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Properties of turbulence, such as the direction of the energy cascade depend on the flow 

dimensionality. Recent experimental results reveal new physics understanding of flows in thick 

layers. We show that the flow dimensionality can be characterized by the flow damping and that a 

comparison of the decay rate with that of a quasi-2D flow can be used as a measure of 

dimensionality of a turbulent flow in a layer. This dimensionality, however can be strongly 

affected if large scale coherent vortices are present in the flow. These vortices can imposed two-

dimensionality and reduce the damping rate. Finally we show that even in thick layers with 

unperturbed free surface, turbulent flow can be viewed as co-existing 2D top sub-layer and the 

bulk 3D flow. 

Keywords: 2D and 3D turbulence; flows in fluid layers. 

1.   Introduction 

Layered flows are those whose depths are much smaller than their horizontal extents. 

Planetary atmospheres and oceans belong to this class. The flow aspect ratio alone does 

not determine however whether turbulence in a layer would behave as 2D or 3D. The 

principal difference between turbulence in two and three dimensions is the direction of 

the energy cascade
1
: energy is transferred from smaller to larger eddies in 2D, and from 

larger to smaller scales in 3D. The consequences of the energy flux are dramatic: the 

inverse energy cascade in 2D allows a flow self-organization. In 2D spectral energy can 

accumulate at large scales forming structures coherent across the system size. A 

remarkable progress has been achieved recently in understanding the energy transfer in 

turbulent flows in thick layers. 

In this paper we review several new experimental results related to (1) turbulent flow 

dimensionality, (2) interaction between coherent vortices and turbulence in thick layers 

and (3) the spatial structure of turbulence. We study these issues in two main 

configurations: in single layers of a water-based electrolyte and in double layers where 

the top layer of electrolyte rests upon a heavier layer of electrically neutral fluid. In the 

latter case, turbulence is detached from the bottom and linear damping is substantially 

reduced. 
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2.   Flow Dimensionality in a Single Layer 

Turbulence in layers is generated electromagnetically in a vertical spatially varying 

magnetic field crossed with the electric current flowing across the layer, as discussed  

in Refs. 2 and 3. Magnetic dipoles placed under the fluid cell generate small vortices (8-9 

mm in diameter) which then interact with each other forming complex turbulent motion. 

Horizontal fluid motion is studied using 2D PIV, while vertical motions are studied using 

the defocusing PIV technique combined with the particle streak imaging in the vertical 

plane
4
. 

In the absence of 3D motions, the flow in a layer is damped due to the bottom friction 

due to the molecular viscosity. A decay of horizontal velocity Vx,y(z, t) in a quasi-2D flow 

due to the bottom friction is given by the decay rate of the energy of 2 22 .
L

hα νπ=  Here 

ν  is the kinematic viscosity and h is the layer thickness. The onset of 3D turbulent eddies 

leads to a vertical flux of horizontal momentum and faster dissipation of the flow. Such a 

flux is related to the mean vertical velocity gradient: 

 ( ), ,x y z x yV V K V z= − ∂ ∂� � , (1) 

where K is the eddy (turbulent) viscosity coefficient. 
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Fig. 1 (a) Decay of the flow energy in layer 10 mm thick. (b) Energy damping rate normalized by the viscous 

quasi-2D damping rate, aD = α/αL as a function of the thickness layer normalized by the forcing scale, h/lf. Open 

circles correspond to single layers, solid circles show data obtained in the double layer configurations. 

Figure 1(a) shows experimentally measured decay of the flow energy together with 

the exponential fit. Fig. 1(b) shows the decay rate normalized by the viscous quasi-2D 

damping rate, aD = α/αL, as a function of the normalized layer thickness. For the thinnest 

layer, the measured decay rate coincides with the quasi-2D estimate, while for thicker 

layers, this anomaly coefficient increases linearly with the thickness. However in the 

double layer configuration, the anomaly coefficient aD remains low even in much thicker 

layers. 

This result can be understood in the frame of the eddy viscosity concept. As the layer 

thickness is increased, 3D motions become more and more visible, Fig. 2(a-c). RMS of 

horizontal velocities increases roughly proportional to the layer thickness, Fig. 2(d). The 

eddy viscosity coefficient can be estimated from experimental data as 
1

, , /x y z x yK V V V z
−

≈ ∂ ∂� � � . Then the damping rate is estimated using contributions 
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from both molecular and eddy viscosity, ( ) 2 2
/ 2

t
K hα ν π≈ + . The ratio of thus 

computed damping rate to the linear damping αL is shown in Fig. 2(e). One can see that 

the damping anomaly coefficients estimated from the eddy viscosity model, Fig. 2, and 

from the direct measurements of damping, Fig. 1, agree pretty well. 
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Fig. 2 (a-c) Particle streak photos in single layers of different thicknesses. (d) RMS of the vertical velocity 

fluctuations normalized by the RMS of horizontal velocities. (e) The anomaly coefficient estimated using 

Equation (1), as aD = αt/αL. 

This result
4
 suggests that the anomaly coefficient, which characterizes the deviation 

of damping from the one derived using a quasi-2D model, can be used as a practical 

measure of the flow dimensionality. 

3.   Two-dimensionality Imposed by Large coherent Flow 

Now we investigate how large-scale coherent flows affect the dimensionality of 

turbulence in thick layers. Some of these results were published in Ref. 5. When 

turbulence is generated in a single layer, the flow is subject to substantial bottom drag. 

Such a drag can dampen the inverse energy cascade. This is shown in Fig. 3(a-b). The 

3
rd

-order structure function of the velocity fluctuations is very small in turbulence, and 

the spectrum is flatter than the k
-5/3

 Kolmogorov-Kraichnan scaling. 

When the large scale coherent vortex is imposed externally on top of turbulence, the 

bottom drag is strongly reduced, such that the third-order structure function S3 increases 

and becomes a positive linear function of the separation distance, as seen in Fig. 3(b). 

This is indicative of a strong inverse energy cascade in 2D turbulence. This result is very 

similar to that in a double layer configuration, Figs. 3(c-d), where the large-scale coherent 

vortex develops as a result of self-organization of turbulence in the process of spectral 

condensation. 
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Fig. 3 Effect of the large-scale coherent vortex on (a) turbulence spectrum and on (b) third-order structure 

function S3 in a single layer (h = 10 mm, lf = 8 mm). In a double layer (top layer thickness 7mm, lf = 9 mm), 

where  large coherent vortex develops as a result of spectral condensation, the (c) spectrum and (d) S3 are 

similar to those with externally imposed flow. 
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Fig. 4 (a) Velocity field of the coherent vortex externally imposed on turbulence (b) Time evolution of the total 

kinetic energy during the flow decay. (c) Vertical profiles of the RMS of the vertical velocity fluctuations in a 

single layer in turbulence (squares) and with the coherent vortex imposed on turbulence (diamonds). 

The above results can be explained as follows. The imposition of the large-scale 

coherent flow on turbulence leads to the shear suppression of the vertical eddies. This in 

turn leads to the reduction in the eddy viscosity, to the reduction in the bottom drag, and 

eventually to the enhancement of the (otherwise dampened) inverse energy flux. How the 

same scenario is realized in the double layer configuration will be clarified in the next 

section. 
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4.   Spatial Structure of Turbulence in Thick Layers 

Now we consider vertical velocity profiles in a single layer configuration. Figure 5 shows 

vertical profiles of vertical (a) and horizontal (b) velocities. RMS vertical velocities < Vz 

> are low in the top sublayer, 2 mm below the free surface, as well as in the bottom 

boundary sublayer. In the bulk of the flow (2 - 8 mm) < Vz > is high, being only a factor 

of two lower than horizontal velocities < Vx,y >. < Vx,y > shows a maximum at h = (3 - 4) 

mm, which is indicative of the competition between the forcing and the bottom drag. In 

the top sublayer, h1 = (8 - 10) mm, turbulence is expected to behave as quasi-2D due to 

the lower vertical velocities and the absence of vertical gradients of the horizontal 

velocities. 
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Fig. 5 Vertical profiles of (a) vertical, Vz, and (b) horizontal, Vx;y, velocities. A grey box in (a) indicates the 

sensitivity of the defocusing PIV technique. Grey boxes in (b) show the regions within the layer visualized 

using laser light. 

To test if the nature of the turbulent energy transfer changes between the top sublayer, 

the bulk flow and the bottom layer, we perform PIV measurements of the horizontal 

velocities by illuminating three different ranges of heights: h1 = (8 - 10) mm, h2 = (4 - 7) 

mm, and h2 = (1 - 4) mm. 

Figures 6 (a) and (b) show the kinetic energy spectrum and the third-order structure 

function as a function of the separation distance measured in the top sublayer h1. At k < kf 

the spectrum scales close to k
-5/3

, while S3 is positive at r > lf and is a linear function of r. 

This is in agreement with the expectation of the quasi-2D turbulence in the top sublayer. 

In the bulk flow h2, which is dominated by 3D motions, the spectrum is still close to 

k
-5/3

, though it flattens at low wave numbers. Consistently with this, the range of scales 

for which S3 is positive and linear is reduced to about r ≈ 40 mm. 

In the bottom sublayer h3, Figs. 6(c) and (d), the flow is subject to even stronger 

damping. As a result, the spectrum is much flatter than k
-5/3

. S3 is positive for a narrow 

range of scales, giving a hint of same trend as in the bulk and the top sublayers. 

The above results suggest that despite the presence of substantial 3D motion in a 

thick (h/lf = 1.28) single layer, statistics of the horizontal velocity fluctuations remain 

consistent with that of quasi-2D turbulence and supports the inverse energy cascade. 
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Fig. 6 (a, c) Wave-number spectra and (b, d) the third order structure functions S3 measured in (a, b) the surface 

sublayer (h1 = (8 - 10) mm), (c, d) in the bottom sublayer regions, h3 = (1 – 4) mm. 

5.   Conclusions 

Thus we conclude that flows in thick layers of fluids with an unperturbed free surface can 

be viewed as two interacting sublayers. The top layer is quasi-2D; it supports the inverse 

energy cascade. In a bounded domain at low damping, the inverse cascade leads to 

spectral condensation of turbulence. The bottom sublayer is dominated by 3D motions 

which are responsible for the onset of the eddy viscosity. A planar coherent flow (spectral 

condensate) developing in the top layer can reduce the bottom layer thickness through 

shearing of the 3D eddies. The thickness of the two sublayers thus depends on the 

competition between the vertical shear and the 3D motions due to the forcing. In the two 

layer configuration, the spectral condensate formed in the top sublayer can take over 

almost the entire layer thickness. 
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