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Rectification of chaotic fluid motion in two-dimensional turbulence

N. Francois,* H. Xia, H. Punzmann, and M. Shats
Research School of Physics and Engineering, Australian National University, Canberra,

Australian Capital Territory 2601, Australia

(Received 10 June 2018; published 4 December 2018)

Turbulence is a mechanism leading to energy dissipation, however it also accumulates
energy by spreading it over a range of scales. This valuable energy reservoir is known as the
inertial interval. The broader this interval is, the more energy is stored and an interesting
question is whether it is possible to efficiently use this energy. Recent advances in the
understanding of turbulence rely on the trajectory-based or Lagrangian description of the
flow. Here we show how to extract energy from the inertial interval of two-dimensional
turbulence by taking advantage of its fine Lagrangian structure. A floating object in wave-
driven turbulence can exploit the fluid erratic motion to fuel either directional propulsion
or rotation. The shape of the object controls its ability to become a vehicle or a rotor that
can tap the energy of correlated bundles of fluid trajectories. These findings offer methods
of creating self-propelled devices or turbines utilizing the energy of turbulence.
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I. INTRODUCTION

Turbulence is a common paradigm of unpredictable and chaotic flows [1,2]. In both three-
dimensional (3D) and 2D turbulence, nonlinear interactions spread energy over the inertial interval.
Through this process a substantial amount of energy is stored into turbulent fluctuations. Current
technologies commonly used to collect renewable energy cannot operate properly in strongly
turbulent environment [3]. Developing methods to collect energy stored in turbulent fluctuations
requires advanced knowledge of the structure of the turbulent flow. Due to progress in experimental
methods, it is now possible to describe turbulent flow in the Lagrangian frame, the reference frame
of fluid particles advected by the flow. The Lagrangian description of turbulence has recently
advanced our knowledge significantly in many enduring problems, for instance, in fundamental
questions related to statistical properties of homogeneous and isotropic turbulence but also in many
applications based on mixing or transport in turbulent flows [4,5].

There is a growing realization that 2D turbulence is far more ubiquitous than it was originally
expected [6–10]. Two-dimensional turbulence supports an inverse energy cascade that transfers
energy from small to larger scales. When bounded, such flows can self-organize to form large-scale
coherent flows in a process known as spectral condensation [11–14]. The remarkable ability of
2D turbulence to self-organize in the presence of boundaries promises versatile methods of energy
conversion. It has recently been found that disordered surface waves generate horizontal turbulent
motion at the water surface [14,15]. Despite the 3D nature of the fluid motion in the waves, the
statistics of horizontal velocity fluctuations is consistent with 2D turbulence [10,16]. In particular,
there is an inertial transfer of kinetic energy from smaller to larger scales [11]. In this system, both
Eulerian (field representation) and Lagrangian (trajectory-based) features of the chaotic flows can
be accurately measured over a broad range of kinetic energies [16–18].
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Here we show that the underlying Lagrangian structure of wave-driven 2D turbulence allows the
rectification of the fluid velocity fluctuations to create either a stationary rotor or a floating vehicle
capable of propelling along the turbulent liquid-gas interface. We demonstrate experimentally the
operational principle of these self-propelled vehicles or rotors by studying the coupling of the device
geometry with the Lagrangian fabric of 2D turbulence. These devices exploit fluctuations of finite-
Reynolds-number flows possessing structural and temporal memory.

II. EXPERIMENTAL RESULTS

Turbulent flows in these experiments are generated on the water surface in vertically shaken
containers [14,15]. Above a critical vertical acceleration, parametrically excited waves, or Faraday
waves, appear at the liquid-gas interface. When the Faraday waves are steep, the wave motion is
disordered [14]. We study these waves in the range of vertical accelerations a which corresponds to
the supercriticality factor of 0.2 < ε < 2, where ε = (a − ath )/ath and ath is the instability threshold
of the Faraday waves (see the Supplemental Material [19]). Though energy is injected into vertical
motion of a liquid, it is converted into chaotic horizontal fluid motion via the generation of horizontal
surface vortices [16,20,21]. These Faraday wave-driven flows are random and show no component
of mean flow. The kinetic energy of the horizontal flow Ef is proportional to the square of the
horizontal velocity fluctuations, Ef ∼ U 2 (U is the rms value of the fluctuations). The horizontal
flow energy increases with the amplitude of the vertical acceleration as Ef ∼ ε2. The flow is forced
at the scale Lf ≈ λ/2, where λ is the wavelength [14,16,17]. Figure 1(a) illustrates the chaotic
transport of tracer particles at the surface perturbed by Faraday waves. Transport properties of these
flows have been studied previously [10,15,16,22–24]. It has been shown that the single-particle
dispersion has a diffusive nature. In other words, a fluid particle on the surface executes a random
walk and its mean-square displacement from its original position increases linearly with time [17]
[Fig. 1(b)]. Moreover, the velocity fluctuations of such flows were found to follow a Gaussian
distribution, as demonstrated in Fig. 1(c). The rms velocity U depends on the kinetic energy
accumulated over a broad range of scales, the inertial range, by a 2D process referred to as the
inverse energy cascade [11,14,15]. The latter corresponds to a transfer of energy from the injection
scale Lf towards larger scales. It is identified by a k−5/3 scaling in the wave-number spectrum of the
horizontal kinetic energy [see Fig. 1(d)]. In these experiments, the inverse cascade spreads energy
up to scales close to 10Lf . This upper bound also determines the size of the largest domain in which
spectral condensation occurs experimentally [14].

A. Self-propulsion versus drift motion of floating objects on the water surface

Figure 1(a) shows the trajectory (in red) of a floating disk placed into the wave-driven flow [see
schematics in Fig. 1(e) and the Supplemental Material [19] for a description of the material, density,
and thickness of the floaters used here]. The floater is much larger than the characteristic flow scale
Lf and its motion is erratic. The motion of large floating disks is diffusive at long times, as seen
in Fig. 1(b). The diffusion coefficient of the disk floater is 10 times lower than that measured using
fluid tracers. It has been recently demonstrated that for large circular objects (size much greater than
λ) drifting in the Faraday waves there exists a relation between the wave-driven diffusion and the
drag coefficient [25], analogous to the fluctuation-dissipation theorem used in equilibrium statistical
mechanics. However, there is ample evidence that wave-driven flows show many properties of two-
dimensional turbulence, a strongly out-of-equilibrium state [14–16].

The underlying nonequilibrium nature of the flow can be revealed by changing the shape of the
large floater. Instead of a simple disk, we use a bracket-shaped floater (a floater with two L-shaped
arms). Figure 1(f) shows the trajectory of this winged vehicle placed into the flow. The vehicle can
propel itself along a smooth line over long distance.

To understand the mechanism of this propulsion, we study the motion of floaters which rotate
freely about the z axis with a fixed pivot point in the horizontal plane. We thus turn winged vehicles
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FIG. 1. Disk floater and self-propelled vehicle in turbulent flows. (a) Fluid particle streaks around a
40-mm-diam floating disk. The trajectory of the disk floater (red dots) in the turbulent flow (the parameters
are U = 3.7×10−2 m s−1 and Lf = 4.4 mm) is shown with a scale bar equal to 40 mm. The floater motion is
tracked for 15 s; for clarity, particle streaks are only 0.7 s long. (b) Mean-square displacement of fluid particles
and of the large disk floater. (c) Probability distribution function (PDF) of the components Ux and Uy of the flow
velocity along the x and y axes. The orange and blue dashed lines are Gaussian fits. (d) Wave-number spectrum
Ek (k) of the horizontal kinetic energy of the wave driven flow for two different supercriticality factors ε. The
red arrow indicates the direction of the energy flux and the orange arrow indicates the forcing wave number
kf = 2π/Lf . (e) Schematic of the large neutrally buoyant object at the water surface. (f) Trajectory of the
winged vehicle (red dots) in the turbulent flow (the wing span of the vehicle is 40 mm and the red arrow
indicates the direction of motion). The vehicle motion is tracked for 24 s; for clarity, particle streaks are only
0.5 s long (the scale bar is equal to 40 mm).

into rotors. We study two types of rotors: a beam rotor [Fig. 2(a)] and a chiral Z rotor which is
made of two L-shaped arms [Fig. 2(b)]. The rotation axes are at the rotor geometric center. When
the beam is placed on the fluid surface [Fig. 2(a)] its orientation or its polar angle θ (t ) fluctuates
about its initial value and the time-integrated angular displacement Sθ = ∫

θ̇ (t )dt remains close to
zero. The motion of the Z rotor [Fig. 2(b)] fluctuates but it also steadily rotates in one direction (see
movie 1 in [19]). The rotation is always such as if a force is exerted from the inside of the L-shaped
arm [clockwise rotation in Fig. 2(b)]. The angular displacement Sθ increases linearly with time for
the Z rotor [Fig. 2(c)]. Its average angular velocity 〈Vθ 〉 = 〈θ̇ (t )〉 is therefore steady in time and it
increases with the increase in the turbulent velocity fluctuations U [Fig. 2(d)]. The rotation direction
reverses when the Z rotor is placed upside down.

The square of the angular velocity 〈Vθ 〉2 is linearly proportional to the kinetic energy stored
in the fluctuations of the horizontal flow velocity. This is observed in a broad range of the
turbulent flow energies Ef ∼ U 2, over two orders of magnitude as seen in Fig. 2(e). The probability
distribution function of the angular velocity fluctuations Vθ − 〈Vθ 〉 is Gaussian with a distribution
width comparable to the mean angular velocity 〈Vθ 〉 [see the inset in Fig. 2(e)]. This indicates a
stochastic propulsive mechanism. The energy transfer from the turbulent flow to the Z rotor also
depends on both the rotor size and the flow characteristic scale Lf . Figure 2(f) shows the rotational
energy J 〈Vθ 〉2 as a function of the normalized scale Lr/Lf , where J is the moment of inertia of the
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FIG. 2. Rotors. (a) and (b) A single beam and a Z rotor in a 2D turbulent flow. The two structures can rotate
freely about the z axis but are fixed in the x-y plane (the blue dot marks the axis of rotation and the scale bar is
equal to 20 mm). (c) Cumulative angular displacement Sθ = ∫

θ̇ (t )dt versus time. The beam rotates erratically
with a mean angular position 〈θ (t )〉 close to zero while the random rotation of the Z rotor is biased along
a direction prescribed by its chirality. (d) Angular displacement Sθ versus time measured for increasing rms
flow velocity U and when the rotor handedness is reversed [rms velocity range U = 10−3–(5×10−2) m s−1].
(e) Angular kinetic energy J 〈Vθ 〉2 of the rotor versus mean kinetic energy U 2 of the flow (the dashed blue line
is a linear fit; the parameters are Lf = 4.4 mm, Lr = 25 mm, and J = 3.1 g cm2). The inset shows the PDF
of the fluctuations Vθ − 〈Vθ 〉 of the Z rotor measured in flows with different mean kinetic energies U 2 and
forcing scale Lf [the parameters are (U5 = 3.7×10−2 m s−1, Lf = 3 mm) and (U6 = 4.7×10−2 m s−1, Lf =
4.4 mm)]. (f) Angular kinetic energy J 〈Vθ 〉2 versus the ratio Lr/Lf at fixed U [the dashed blue line is a linear
fit; the parameters are Lf = 3–8 mm, Lr = 5–25 mm, and J = (1.9×10−2)–3.1 g cm2].

rotor and Lr is the size of the L-shaped arms [see the schematic in Fig. 2(f); by definition Lr = 0 for
a single blade]. The rectification of the fluctuations occurs above a threshold value of Lr/Lf . No
unidirectional rotation is observed for small rotors Lr < Lf . For larger rotors, the rotational energy
J 〈Vθ 〉2 is an increasing function of the normalized size Lr/Lf .

B. Fine structure of the turbulent flow

The rotor size dependence in Fig. 2(f) suggests the presence of coherent structures coexisting
with the chaotic flow background. To confirm the existence of and quantify statistically this
persistent fabric we compute two types of Lagrangian correlation functions: a single-particle ve-
locity autocorrelation ρ11(τ ) = 〈u(t0 + τ )u(t0)〉/U 2 and a cross-correlation function ρ12(τ, d12) =
〈u1(τ )u2(τ )〉/U 2, where 〈·〉 denotes the statistical averaging and d12 is the initial (τ = 0) distance
between particles in pairs. These functions are referred to as Lagrangian because they are computed
on horizontal velocities u measured in time along the trajectories of fluid tracers. The time integrals
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FIG. 3. Trajectories bundles: the fine fabric of turbulent flows. (a) Lagrangian autocorrelation ρ11 (single
particle) and cross-correlation ρ12 (two particles) functions versus time. (b) Cross correlation ρ12 versus time
for increasing initial distance d12(τ = 0) between the two particles. Time is expressed in TL units (TL is
the single-particle autocorrelation time) and d12 in Lf units. (c) Bundle correlation time TB versus the flow
mean kinetic energy U 2; TB is computed by integration of ρ12 over time for a distance d12 = Lf /4. The
measurements give the relation TB ≈ 40TL. (d) Fluid particle streaks in a turbulent flow and close-up of a
trajectory bundle detected via the braid analysis (the parameters are 0.7-s-long streaks, Lf = 4.4 mm, and U =
3.7×10−2 m s−1; the scale bar is equal to 20 mm). Details on the temporal evolution of the bundle shown in (d)
are shown at different time intervals: (e) 4TL–8TL, (f) 8TL–12TL, (g) 12TL–16TL (scale bars show the forcing
scale Lf ).

of the functions ρ11(τ ) and ρ12(τ ) give two Lagrangian timescales TL and TB , respectively, which
characterize the memory of the flow.

A single particle forgets about its initial direction on the timescale of TL. The vector velocities
of two particles which are initially close to each other (d12 � Lf ) stay correlated for much longer
time, TB ≈ 250TL in Fig. 3(a). If the initial particle separation d12 is gradually increased, the pair
correlation time TB decreases [Fig. 3(b)]. The cross-correlation function ρ12 decays exponentially
with time when d12 < Lf . At large separations d12 > Lf , an abrupt transition occurs: ρ12 collapses
to a low level (ρ12 < 0.25). This suggests that a large number of fluid particles travel together along
riverlike structures whose widths are about Lf . These bundles of trajectories stay together for a long
time without separating. Indeed, the average lifetime of these structures is typically 〈TB〉d12 ≈ 30TL

[when TB (d12) is averaged over d12 < Lf ]. The correlation time of a bundle TB decreases with the
increase in the flow energy: TB is inversely proportional to the rms fluctuation velocity U [Fig. 3(c)].
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Visualizing the presence of these bundles directly from experimental trajectories is challenging
because the temporal traces of the fluid particles in turbulent flows often appear as erratically
entangled strands [see Fig. 3(d)]. Here we employ a recently developed method based on the concept
of topological braids to detect coherent features in chaotic flows [26] (see the Supplemental Material
[19]). This method reveals that locally many trajectories closely follow each other for rather long
periods of time [Figs. 3(d)–3(g)]. Each of the bundles experiences occasional splitting into two, yet
most strands stay together untangled and execute a complex collective motion. These topological
bundles have a width close to Lf . Their average lengths, however, are substantially longer, as
reflected by their long lifetime 〈TB〉d12 ≈ 30TL [Fig. 3(b)].

As shown in Fig. 3(a), the timescale TL, which characterizes the single-particle dispersion in the
turbulent flows, is much shorter than TB . Recently it was shown that the fluid tracers have a diffusive
behavior at long times (t > TL) with a turbulent diffusion coefficient Dt ≈ ULf (17). Therefore,
a single fluid particle executes a random walk whose characteristic step size and timescale are Lf

and TL, respectively, with UTL ≈ Lf . Figures 3(d)–3(g) illustrate how the random-walk behavior,
which dominates the single-particle statistics, coexists with correlated bundles: The random walk is
executed by the bundles, rather than by individual uncorrelated trajectories.

C. Coupling of the flow to the rotor

Coherent bundles are constantly and randomly bent by the surrounding turbulent flow [18]
[Fig. 3(d)]. When a winged vehicle, or a rotor, is introduced into the flow, coherent bundles are
guided in the vicinity of the floater by their boundaries. To visualize this guiding effect, we fix the
rotor to prevent its rotation and perform particle image velocimetry measurements near its corner,
as shown in Fig. 4(a). By summing up instantaneous velocity fields over time intervals of several
TL, we can average out chaotic velocity fluctuations while retaining coherent features with longer
lifetime. In Fig. 4(b) the time-averaged velocity field reveals bundles of trajectories that are guided
and bent by the corner of a rotor. Inside the L bend, the bundle of trajectories does not close onto
itself to form a steady vortex structure as could have been expected; instead it is deformed along a
curve whose curvature radius is similar to the bundle characteristic width Lf .

Given that wave-driven flows are dominated by inertial effects, a simplified picture emerges here
as follows. The corner of the rotor acts as a stagnation point for the flow which forces the bundles
to bend, thus creating a reaction force Fp acting on the rotor’s corner (in response to the centripetal
acceleration experienced by the bundle), as illustrated in Fig. 4(c). Though the guided motion of
the fluid bundles can be either clockwise or counterclockwise, the direction of the reaction force Fp
stays the same and points along the bisector of the corner. This force generates a propulsive torque
P acting on the rotor when the rotation axis is in its center. To test this hypothesis, we performed
experiments using a half rotor. The pivot point of this corner-shaped rotor can be placed either at
its vertex [Fig. 4(d)] or at the end of one of its arms [Fig. 4(e)]. The comparison between these two
configurations shows that only the rotor whose vertex is free rotates. This confirms that the main
component of the force moving the rotor acts at its corner. In the case of a winged vehicle [Fig. 1(f)],
the forces Fp acting on the symmetrically placed arms generate a directional propulsion.

III. DISCUSSION

Our results uncover a mechanism of exploiting the energy accumulated in the inertial range of 2D
turbulent flows. The Lagrangian nature of this mechanism allows us to explain both the locomotion
and the rotation at the fluid surface.

Since our stochastic rotor reaches a statistical steady state, that is, 〈Vθ 〉 is constant in time
[Fig. 2(d)], we propose a simple model to describe its average motion. In this model, the mean torque
P exerted by the flow on the rotor is balanced by a linear dissipative torque P = Cs〈Vθ 〉, where Cs

is a drag coefficient. The propulsive torque is modeled by P = LR (U 2/Lf )f (TB ), where U 2/Lf

is the centripetal acceleration characterizing the bending of coherent bundle with the rms velocity
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FIG. 4. Flow-rotor coupling. (a) Fluid particle streaks around a fixed Z rotor. The rotor rotation is prevented
by two anchoring axes (blue dots) (the parameters are streaks recorded over 0.66 s, Lf = 4.4 mm, and
U = 9.3×10−3 m s−1; the scale bar is equal to 25 mm). (b) Velocity field measured using PIV in the corner
of a fixed rotor (TL ≈ 0.2 s, the velocity field is averaged over 1 s, and the arrow length is proportional to the
velocity magnitude). (c) Schematic of the modeling of the torque P exerted by the fluid on the rotor. Here Fp

is the force resulting from the bending of a fluid bundle (green trajectories) in the inside part of the rotor. The
trajectories in the external domain (in red) are not guided by the rotor corner. (d) A half rotor fixed in its corner
rotates randomly with a mean angular velocity equal to zero; the scale bar is equal to 26 mm. (e) A half rotor
fixed at one of its extremities shows biased random rotation about its anchoring point; the scale bar is equal
to 33 mm. [In (d) and (e) the stroboscopic images of the half rotor, the motion is followed over 70 s at time
intervals of 10 s; the parameters are Lf = 4.4 mm and U = 2.8×10−2 m s−1.]

of U and the width Lf . Here LR is the distance between the pivot and the corner of the rotor. The
function f (TB ) is the coupling factor between the bundles and the rotor. For small rotors (Lr < Lf )
f (TB ) = 0 [Fig. 2(f)]. For large rotors, f (TB ) should reflect the bundle’s finite lifetime. The
simplest choice is f (TB ) ∼ TB , which leads to f (TB ) ∼ 1/U , in agreement with the observation
of Fig. 3(c). Therefore, the model predicts that the mean angular velocity of a rotor should scale
as 〈Vθ 〉 = P/Cs ∼ U/Lf . We indeed observe that the rotation velocity is proportional to the rms
velocity U of the horizontal fluid flow [Fig. 2(e)]. This simple model also predicts that the Z rotor
is more efficient at smaller characteristic scales of the flow Lf [Fig. 2(f)]. We can also roughly
estimate the efficiency rate η of turbulent energy conversion of a rotor as η = J 〈Vθ 〉2/mf U 2, where
mf = ρh(2Lr )2 is the mass of fluid interacting with the rotor, ρ is the water density, and h is the
rotor height. Such estimation gives η ≈ 0.3 for the rotor shown in Fig. 2(b).

The drag coefficient of an asymmetric object is a point that clearly would deserve further
investigation. Indeed, one can argue that asymmetric objects might experience a direction-dependent
drag force which would favor the directional motion observed. We have recently measured the
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propulsion force Fp acting on the rotor by using optical fiber cantilevers [27]. In this type of
measurement, the floating object is trapped by the optical fiber and this allows us to disentangle
effects due to an anisotropic drag from those related to true propulsive force. The measurements
confirmed that rotors or winged objects can actually extract the energy of the turbulent flow.

From a fundamental viewpoint, our results are in line with Curie’s principle according to which
the rectification of erratic motion is possible if temporal and spatial symmetries of the motion are
broken [28]. In our experiments, time and spatial asymmetries arise from the finite flow memory
and the rotor chirality. The emergence of directed motion from a chaotic environment [29] has been
studied in a range of physical contexts in quantum systems [30], in microscale systems [31,32]
where thermal noise plays an important role, and in the macroscopic world. Recently, this topic has
seen two interesting experimental developments: complex ratchet effects discovered in a granular
gas [33] and microscopic carriers powered by active baths [34] (a particular example of such an
active bath is bacterial turbulence).

Beyond the conceptual analogies related to the possibility of rectification in an out-of-equilibrium
system, it is interesting to discuss the differences between the ratchet mechanism at play in these
two systems and ours. In a granular gas, chaos is generated by particle collisions and the ratchet
effect occurs as a result of the inelasticity of those collisions. Microscopic carriers are based on
out-of-equilibrium active baths which are dominated by viscous dissipation such that inertia effects
are negligible (for instance, bacterial turbulence is observed for Reynolds number much smaller
than 1, typically 10−5). In this system, rectification of the bacteria motion occurs due to polar
ordered bacteria trapped in the cusp of the carrier which is shielded from the outside turbulent
fluctuations [35]. Hydrodynamic turbulence, on the other hand, is a chaotic state of a macroscopic
system generated and dominated by inertia. The physical properties of hydrodynamic turbulence are
obviously different from the recently discovered active bacterial turbulence [34,36]. The vehicles
reported here are coupled to turbulent fluctuations on a fluid surface at typical Reynolds number
of the order of 100; those hydrodynamical fluctuations have a complex spatiotemporal structure
whose origin and features close to a wall are quite different from those of fluctuations observed in
either bacterial turbulence or granular gases. From the fluid dynamicist point of view, the ability
of bounded 2D turbulence to self-organize at large scale promises a versatile method for energy
conversion. This study is just an initial step towards exploring how the properties of 2D turbulence
in the vicinity of a moving wall can be used to harness its kinetic energy.

It is interesting to note that Couder and co-workers have discovered a different kind of propulsion
mechanism occurring below the Faraday threshold instability on the surface of viscous liquids
[37,38]. In these experiments, a millimeter-size droplet bouncing on the vibrated surface becomes
a walker moving at constant speed when it couples to the localized surface wave, or pilot waves, it
generates. Though it is observed in a similar setup, the operational principle of turbulence driven
vehicle relies on totally different physics. Beyond the threshold instability, in weakly viscous liquid,
steep Faraday waves generate vorticity on the liquid surface which fuels an inverse energy cascade.
To create a propulsive coupling, the shape and size of a vehicle must be adapted to the characteristics
of the underlying fabric of wave-driven turbulence [Fig. 2(f)].

In conclusion, the key to the extraction of useful work from 2D turbulent flows is the efficient
coupling of an object to coherent structures present in the flow. In our experiments, coherent bundles
transfer their momentum to the L-shaped arms of a floating object. Depending on the geometric
configuration of these arms, a self-propelled vehicle or a rotor can be created.
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