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Abstract
Experimental results on the connection between mean E×B flows and coherent
oscillations at the frequency of the geodesic acoustic mode (GAM) in the H-1
heliac are presented. An increase in the mean local radial electric field, Er ,
is correlated with the development of several coherent modes. As mean Er

increases, spectral energy, which is mostly contained in coherent modes, grows.
This is followed by the onset of the m = 0, n = 0 finite frequency GAM-
like mode. Analysis of the heliac magnetic structure shows that geodesic
curvature is considerably stronger in H-1 than in tokamaks. A possible role
of geodesic oscillations in the transfer of spectral energy from mean zonal
flows into coherent modes leading to the generation of the GAM-like mode is
discussed. In the proposed scenario of the L–H transition in H-1 the inverse
energy cascade leads to the accumulation of turbulence energy in the mean
zonal-flow like structure, until geodesic effects lead to the generation of coherent
modes and GAM. The coherent modes’ parallel phase velocities are very close
to the ion thermal velocity suggesting the possibility of their strong Landau
damping. It is suggested that the shear decorrelation mechanism eventually
forbids the energy transfer from Er to these modes which reinforces spectral
condensation and leads to L–H transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Turbulence-driven zonal flows in magnetized plasma [1] have been extensively studied in the
last decade mostly theoretically and computationally (for a review see [2]). Recently a large
body of experimental evidence has been presented [3–9], which confirmed many theoretical
predictions and suggested several important roles played by zonal flows in toroidal plasma,
particularly in the formation of the transport barriers [7, 10, 11].
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Two main branches of zonal flows have been identified. Both have zero poloidal and
toroidal mode numbers, m = n = 0. One of them is a zero-frequency, finite-bandwidth zonal
flow, while the other is the finite-frequency mode often referred to as a geodesic acoustic mode,
or GAM. The latter originates from the geodesic curvature in toroidal geometry and develops
as a result of the coupling between mean zonal flow and the m = 1, n = 0 pressure (density)
perturbation [12]. The reason for the m = 1 sideband oscillations in the density is the variation
in the magnetic field on the flux surface. The radial electric field causes the E × B flow in
the poloidal direction. Since B is not constant in the poloidal direction, it leads to the density
accumulation proportional to E × B · ∇B2/B4 [12].

Since GAMs have a distinct frequency, they should be considerably easier to identify in
experiments. A linear theory of GAM predicts oscillations at a frequency, which in a tokamak
geometry is determined as [2]

ωGAM ≈ cs

R

√
2 + q−2 (1)

Here cs is the ion acoustic velocity, R is a major radius of a tokamak and q is the safety
factor. As explained in [2], if the field line has a finite geodesic curvature, the E × B motion
induces compression and turns into a density perturbation if the frequency is in the range of
cs/qR or higher. Here qR = L‖ is the parallel connection length in a tokamak. In stellarators
L‖ should be significantly shorter due to the inherent B-ripple, such that the GAM frequency
should be higher, as will be discussed below.

Finite frequency coherent zonal flow-like structures have been observed for the first time
in the H-1 heliac [3]. They have been identified as m = 0 potential structures having finite
radial wave number. Measurements of poloidal, kθ , and radial, kr , wave numbers were
performed using Langmuir probes which were carefully aligned on the flux surface (for kθ

measurements) and radially displaced (for kr measurements) with the aid of the electron beam
launched into the H-1 magnetic structure before the plasma discharge. Frequency spectra of
the fluctuations in the electrostatic potential in H-1 typically show several coherent features
in the frequency range below 20 kHz, including zonal flows, as well as broadband turbulence
extending beyond 100 kHz. The spectral energy transfer analysis in H-1 [13, 14] has revealed
that the inverse energy cascade via three-wave interactions is responsible for the transfer of
spectral energy from the spectral region in the range of (20–40) kHz into the lower frequency
(and lower wave number) range. However the nonlinear energy transfer (NET) function
did not show any fine structure which would correspond to coherent modes. The question
whether the inverse energy cascade is responsible for the generation of coherent modes in
H-1 could not be resolved on the basis of NET analysis. On the other hand, the amplitude
correlation technique [15] applied to the H-1 fluctuation data [14] indicated that there is a
noticeable (0.4 or higher) correlation between the unstable spectral range and all the coherent
structures. It was also found that the time lag in the amplitude correlation function (ACF)
corresponds to the energy flow direction from the broadband turbulence towards the coherent
structures.

It is well-known that the inverse energy cascade in the 2D fluid turbulence may lead to
the accumulation of turbulent energy in the largest scale (determined by the system size), such
that most of the turbulent energy is transformed into energy of one of the largest vortex [16].
In [17] we compared several features of a process of spectral condensation in 2D fluid turbulence
which has been reproduced in a 2D fluid experiment, with some of the characteristics (e.g. the
evolution of spectra and generation of strong E × B flow) of the L–H transitions in the H-1
plasma. This study has revealed several interesting similarities pointing to the universality of
the turbulence self-organization in toroidal plasma and in 2D fluids. However some differences
are inevitable.
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One of the obvious differences between spectral condensation in toroidal plasma and in
incompressible fluid turbulence would be geodesic coupling of the mean zonal flow discussed
above to the low-frequency density/potential oscillations. Such coupling may lead to the
generation of the linearly stable m = 1, n = 0 density perturbations and m = 0 potential
oscillations [12]. However this linear theory neglects all non-ideal effects which may be
important in real experimental situations.

It has been shown in numerical simulations that the energy of the mean zonal flow can be
transferred to coherent modes via the geodesic transfer mechanism which acts as a sink and
may prevent the growth of zonal flow [18]. Simulations of the tokamak edge turbulence have
shown that the zonal flow energy is depleted by toroidal coupling to the pressure and leads
to the generation of a relatively large number of sideband modes [19]. This finding has been
supported by observations of zonal flows in the ASDEX Upgrade tokamak [9]. It has been
noted that the GAM itself, or the m = 0, n = 0 mode, may not even be clearly observable
in the developed sideband mode regime [9]. These results are of great importance for the
physics of zonal flows since they offer a mechanism of the zonal flow dissipation in addition
to collisional damping.

In this paper we investigate the possible connection of the mean zonal flow (or, more
generally, mean Er) energy to coherent low-frequency oscillations observed in the H-1 heliac,
including a GAM-like m = 0 mode [3]. We will show that this mode also has n = 0 and its
development is correlated with the increase in the NET from the broadband turbulence into the
mean zonal flow and the onset of several coherent n �= 0 modes whose development precedes
the onset of the GAM-like mode. This will be considered in the context of the turbulence–zonal
flow interaction summarized in the flowchart of figure 1. The energy reservoir which drives
the unstable spectral region in H-1 is the pressure gradient [14]. The energy is transferred
to lower wave numbers (frequencies) via the inverse energy cascade [14] forming a broad
spectrum of fluctuations. The spectral energy is accumulated in the spectral condensate, seen
as the mean zonal flow [17]. Some part of its energy is damped by collisions while some may
be transferred via geodesic effects to coherent modes. Both mean zonal flows and GAM can
modulate drift-wave turbulence via shearing as discussed in [20], which may lead to the GAM
instability. This dynamic shearing is illustrated in figure 1 using dashed lines. However in
our experiments this dynamics appears to be more complex because of the strong coherent
coupling between mean zonal flow, unstable spectral range, coherent modes and the GAM-like
mode (dashed lines). This coherent interaction will not be discussed in detail here. Another
important issue which we will discuss is the Landau damping of coherent modes. This seems
to play an important role in our experiments and may in particular affect the hypothetic energy
transfer from mean E × B flow to the GAM-range modes.

The paper is organized as follows. Section 2 describes the H-1 heliac and presents
experimental results on the interaction between the unstable spectral range, mean zonal flow
and coherent oscillations. Measurements of the poloidal and toroidal mode numbers using
probes are also described. In section 3 we discuss the analysis of the H-1 magnetic structure
relevant for the geodesic transfer mechanism. In section 4 we summarize observations and
discuss the possible scenario of the L–H transitions in the H-1 heliac and the role of the
interaction between zonal flow, coherent modes and GAMs in these transitions.

2. Spectra of turbulent fluctuations and generation of coherent modes

The reported results were obtained in the H-1 heliac [21], a helical axis stellarator having a
major radius of R0 = 1.0 m and a minor plasma radius of less than 0.2 m. The magnetic field
structure of H-1 is characterized by a relatively high rotational transform (1/q = -ι = 1.1–1.5
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Figure 1. Energy flow in the turbulence zonal flow system.

in the described experiments) and very low magnetic shear (ŝ = (ρ/-ι)(d-ι/dρ) ≈ 0.005–0.01).
In the experiments discussed here H-1 was operated at low magnetic fields (<0.2 T) with
current-free plasma produced by the pulsed radio-frequency (rf) power of less than 100 kW at
7 MHz. The rf power pulse length is about 80 ms. The electron temperature in the discharge
is low enough (Te = 5–30 eV) so that Langmuir probes can be used throughout the plasma
cross-section. Here we present results obtained in argon discharges.

As has been discussed in several previous publications from H-1 (e.g. [22,23]) spontaneous
L–H transitions coinciding with a strong reduction in turbulence and confinement improvement
are observed when the magnetic field reaches some critical value. It has also been shown [23]
that the increase in magnetic field coincides with the increase in the ion temperature, Ti, and
in the radial electric field, Er .

Processes leading to the confinement improvement during the B scan can be summarized
as follows. When B is increased, ion temperature also increases with B such that the ion
pressure gradient goes up [23]. This is followed by the increase in Er , in agreement with the
radial force balance in H-1, where Er ≈ (Zieni)

−1∇Pi, and contributions from the Vi × B

components to the balance are small. Thus, better ion confinement due to the B increase leads
to the build-up of Er and perhaps, eventually to the suppression of turbulence. It has also been
shown that levels of the threshold Er and its shear agree pretty well with the shear decorrelation
criteria for the low poloidal mode number fluctuations which dominate the L-mode spectrum
before the transition to H-mode. Below we present a somewhat different point of view (however
consistent with the above description) on the processes leading to the transition.

Figure 2 shows a spectrum of fluctuations in the floating potential measured in L-mode
at ρ = 0.5. The broadband part of the spectrum at f > 30 kHz shows a clear power law
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Figure 2. Auto-power spectrum of the floating potential fluctuations in H-1 at ρ = 0.5 in L-mode
at B = 0.062 T.

(a) (b)

Figure 3. (a) The NET from the unstable range, |WNL < 0| (�), mean radial electric field, 〈Er 〉
(•), and the root-mean-square value of the fluctuation level, RMS(Vf ) (♦), versus the magnetic
field in L-mode; (b) 〈Er 〉 (•) and RMS(Vf ) (♦) versus |WNL < 0| estimated at ρ = 0.5.

trend P ∼ f −6 over more than three decades. As discussed in [13] such scaling is universal
for L-mode and is consistent with the theoretically expected energy spectrum of electrostatic
turbulence W ∼ k−4 in the enstrophy cascade range [26], since W ∼ (1 + k2)P .

At f < 20 kHz several strong coherent modes are seen. These coherent modes contain
over 90% of the overall spectral power. The spectral energy transfer analysis of such
spectra [14] has shown the NET due to three-wave interactions from the spectral range of
f ≈ (20–40) kHz into the low-frequency range f < 20 kHz. This is illustrated in figure 2 by
two shaded boxes corresponding to the regions of negative (WNL < 0) and positive (WNL > 0)
NET function. The spectral region where WNL < 0 has been identified as the region of the
underlying pressure-gradient-driven instability [14].

During the magnetic field scan, this energy, |WNL < 0|, increases with the increase in
B, or more precisely, with the increase in the plasma pressure gradient [14]. This increase
is shown in figure 3(a). Correlated with the increase in |WNL < 0|, mean zonal flow (〈Er〉)
also increases with B. The root-mean-square level of the potential fluctuations (dominated by
coherent modes) also increases with B. By excluding the B-dependence one could present
these results as the increase in 〈Er〉 and in the level of coherent modes due to the increase
in nonlinear energy transferred from the unstable range into mean zonal flow and then into
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Auto-power spectra of the fluctuations in the floating potential, P(Vf ), (left column),
and in the ion saturation current (Is ∼ ne), P(Is), (right column), during the magnetic field scan
in L-mode.

Figure 5. Schematic of the probe arrangement for the determination of the fluctuation wave
numbers.

coherent modes. This is illustrated in figure 3(b), where both 〈Er〉 and RMS(Ṽf) increase
proportionally with |WNL < 0|.

It is not clear, however, from the above results how coherent modes develop as the magnetic
field and 〈Er〉 increase. This was studied during the B-scan as illustrated in figure 4 which
shows evolution of spectra of the fluctuations in the floating potential and in the ion saturation
current (Is ∼ ne).

Figure 5 shows a schematic of the probes set-up used for the determination of the poloidal
and toroidal wave numbers of the potential fluctuations. Two probe tips (1 and 2) are separated
poloidally by �y = 34 mm, while the third probe tip (3) was positioned about �L‖ = 0.5 m
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away in the toroidal direction from the first two. Poloidal wave numbers are derived from
the phase shift �ϕ12 measured using two poloidally separated probes (1 and 2) set to the
same flux surface as described above: m(f ) = kθ (f )r = r(�ϕ12(f )/�y). The 3rd probe
is set on the same flux surface as probes 1 and 2 using the electron beam. However aligning
it to the same poloidal angle as, for example, probe 1 is rather difficult. Nevertheless, it
is possible to estimate toroidal wave number using data from all three probes. A phase
shift between signals measured by probes 1 and 3 is determined by its toroidal and poloidal
components

�ϕ13(f ) = k‖(f )�L‖ + kθ (f )�y13, (2)

where �L‖ and �y13 is the toroidal and poloidal separation between probes 1 and 3,
respectively, and kθ (f ) is known from the phase between probes 1 and 2. The second term on
the right-hand side of equation (2) is zero for the m = 0 mode, which makes determination of
the toroidal mode number of this mode more reliable due to the independence of the uncertainty
in the poloidal separation �y13. Errors in the determination of �y13 are responsible for errors
in the k‖ measurements.

During the B-scan fluctuation spectra evolve as shown in figure 4. At the lowest B

corresponding to the lowest 〈Er〉 (corresponding to the lowest |WNL < 0|) both the Vf and the
Is spectra are dominated by the f = 4.1 kHz mode which has poloidal mode number m = 1
as seen in figures 4(a) and (b). At f < 1 kHz poloidally symmetric structure (m = 0) is seen
in Vf , which corresponds to the spectrally broadened mean (zero-frequency) zonal flow.

As 〈Er〉 (as well as |WNL < 0| and B) is increased, several other coherent modes having
m = (0, 1, 2, . . .) are observed as seen in figures 4(c)–(h). The m = 0 modes are the time
varying oscillations in the radial electric field [3] which typically have a frequency between 4
and 9 kHz.

Toroidal mode numbers of the spectral components shown in figure 4(g) have been
measured as described above. For the m = 0 mode at f = 6.2 kHz a parallel wave number
of k‖ ≈ 0.2 m−1 unambiguously suggests n = k‖R ≈ 0. This confirms the similarity of this
mode to the GAM. It should be noted, however, that these GAM-like structures are observed
together with other m = (1, 2, . . .) coherent modes and have never been observed in H-1 as
solely coherent features in the potential spectra. An increase in B above the level at which these
m = 0, n = 0 modes are observed often coincides with the transition to H-mode followed by
a strong reduction in the fluctuation level of both coherent modes and broadband turbulence.
When the magnetic field is close to the threshold, finite-frequency zonal flows play an important
role in the dynamics of spontaneous L–H transitions in H-1 as discussed in [11].

The f = 4.8 kHz mode in figure 4(g) has m = 2 and k‖ = (2.4–3.4) m−1 which suggests
n = k‖R ≈ 2 or 3. Similarly estimated mode numbers for the f = 4.1 kHz mode in figure 4(a)
are m = 1 and n = 1 (or 2).

The m = 1, n = 1(2) spectral feature observed in the fluctuations of the floating potential
(figure 4(a)) is spectrally coupled to the m = 0 low-frequency oscillations at f ≈ 0. The
analysis of this spectral connection is performed in the frequency domain using the amplitude
correlation technique [25]. This technique has been successfully used to analyse spectral
transfer in H-1 [14, 17]. Two frequency bands of interest, namely, f1 = (0.25 ± 0.2) kHz
and f2 = (4.1 ± 0.2) kHz are selected from the potential fluctuation signal by band-pass-
filtering it in order to obtain two time series. These two time series are then squared and
passed through a low-pass filter to obtain only the slow varying amplitude information. Then
the cross-correlation function between these signals is computed (using a 50 ms time sample
split into four 50% overlapping time segments), to obtain the ACF,

ACF(τ ) = 〈[x2
1 (t)][x2

2 (t + τ)]〉. (3)
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(a) (b)

Figure 6. (a) Auto-power spectrum of the floating potential fluctuations in H-1 at ρ = 0.5 in
L-mode at B = 0.05 T. Grey boxes indicate frequency bands used for the ACF analysis. (b) ACF
between f = 4.1 kHz and f = 0.25 kHz bands (0.4 kHz bandwidths). Negative τ corresponds to
the f = 0.25 kHz band leading in phase.

The energy flow direction is determined from the sign of the time lag τ at the maximum
of the ACF. For example, if x1(t) and x2(t) correspond to the higher- and lower-frequency
bands, f1 = 4.1 kHz and f2 = 0.25 kHz correspondingly, and if the ACF(τ ) had a maximum
at negative τ , it would mean that the amplitude of the higher-frequency-band lags with respect
to the lower-frequency-band. This might be interpreted such that the high frequency band
receives its energy from the low frequency band.

Figure 6(a) shows the spectrum of figure 4(a) in logarithmic scale along with the frequency
bands selected for the analysis of the ACF. The ACF is shown in figure 6(b). The maximum of
the ACF is about 0.45 and it is observed at the time lag of about τ = −5 ms. This seemingly
long time lag is close to one period of the low-frequency oscillations at 0.25 kHz chosen for
the ACF analysis. This result may be suggestive of the coherent transfer of spectral energy
from the m = 0 zero-frequency potential structure to the m = 1 coherent mode.

It is difficult to quantitatively characterize this energy transfer and to compare the efficiency
of this transfer with the energy exchange between coherent structures (including the m = 1
mode) and the ‘unstable’ higher-frequency range reported in [14]. At this stage we may only
conclude that there is strong coherent spectral coupling between mean zonal flow (m = 0,
f ≈ 0), coherent m = 1, n = 1(2), f = 4.1 kHz mode (figure 6) and fluctuations in the
higher-frequency range [14]. The analysis of spectral coupling between these three ranges
will be presented elsewhere.

3. Geodesic curvature in the H-1 heliac

The evolution of the fluctuation spectra during the B-scan leading to the L–H transition in
the H-1 heliac described above illustrates development of the GAM-like zonal flows. Similar
m = 0 potential structures observed in other experiments are often interpreted as GAMs. Since
most of the theoretical predictions and observations have been done for a tokamak geometry
it is useful to evaluate if the geodesic effect is sufficiently strong in the magnetic configuration
of the H-1 heliac.

According to the linear theory of the geodesic acoustic oscillation [12], a drive for the
geodesic effect is proportional to E ×B · ∇B2/B4. Poloidal variation of B in toroidal devices
is associated with the geodesic curvature, that is, the surface component of the magnetic field
line curvature [12]. A parameter which we use here to characterize the geodesic curvature
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(b)(a)

Figure 7. (a) Radial profiles of the poloidal viscous damping rate coefficient, Cp, computed for the
κH = 1 configuration of the H-1 heliac (——) and for equivalent tokamak (- - - -). (b) Poloidal
variation of the toroidally averaged magnetic field in the κH = 1 configuration of the H-1 heliac.

is also a measure of the poloidal viscosity. We evaluate the poloidal viscous damping rate
coefficient,Cp = 〈(ep · B/B)2〉, derived in [28], which can be calculated from the variation
of the magnetic field strength, B, in the poloidal direction in the Hamada coordinates. Here,
B is the magnetic field vector, ep is the poloidal base vector in the Hamada coordinates and
brackets indicate the flux surface average. Larger Cp corresponds to larger geodesic curvature
effect.

Computations of magnetic configurations of the H-1 heliac are based on the following
steps: (1) magnetic field line tracing which utilizes a single filament model; (2) zero-pressure
(zero-beta) equilibrium calculations using the VMEC-2000 code [29]; (3) transformation from
VMEC coordinates to the Boozer coordinates [30] and finally, (4) transformation back to the
Hamada coordinates. We will focus on the magnetic configuration, characterized by very low
magnetic shear and relatively high rotational transform, -ι = 1/q ≈ 1.45, which we will refer
to as the κH = 1 configuration. Here, κH denotes the ratio of the helical winding current to
the current in the poloidal field coil. The poloidal cross section of the flux surfaces and the
rotational transform profile for this configuration can be found in [31]. All experimental results
presented in this paper have been studied in this magnetic configuration.

Figure 7(a) shows the radial profile of Cp for two cases, the H-1 κH = 1 configuration, and
the tokamak-like configuration. In the latter case of an equivalent tokamak, only contributions
from axisymmetric components of the magnetic field spectrum in the Hamada coordinates are
taken into account. The horizontal axis represents the geometrical inverse aspect ratio, r/R. It
is obvious that Cp for the H-1 heliac is significantly larger than that in the equivalent tokamak.
This difference arises from the variation in B due to higher poloidal mode numbers. Since
poloidal mode numbers contribute to Cp in a square manner, the magnetic field components
with higher poloidal mode numbers substantially increase Cp even if their amplitudes are
relatively small.

The dominant mode of the pressure sideband of the geodesic acoustic oscillation predicted
for a tokamak geometry appears to be them = 1 mode [12]. We have tested if the presence of the
higher poloidal numbers in the magnetic field spectrum of H-1 modifies toroidally averaged
poloidal variation of B compared with an equivalent tokamak, since this can modify the
principle mode number of the geodesic oscillations. The toroidally-averaged poloidal variation
of B at the normalized radius of ρ = r/〈a〉 ≈ 0.5 (inverse aspect ratio of r/R ≈ 0.085) is
shown in figure 7(b) for the case of κH = 1. It is seen that the poloidal variation of B is
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governed by the poloidal mode number of 1 (that is, cos θ variation, where θ denotes the
poloidal angle) as in a tokamak.

The above analysis suggests that a strong variation of a toroidal magnetic field on the flux
surface in H-1 should have an even stronger effect on the compressibility of the E × B flow
than in an equivalent tokamak (zonal flow faster on the outboard side of the torus) and thus
may lead to geodesic transfer. Poloidal variation of a toroidally-averaged magnetic field is
similar to the tokamak case, such that the poloidal mode number of m = 1 in the H-1 heliac
should remain the same as in a tokamak.

4. Discussion

Several results described in sections 2 and 3 suggest that there may be a connection between the
development of mean zonal flow (and mean Er) and generation of coherent spectral features.
Note that in this paper we do not clearly distinguish between mean zonal flows and mean local
Er generated via turbulence-independent mechanisms (e.g. neoclassical transport). This is an
important issue and it will be addressed in a separate publication. In this paper the focus is on
the link between mean (time-average) Er and coherent modes in the GAM range. Observations
which support the idea of such a connection are

(1) the correlation between the spectral energy contained in coherent modes and mean Er

shown in figure 3(b);
(2) the disappearance of all coherent modes during the L–H transition coincides with the

proportional increase in the energy of the mean E × B flow as demonstrated in [17];
(3) the coherent spectral coupling between the nearly-zero-frequency band (f = 0.25 ±

�f kHz) and the m = 1, n = 1(2) mode at f = 4.1 kHz of figure 6;
(4) the geodesic curvature in H-1 proportional to Cp = 〈(ep · B/B)2〉 is larger than in an

equivalent tokamak and thus generates substantial compressibility in the poloidal flow
velocity in the poloidal plasma cross-section, ∇ · V �= 0. This mechanism may allow
mean zonal flow to be coupled to the geodesic acoustic oscillation.

(5) reasonable agreement between frequencies of coherent modes and the frequency of the
geodesic acoustic oscillation.

The frequency of GAM in H-1 can be by a factor of two to three higher than that in a
tokamak (equation (1)), due to the shorter parallel connection length in H-1, L‖ ≈ 0.3–0.4 m
versus L‖ = qR ≈ 0.69 m in an equivalent tokamak (in a real tokamak this should be even
longer since q > 1). An estimate of the geodesic acoustic frequency in the H-1 plasma gives
fGAM = cs/L‖ ≈ 4–5 kHz.

Recently a linear theory of the GAM has been extended to stellarators [32]. By using
a drift kinetic equation, a generalized dispersion relation of GAM has been obtained. The
oscillation frequency is expressed in terms of sums of Fourier components of the magnetic
field. We estimate the frequency of GAM in H-1 using the dispersion relation, equation (33)
of [32], by retaining the ten most essential harmonics of the magnetic field spectrum Bmn in
H-1. At the plasma mid-radius for Te = 8 eV and Ti = 30 eV the GAM frequency appears
to be fGAM = 4.2 kHz, which is close to the above elementary estimate and close to the
observed frequency f = 6.1 kHz of the m = 0 mode in the spectrum of the floating potential
of figure 4(g).

One should keep in mind that spectra of figure 4 are measured in the lab frame such that
the frequencies of the spectral components are Doppler-shifted due to the plasma drifts

ωlab = kθVD + ωplasma. (4)



Mean E × B flows and GAM-like oscillations in the H-1 heliac S27

This Doppler shift does not affect the m = 0 modes but does change the frequencies of
other spectral components. Figure 4(c) shows two spectral features having m = 1 at f ≈ 1 kHz
and m = −1 at f ≈ 8 kHz. Equation (4) can be rewritten for these two modes by substituting
kθ with m/r = ±1/r as ωm=1

lab = (1/r)VD + ωm=1
plasma, and ωm=−1

lab = (−1/r)VD + ωm=−1
plasma.

Since in the plasma frame ωm=1
plasma = ωm=−1

plasma, by adding the above equations one can obtain

ωm=1
plasma = 1/2(ωm=1

lab + ωm=−1
lab ). This gives for the m = ±1 mode in the spectrum of figure 4(c)

frequency in the plasma frame of f ≈ 4.5 kHz. This is very close to the frequency f ≈ 4.1 kHz
of the m = 1 mode in figure 4(a) measured at lower E ×B drift (lower Er) and also very close
to the above estimates of the GAM frequency.

Several observations reported here cannot be easily explained by simple linear theory of
GAM [12, 32].

GAM is a linear oscillation which should be observed even at modest ∇ · V �= 0. In our
experiment, the m = 0, n = 0, f ≈ fGAM potential structure is observed only at sufficiently
high radial electric fields, following the development of other n �= 0 coherent modes. It is
possible that such a threshold in geodesic ‘drive’ (proportional to E × B · ∇B2/B4) observed
in our experiments has to do with the existence of damping in the process of the excitation
of the GAM-like feature. Collisional damping of GAM due to the ion–ion collisions should
be small in our experiments. Collisionless damping cannot be essential in the mechanism
of the GAM excitation either, since zonal flows and GAM are modes of minimal Landau
damping [2].

In our experiments, however, the development of the GAM-like feature is always preceded
by the onset of other coherent modes (n �= 0, m = 1, 2, . . .). These modes can be Landau
damped by ions if their phase velocity along B becomes close to the ion thermal velocity, Vti.
For the m = 1 mode having k‖ ≈ 2 m−1 at f ≈ 4 kHz (figure 4(a)) parallel phase velocity is of
the order of V‖ph = ω/k‖ ≈ 1.2 · 104 m s−1, which is quite close to Vti ≈ 1 · 104 m s−1. Thus,
Landau damping on ions of the finite-n coherent modes may be responsible for the observed
‘threshold’ generation of GAM in H-1.

The theory of GAM predicts generation of the following GAM-related oscillations: the
m = 1, n = 0 pressure sideband oscillation observed in the density and the m = 0, n = 0
coherent oscillation in the electrostatic potential which develop simultaneously [2]. In our
experiments we observe the development of the m = 1, n = 1 (2?) mode in both density and
potential (figures 4(a) and (b)), followed by the development of the m = 2, n = 2 (3?) mode
(figures 4(c) and (d)) and then the onset of the m = 0, n = 0 GAM-like spectral feature in the
potential (figure 4(e)–(h)).

The onset of the m = 0, n = 0 GAM-like structure is observed close to the threshold for
the L–H transition in H-1. When the magnetic field is increased above some critical value,
the fluctuation level is greatly reduced, while the mean Er is further increased securing the
confinement transition to H-mode. In the case of the B-scan illustrated in figures 3 and 4
this critical magnetic field is B ≈ 0.063 T. As has been previously reported [24], the L–H
transition threshold in the shear of Er agrees reasonably well with an estimate of the Er -
shear decorrelation of the low-m coherent modes. Namely, the Er shear produces a shearing
decorrelation rate [27] of

τ−1
s =

[
kpol�rm

BT

dE

dr

]
, (5)

where �rm is the radial mode width (0.04–0.05 m in our case) and kpol is the poloidal
wave number (kpol ∼ 12 m−1, for the m = 1 mode). In the conditions described in this
paper (1/τs) ≈ 1 × 105 [litres] s−1, which is larger than the turbulence decorrelation rate
τ−1

D = Dan/�r2
m ∼ 2.5 × 104 s−1, where Dan ≈ 40 m2 s−1 is the anomalous diffusion
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coefficient, estimated by comparing particle fluxes in low and high modes [11]. Thus, our
results agree with the Er shear suppression model when the condition 1/τs � 1/τD is satisfied
just before the transition to H-mode.

The results presented here point to the following scenario of the L–H transitions in H-1.
As the mean zonal flow develops in the plasma, coherent oscillation having m = 1 at the
GAM frequency develops. As the spectral energy delivered from the broadband turbulence
to the mean zonal flow is further increased, both 〈Er〉 and the energy of coherent low-m
modes are increased. When 〈Er〉 and its shear reach the Er -shear decorrelation threshold,
the m = 1 mode can no longer exist, thus closing the energy escape route for the mean
zonal flow. This leads to a further jump in 〈Er〉 and to the suppression of other low-
m modes (m = 1, 2, . . .). It is possible that the shear decorrelation criterion needs to
be satisfied only for the m = 1 mode and this will lead to the suppression of all other
coherent modes.

Such a scenario also agrees with our result in [17] where it has been shown that the
reduction in the radial integral of the energy contained in turbulence (mostly the energy of
coherent modes) during L–H transitions to within 20% agrees with the increase in the energy
of the E ×B flow. Thus the energy accumulated in the coherent modes goes back to the mean
zonal flow.
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