of C occurring at rp/Lf = 1.
For large objects (rp/Lf > 1), the parameter C is inversely proportional to the square
of the radius, i.e. C≈ (Lf /rp)

2. For objects with radius smaller than Lf , the dependence
is weaker and can be fitted by the scaling law C≈ (Lf /rp)

0.35.
In these strongly out-of-equilibrium flows, the existence of the fit V2

p =C×U2 is not
trivial and it suggests a simple relation between the disc kinetic energy and the flow
energy. To test this conjecture, we compute the parameter µ=MpV2

p/U
2, where Mp is

the mass of the disc. The parameter µ has the dimension of a mass. The behaviour
of µ as a function of the disc radius rp is shown in the inset of figure 4(b). This
inset reveals two regimes. When rp/Lf > 1, the parameter µ is constant and a simple
relation can be written between the kinetic energy of the disc and that of the fluid.
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the forcing scale Lf . (Experimental parameters: fs= 60 Hz, Lf ≈ 4.4 mm.) Inset: Parameter
µ=MpV2

p/U
2 versus the size ratio rp/Lf .

At lower values of the size parameter rp/Lf < 1, the parameter µ is no longer constant
but it increases with rp according to µ∼ r1.65

p .
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The results of this section again highlight a transition in the coupling between finite-
size disc and turbulence that occurs at rp/Lf = 1.

3.3. Temporal memory of finite-size discs
Since the transition to a diffusive dynamics signals a loss of memory, in this section
we study the temporal properties of the disc motion. First we compute the Lagrangian
velocity autocorrelation function,

ρp(τ )= 〈Vp(t0 + τ) · Vp(t0)〉/V2
p , (3.1)

where Vp is the velocity vector of the disc. In figure 5(a,b), we show how ρp(τ )

depends on the turbulent flow energy U2 and the disc radius rp at fixed forcing scale
Lf = 4.4 mm. All these autocorrelation functions are decaying integrable functions of
time. Therefore a Lagrangian integral time can be computed as Tp =

∫ Tm

0 ρp(τ ) dt,
where Tm is the time of the measurement as discussed in § 2.2. In these figures, a
clear difference appears between discs larger than Lf and those smaller than Lf . For
the smaller discs, the autocorrelation function ρp(τ ) is strongly dependent on the flow
kinetic energy U2, and ρp(τ ) decreases faster with the increase in the flow energy.
Consequently the integral time Tp decreases with the increase in U2 and we find the
relation Tp ∼ 1/U (see the inset of figure 5a). In contrast, ρp(τ ) is weakly affected
by a change in the flow energy in the case of larger discs (rp = 4.5Lf ) as shown
in figure 5(b). The associated integral time Tp of these large discs is constant when
plotted against the flow energy U2 (see the inset of figure 5b). These figures suggest
a transition in the memory of the disc from Tp∼ 1/U for small discs to a time scale
Tp independent of U for larger discs.

Such a transition should have a clear signature in the diffusion coefficient of the
disc. In figure 5(c) we test this hypothesis. It shows the diffusion coefficient D as a
function of the flow energy U2 for the two disc sizes studied in figure 5(a,b). For the
large discs (rp/Lf = 4.5) the diffusion coefficient is proportional to the flow kinetic
energy, while for the small discs D is proportional to the flow r.m.s. velocity U. In
other words, D∼ (U2)β , where β = 0.5 for small floaters and β = 1 for large ones.

At this point, since our experiments are performed in bounded conditions (see
§ 2.2), we need to verify that the diffusion coefficient D and the integral time Tp are
simply related. Figure 5(d) shows that the ratio of the diffusion coefficient D over
the product V2

p Tp is close to 1 over the range of flow energy U2 studied. There is a
direct equivalence Tdisc = D/V2

p = Tp. Therefore Tdisc characterises both the transition
from the ballistic to the diffusive regime seen in the MSD and the properties of the
autocorrelation function.

In figure 6, we clarify the behaviour of Tdisc as a function of the three parameters
rp, U2 and Lf . Figure 6(a) shows the dependence of Tdisc on rp when both the flow
energy and the forcing scale are fixed. The Tdisc value increases with the disc radius
rp; more precisely, at large size (rp > Lf ), Tdisc increases linearly with rp, while for
small discs, Tdisc saturates to a constant value. This constant is given by Tp ∼ Lf /U,
which is consistent with the behaviour of fluid tracers reported in Xia et al. (2013).

In figure 5(c) a transition in the exponent β defined as D ∼ (U2)β has been
identified. It is convenient to characterise this transition from a memory perspective
via the relation Tdisc = D/V2

p ∼ Uα, because it has been shown that V2
p = C × U2

independently of the disc radius (figure 4a). Figure 6(b) shows the dependence of
the exponent α on the size ratio rp/Lf . A transition occurs at rp/Lf = 1; it separates
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FIGURE 5. (Colour online) Temporal autocorrelation functions ρp(dt) = 〈Vp(t0 + dt) ·

Vp(t0)〉/V2
p computed (a) for particles of radius rp = 75 µm and (b) for a disc of radius

rp = 20 mm. These functions are measured for increasing flow energy levels U2 and
at fixed forcing scale Lf . Insets: Lagrangian integral time Tp versus U2. (Experimental
parameters: fs = 60 Hz, Lf ≈ 4.4 mm, U2

i = [1.5 × 10−4, 3.5 × 10−4, 6.2 × 10−4, 1 ×
10−3, 1.4× 10−3, 1.9× 10−3, 2.6× 10−3

] m2 s−2.) (c) Diffusion coefficient D as a function
of the flow energy U2 for two different particle sizes rp = 20 mm and rp = 75 µm at
fixed forcing scale Lf . (Experimental parameters: fs= 60 Hz, Lf ≈ 4.4 mm.) (d) Diffusion
coefficient D measured from the MSD normalised by the product of velocity variance V2

p
and the integral time scale Tp.

the behaviour of large discs governed by a time scale independent of the flow
energy from that of the small discs whose memory is characterised by the relation
Tdisc ∼ 1/U.

The diffusive nature of a transport phenomenon is an indication of a process with
a loss of temporal memory. This memory is characterised by the time scale Tdisc. The
transitions observed in the time scale Tdisc in figure 6(a,b) occur at a precise disc size
rp = Lf . In the next sections, we will show that these transitions actually reflect the
structure of the wave-driven turbulent flows, in particular the coexistence of random
turbulent fluctuations with more coherent flow features.
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FIGURE 6. (Colour online) (a) Plot of Tdisc = D/V2
p as a function of rp at fixed flow

energy and forcing scale (U2
= 1× 10−3 m2 s−2, Lf ≈ 4.4 mm). The red dashed line is a

linear fit to data in the size range rp > Lf . (b) Exponent α, derived from Tdisc ∼ (U)α , as
a function of the ratio rp/Lf .

3.4. Anisotropic flow structure of wave-driven turbulence
Eulerian properties of wave-driven turbulence have been shown in § 2.2. In this
section, we study turbulence from a Lagrangian perspective. The fluid motion is
characterised by using two types of Lagrangian correlation functions, computed on
horizontal velocities u measured along fluid tracer trajectories. First, the single-particle
velocity autocorrelation function is defined as

ρ11(τ )= 〈u(t0 + τ) · u(t0)〉/U2, (3.2)

where 〈 〉 denotes statistical averaging over different particles. Second, a directional
cross-correlation function (Vicsek & Zafeiris 2012) is computed as

ρ12(τ , d12(t0))= 〈u1(τ ) · u2(τ )〉/U2, (3.3)

where d12 is the initial distance between two particles (1, 2). The directional cross-
correlation function is different from the usual cross-correlation which characterises
the similarity between two signals separated by a time lag. Here ρ12(τ , d12(t0))
measures to what degree the velocity of the first particle is correlated with that of
second particle at time τ , while the two particles are initially separated by d12(t0).

These two autocorrelation functions provide different information on the memory of
the flow, which can be characterised via the Lagrangian time scales, TL and T12. The
time scale TL is given by the integral TL=

∫ Tm

0 ρ11(τ ) dτ (Tm≈ 20 s is the typical time
of a measurement; see § 2.2). Similarly the cross-correlation time scale is obtained as
T12 =

∫ Tm

0 ρ12(τ ) dτ .
Figure 7(a) shows that the memory of a single particle is quite different from

that of two particles very close to each other (d12(t0)� Lf ). In that case, a single
particle forgets about its initial motion on a time scale TL that is 250 times smaller
than T12. To better understand this strong effect, we investigate the dependence of
ρ12 on the initial separation distance d12 at a fixed flow energy U2 and fixed forcing
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FIGURE 7. (Colour online) Statistics of the turbulent flows. (a) Autocorrelation function
ρ11(τ ) and directional cross-correlation function ρ12(τ , d12(t0)) of the turbulent flow
velocity. The initial pair separation used to compute ρ12 is such that d12(t0)� Lf . (b) The
cross-correlation functions ρ12(τ , d12(t0)) at various initial separations d12(t0). Dotted lines
are exponential fits: f (τ )= A exp(−ατ), where parameters A and α are both functions of
the initial separation d12(t0). (c) The cross-correlation time T12 as a function of the initial
separation d12(t0). (Experimental parameters: fs = 60 Hz, Lf ≈ 4.4 mm.)

scale Lf ≈ 4.4 mm. As seen in figure 7(b), the larger the initial separation, the faster
the decorrelation in the motion of the particle pair. Moreover, the cross-correlation
function can be fitted by an exponentially decaying function ρ12≈A exp(−ατ), where
the parameters A and α are both decreasing functions of the initial separation d12(t0).

The dependence of ρ12 on the initial separation d12(t0) is directly reflected in the
behaviour of T12 as a function of d12(t0), which is shown in figure 7(c). The time scale
T12 decreases with the increase in the initial separation. The values taken by T12 for
small separation d12(t0) < Lf are much larger than TL. A clear kink can be seen at a
length scale called wB beyond which T12 decreases strongly to 0. The measurements
give wB≈5 mm which is close to the forcing scale Lf ≈4.4 mm. These results suggest
that a large number of fluid particles travel together forming trajectory bundles whose
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FIGURE 8. (Colour online) (a) A typical bundle of trajectories (lower panel) measured in
wave-driven turbulence. The upper panel shows particle streaks measured in the turbulent
flow (with Lf = 4.4 mm and U2

= 1 × 10−3 m2 s−2). The bundle is tracked using PTV
for a time interval dt ≈ 8TL; the blue arrows indicate the bundle dynamics. (b) The
autocorrelation TL and cross-correlation TB time of the flow velocity fluctuations, as
functions of the kinetic energy of the flow. (Parameters: fs = 60 Hz, Lf ≈ 4.4 mm.) Inset:
the ratio of the length to the width of the coherent bundles.

characteristic width is close to wB and which sustain a coherent motion for a long
time.

Such a bundle of trajectories is shown in figure 8(a). Figure 7(a) shows that the
wave-driven turbulence possesses both random walk features with a short time scale
TL dominating the single-particle statistics (Xia et al. 2013), and highly correlated
features with a much longer time scale T12 clearly identified by the cross-correlation
function. Figure 8(a) illustrates that the random walk is executed by trajectory bundles
as a whole, rather than by an ensemble of uncorrelated trajectories.

A bundle correlation time TB can be derived by integrating the cross-correlation
time T12 with respect to the initial separation d12(t0), as TB = (1/wB)

∫ wB

0 T12∂d12 (see
figure 7c). Both the autocorrelation time TL and cross-correlation time TB are shown
in figure 8(b) as a function of the flow kinetic energy. Although the lifetime of a
bundle TB is much longer than the single-particle time scale TL, figure 8 shows that
the two time scales are correlated. Indeed, TB and TL are both inversely proportional
to the r.m.s. of the velocity fluctuations U: TB ∼ TL ∼ 1/U. This suggests that the
same underlying process governs the randomisation of the bundle motion and its
disappearance. The long lifetime of the bundle (TB ≈ 30 × TL) reflects the fact that
the bundle length is much larger than its width (see figure 8a). The bundle length is
estimated as LB=U× TB. The resulting lengths of the bundles are shown as an inset
in figure 8(b); LB is roughly 30 times the width of the bundle wB.

3.5. Disc–turbulence coupling
3.5.1. Temporal memory

The results of the previous section help one to better understand the transition
observed in figure 6(b) for the dependence of the characteristic time Tdisc on the flow
energy U2. The flow analysis indicates that the building blocks of the wave-driven
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turbulent flow are coherent bundles, whose width is limited by the characteristic scale
wB≈ Lf . It is reasonable to think that a small floater rp<wB is carried and influenced
at each instant by a unique bundle. It suggests a direct relationship between the disc
memory time Tdisc and the bundle correlation time TB. In that respect, the functional
dependence TB ∼ 1/U is consistent with the scaling Tdisc ∼ 1/U shown in figure 6(b)
for a small disc (rp<Lf ). In this regime, the diffusion coefficient of the discs depends
on the flow energy according to D=U2Tdisc ∼U (figure 5c). This scaling is actually
identical to that measured in the case of fluid tracers as reported in Xia et al. (2013).

In contrast, a large floater interacts continuously with many bundles. The interaction
of the floater with this bath of fluid bundles results in a constant memory time Tdisc
and a diffusion coefficient given by D ∼ U2Tdisc ∼ U2. This scaling suggests a
fluctuation–dissipation-like relation, which we will discuss in the last section of the
paper.

3.5.2. Floating discs as filters of the fluid dynamics
In figure 4(b), a clear transition in the velocity variance V2

p of the disc as a function
of the size rp has been identified. This transition is related to a modification of the
momentum transfer between the disc and the turbulent flow. In this section, we explore
further this feature of the disc–turbulence coupling. An intuitive phenomenology to
describe this coupling relies on the idea that the dynamics of finite-size discs reflects
a filtered response of the turbulent fluid motion. In other words, the floating discs are
filters of the fluid dynamics and the spatio-temporal parameters of these filters are the
time scale Tdisc and the disc radius rp.

In the following, we compute the average of the fluid velocity vector u= (ux, uy)
on a virtual circular contour placed in an unperturbed turbulent flow (i.e. a flow in
the absence of the physical floating disc). Our approach is illustrated in figure 9(a).
The figure shows fluid particle streaks and the red dotted circle indicates the contour
C on which we compute the square of the contour averaged velocity,

V2
C(rp)= 〈ux〉

2
+ 〈uy〉

2, (3.4)

where the spatial averaging is ui= (1/(2πrp))
∮

C uirp dθ and 〈 〉 denotes temporal over
Tdisc and statistical averaging. It is important to note that V2

C is different from a simple
averaging of squared velocity component. For instance, in the absence of mean flow
V2

C tends to 0 for large radius rp because the spatial averaging is performed first.
We measure V2

C for different radii r̃p of the virtual contour. Figure 9(b) shows
V2

C/U
2 as a function of r̃p for a fixed flow energy U2. The filtered energy V2

C decreases
when r̃p increases. A transition occurs at r̃p ≈ Lf which is close to that observed for
V2

p/U
2 in figure 4(b). These data show two regimes in the spatio-temporal filtering of

the fluid velocity along a circular contour. We propose a simple interpretation of these
two regimes. As long as r̃p is varied in a range of size smaller than Lf , a circular
contour is most likely crossed by a single bundle; consequently the filtered velocity
depends weakly on r̃p. This is consistent with the picture of a small disc advected
by a unique bundle. In contrast, a larger contour r̃p > Lf intersects many bundles and
the larger r̃p, the more independent bundles are crossing the contour. Consequently
V2

C strongly decreases with r̃p, a feature similar to what is observed for large discs in
figure 4(b).

We note that this similarity is quite remarkable because V2
C and V2

p are different
quantities: the filtered velocity V2

C is an Eulerian quantity while V2
p is a Lagrangian

quantity. The relationship between the Eulerian and Lagrangian description of
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FIGURE 9. (Colour online) (a) Schematic illustrating the measurement of the stress σr
on the virtual circular contour C (red dotted circle) of radius r̃p. The background shows
fluid particle streaks measured in the turbulent flow. Scale bar is 20 mm. (b) Filtered flow
energy V2

C normalised by the flow energy U2 as a function of r̃p. The squared velocity V2
C

is averaged along the circular contour C and over time Tdisc. The turbulent flow energy
and the forcing scale are fixed: U2

= 1× 10−3 m2 s−2, Lf ≈ 4.4 mm.

turbulence remains an outstanding question in the theory of turbulence (Monin &
Yaglom 1975). In this study, the knowledge of the fine structure of wave-driven
turbulence helps to create a tantalising bridge between the size dependence of the
Eulerian average velocity V2

C and the Lagrangian velocity V2
p .

4. Discussion
In these experiments, we have studied the turbulent diffusion coefficient D of

floating objects placed in wave-driven turbulence. Two regimes have been identified
for the dependence of the diffusion coefficient on the size rp of the floating object.
The diffusion coefficient can be written as D∼ V2

p Tp ∼ CU2Tp and our results allow
a better understanding of the trends in function of the radius rp observed in figure 3;
indeed,

(i) when r < Lf we measured that C ∼ r−0.35 and Tp ∼ const. ∼ Lf /U (see figures
4b and 6a), hence, D∼ r−0.35; and

(ii) when r> Lf we measured that C∼ r−2 and Tp∼ r (see figures 4b and 6a), hence,
D∼ r−1.

We test these relations in figure 10(a) which shows that all our data can be
collapsed onto a master curve by normalising the diffusion coefficient D by the
product of the flow velocity variance U2 and the integral time scale Tp and plotting
it versus the ratio C= V2

p/U
2.

Though our system is macroscopic, analogies can be drawn with phenomena
observed at the microscopic scale. Such analogies are often fruitful, as mentioned
in the original paper of Taylor on turbulent diffusion (Taylor 1921). For instance,
fluctuation–dissipation relations play a central role in statistical physics, and one
famous instance is the Stokes–Einstein relation for diffusion of Brownian spherical
particles of radius r. This relation predicts that the diffusion coefficient D increases
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FIGURE 10. (Colour online) (a) Non-dimensional diffusion coefficient D/U2Tp versus the
ratio C = V2

p/U
2. The diffusion coefficient of the floating object D is normalised by the

product of the flow velocity variance U2 and the corresponding integral time scale Tp.
(b) Non-dimensional diffusion coefficient D=µU2/(ηrp) versus the ratio C=V2

p/U
2. The

vertical dashed line indicates the transition observed at rp= Lf in the dependence of C on
rp shown in figure 4(b). (Experimental parameters: fs = 60 Hz, Lf ≈ 4.4 mm.)

linearly with the thermal energy kT and is inversely proportional to the radius r,
namely D= kT/(6πηr), where η is the fluid viscosity.

In the macroscopic turbulent flow described here, the behaviour of the large discs
rp > Lf is interesting. Indeed the diffusion coefficient D = V2

p Tdisc of large discs is
inversely proportional to their radius rp (see figure 3); moreover it has been shown
that their kinetic energy MpV2

p is directly proportional to an effective flow kinetic
energy, MpV2

p = µU2, where µ is a constant (see the inset of figure 4b). These two
features allow us to write a simple relation between D and the effective flow energy,
namely D = µU2/(ηsrp), where ηs is a constant that has the dimension of viscosity.
Figure 10(b) shows the behaviour of the dimensionless number D/(µU2/(ηrp)) (η
is the viscosity of water) as a function of the ratio C = V2

p/U
2. It confirms the

existence of a relation analogous to the Stokes–Einstein relation for low values of C
corresponding to large floating objects. Similar relations have recently been studied
in the Faraday wave system (Welch, Liebman-Pelaez & Corwin 2016). It would be
interesting to see how they can be connected to other properties of the liquid–gas
interface perturbed by waves (Domino et al. 2016). The behaviour of the small discs
rp < Lf does not allow for such a simple relation to be written but instead reflects
the memory of this strongly out-of-equilibrium flow via diffusion coefficients that are
proportional the flow r.m.s. velocity U.

It is interesting to note that the coupling between the flow fabric with large floating
objects can give rise to interesting phenomena if the object has an asymmetric shape
(Francois et al. 2018). Recently, it has been demonstrated that such objects are able to
extract energy from 2D turbulence and this offers methods to create turbulence-driven
turbines or self-propelled vehicles (Francois et al. 2018; Yang et al. 2019).
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5. Conclusions
Summarising, here we show a connection between the turbulent diffusion of

inertial particles and the Lagrangian structure of 2D turbulence. We demonstrate that
anisotropic river-like structures are the underlying fabric of 2D turbulence generated
by steep waves at the liquid surface. Depending on their size, floating discs interact
differently with these transient river-like structures. While large objects interact with
many bundles, small objects can only be influenced by a single bundle at a time.
These two distinct behaviours are directly reflected by how the diffusion coefficient
depends on both the object size and the flow kinetic energy. This finding opens ways
of engineering a non-equilibrium liquid interface with tunable diffusion coefficient
(Welch et al. 2016; Francois et al. 2017). In the case of a liquid surface perturbed by
Faraday waves, our results offer methods to externally tune the diffusion coefficient
of a floating object by changing the amplitude or the frequency of the vertical
oscillation.
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