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Nonlinear energy cascades in turbulent spectra are studied in the H-1 toroidal heliac@S. M.
Hambergeret al., Fusion Technol.17, 123~1990!# using the spectral energy transfer estimation and
the amplitude correlation technique. An inverse energy cascade of the spectral energy from the
unstable range is shown to be responsible for the generation of the large-scale coherent structures
dominating turbulence spectra. Among such structures are zonal flows which are also found to be
generated via the inverse cascade. The generation of zonal flows is correlated with the increased
strength in the nonlinear energy transfer. The onset of the strongly sheared radial electric field across
the low–high ~L–H! transition dramatically changes the energy transfer in the spectra and the
spectral power of the fluctuations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1637607#

I. INTRODUCTION

Turbulence is believed to be the reason for anomalously
high radial particle and heat transport in magnetically con-
fined plasma. Since the anomalous transport limits the effi-
ciency of the energy confinement in fusion experiments, it is
very important to understand and control turbulence.

The role played by long-living structures in plasma tur-
bulence has become an important issue in the last decades.1

Vortex-like structures have been observed under different
plasma conditions, both experimentally2–6 and in numerical
simulations.7–9 Interactions between flows and turbulent
structures is the central point of the turbulence self-
regulation concept10 that is being developed with regard to
magnetized plasmas. Both mean~time average! and the time-
varying shear flows can be generated by turbulence, and both
affect their parent waves and modify the turbulent
transport.11 Time-varying shear flows, or zonal flows, affect
their parent fluctuations and the turbulent-driven fluxes
through the mechanism of random shearing.12 Recently the
effect of zonal flows on the fluctuation-driven particle flux
has been experimentally shown to be dramatic in toroidal
plasma.13 It is very important to understand the formation,
propagation and suppression of large-scale fluctuation struc-
tures, including zonal flows.

Plasma turbulence is often characterized by broad fluc-
tuation spectra whose maxima are observed at the longest
measured scales. Since waves are usually unstable in a lim-
ited spectral range, a nonlinear mechanism of the wave–
wave interaction in the plasma is necessary to explain turbu-
lent spectra. Such a nonlinear mechanism, namely three-
wave interactions which lead to the energy cascade, has been
shown to be important in the two-dimensional turbulence14

and in the magnetized plasma.15 In some conditions the ‘‘in-
verse cascade,’’ or the nonlinear spectral energy transfer to-

wards lower wave numbers has been predicted. According to
theory, the spectral energy can condensate due to the inverse
cascade in large coherent structures, such as vortex structures
~for review see Ref. 1! and zonal flows.16 However, very few
experimental results are available that verify the role of the
inverse cascade in the generation of broadband spectra and
structures. Estimating the nonlinear energy transfer in the
fluctuation spectrum is one of the main problems.

A higher-order spectrum analysis has long been used in
the turbulence studies to characterize nonlinear interactions
between fluctuations.17 Bispectra, bicoherence, and summed
bicoherence have been used to measure the strength of the
three-wave interactions. In order to make a quantitative esti-
mation of the energy cascade between waves in a turbulent
plasma, a technique of power transfer function estimation
~PTF!, which uses the higher-order spectral analysis, has
been developed by Ritzet al.18,19and has been applied to the
data from the Texas Experimental Tokamak~TEXT! edge
turbulence. This model is suitable for studying the spectral
dynamics in single-field turbulence, such as neutral fluid tur-
bulence, or the Hasegawa–Mima turbulence in plasma.20

Later an extended version of this technique is proposed by
Kim et al.21 and it has been applied to the Tokamak Fusion
Test Reactor~TFTR! plasma core fluctuations.22 In both
TEXT and TFTR no strong cascade of the fluctuation power
to lower wave numbers has been found. One difficulty might
have been that the Hasegawa–Mima-type turbulence is not
commonly observed in fusion plasma experiments.

Crossleyet al.23 have proposed the amplitude correlation
technique for the nonlinear energy transfer study and have
found evidence of the inverse cascade in the fluctuation spec-
tra of the University of Manchester Institute of Science and
Technology~UMIST! quadrupole. In their work the observed
spectrum contains regions of growth at high frequency and
damping at low frequency with the flow down the spectrum
via a cascade mediated by the flute-like modes. The ampli-a!Electronic mail: hua.xia@anu.edu.au
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tude correlation technique provides a direct way of determin-
ing the direction of the energy flow. It has been pointed out,
however, that dispersive wave systems without nonlinearity
may possibly give rise to a nonzero amplitude correlation.24

The physical meaning of the amplitude correlation needs to
be verified by some other nonlinear energy flow estimation
method, such as the power transfer function technique men-
tioned above.

The generation of spectral condensate including zonal
flow through the inverse energy cascade has been predicted
by early theoretical work of Hasegawaet al.16 The first ob-
servation of the zonal flow in numerical modelling has been
reported by Linet al.12 Zonal flows have been experimen-
tally observed in the H-1~Heliac-1! ~Ref. 25! and in the
DIII-D tokamak.26 However the role of three-wave interac-
tions in the generation of zonal flows still needs to be ad-
dressed in experiments to verify the importance of the in-
verse energy cascade. Recently we have reported the first
experimental evidence that the inverse energy cascade corre-
lates with the generation of large structures.27

In this paper we present detailed studies of the mecha-
nisms of the structure generation including zonal flows and
the role of energy cascades in these processes. The paper is
organized as follows. Plasma conditions and turbulence de-
scription are given in Sec. II. The applicability of a single-
field model to the H-1 heliac plasma turbulence is presented.
Also in Sec. II we discuss two main spectral transfer analysis
techniques used in the paper. Section III presents results on
the energy cascades and on the turbulent structure genera-
tion.

II. EXPERIMENTAL CONDITIONS AND DATA
ANALYSIS METHODS

A. Plasma parameters

We present the analysis of turbulence measured in the
H-1 toroidal heliac.28 This is a three-field period helical axis
stellarator with a major radius ofR51 m and mean minor
plasma radius of about^a&'0.2 m. The plasma parameters
are as follows~see, for example Ref. 29, and references
therein!: ne5131018 m23, Te;10 eV, Ti;40 eV in argon
at filling pressure of (1 – 4)31025 Torr and at low magnetic
fields, B5(0.05– 0.12) T. Such plasma is produced by
;60 kW of the radio-frequency waves at 7 MHz. Various
combinations of electric probes are used to characterize
plasma parameters. Triple probes provide the information on
fluctuations in the floating potential,Vf , plasma potential,
Vp , and the ion saturation current,I sat. Radial and poloidal
electric fields and corresponding fluctuation wave numbers
can be derived from the probe measurements. We analyze
fluctuations in the floating potential,Ṽf , rather than the
plasma potential to achieve the best signal to noise ratio to
which the higher order spectral analysis is very sensitive.
The amplitude and the phase spectra of the electron tempera-
ture fluctuations in our conditions have been found to be
identical to those in the floating potential. Therefore this sim-
plification does not affect our results.

Strong fluctuations in the electron density (ñe /n̄e

;0.25) and in the electrostatic potential are observed in the

H-1 plasma at low magnetic fields (B,0.1 T).30 An identi-
fication of these fluctuations is not certain but we have found
several signatures of the resistive pressure-gradient-driven
instability.30 A frequency power spectrum of theṼf fluctua-
tions in the low confinement mode30 is presented in Fig. 1~a!.
The spectrum decays exponentially in the frequency range of
f <80 kHz showing several quasicoherent features in the fre-
quency range off ,20 kHz.

Wave numbers of the fluctuations have been measured
using two poloidally separated probes asku5Dw/Dy, where
Dw is the phase shift andDy is the poloidal separation be-
tween the probes. This has been analyzed in the frequency
domain and theku( f ) dependence is shown in Fig. 1~b! by
the gray line. This dependence has a linear trend, however a
large ripple is usually observed. This ripple can be reduced
by statistical averaging over a large number of realizations.
The origin of the large ripple in theku( f ) dependence is
currently under investigation. Preliminary results show that
the amplitude of the ripple of theku( f ) curve correlates with
the relative strength of coherent structures to the level of
broadband fluctuations. Zonal flows are commonly observed
among the structures.25 It has been shown recently13 that in
the presence of the zonal flow, phases of potential fluctua-
tions become more random, which could therefore affect the
ku( f ) measurements. The linear approximation of the disper-
sion is shown in Fig. 1~b! by the black line. The fluctuation
phase velocity derived from this linear dispersion is within
10% of the measuredE3B drift velocity in this radial re-
gion.

B. Justification of single-field model

The mode coupling mechanism in the turbulence may
arise from theE3B convection of the density fluctuations31

or from the polarization drift20 both of which appear in the
equation of the ion dynamics:32

FIG. 1. ~a! Power spectrum of the fluctuations in the floating potentials,Ṽf ,
at r /a50.5,B50.052 T,Prf555 kW; ~b! the measured poloidal wave num-
ber spectrumku( f ) ~gray line! with the linear fit~black line!. Spectra of~c!
the phase shift between fluctuations in the electron density,ñe and poloidal

electric field,Ẽu ; and~d! the coherence between fluctuations in the electron

density,ñe and the floating potential,Ṽf .
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]ni /]t1VE•¹ni1¹•~niVP!50. ~1!

Here VE and VP are the fluctuatingEÃB and the polariza-
tion drift velocities correspondingly andni5n01ñi consists
of mean and fluctuating parts. TheEÃB nonlinearity arises
from theVE•¹ñi term while the polarization drift nonlinear-
ity originates from then0¹•VP term.

The electron density fluctuations are considered as a sum
of the adiabatic~Boltzmann! and nonadiabatic parts:ñe

5n0 exp(ef̃/T)1dne. If dne50 the problem can be reduced
to a singe-field model by substitutingñi5ñe in the Eq.~1!

and rewriting it for the potential fluctuationsf̃. In other
words, whendne50, f̃ and ñe should be in phase. This
would also mean no turbulent transport,G turb5^ñeẼu /BT&
50 ~brackets indicate time averaging!, becauseñe and the
poloidal electric field fluctuationsẼu would have ap/2 phase
shift (Ẽu52¹uf̃). The adiabatic electron response should
also indicate that the polarization drift dominates over the
EÃB drift nonlinearity. It has been shown in Ref. 33, that the
former dominates at largek'rs ~wherek' is the perpendicu-
lar wave number andrs is the ion gyroradius at the electron
temperature!, while the latter is dominant at smallk'rs . The
two nonlinearities are approximately equal whenk'rs5d
5cs /(Lnne). Herecs is the ion acoustic velocity,Ln is the
density scale length andne is the electron collision rate.

In our experimentk'rs(50.522.5)@d('0.1), due to
the large ion mass~argon!, low magnetic field and high col-
lisionality. Thus we expect the polarization drift to dominate
over EÃB drift nonlinearity. This correlates with our mea-
surements of the phase shift betweenñe and Ẽu shown in
Fig. 1~c!. This phase shift is close top/2 over the entire
spectrum suggesting the adiabatic electron response. We also
find that the density and potential fluctuations are well cor-
related in the spectral range of interest. Figure 1~d! shows
that the coherence betweenñe and f̃ is about 0.6 over a
broad spectral range, also confirming our conclusion about
adiabatic electron response.

To summarize, the above results and estimates justify
that a single-field model19 is used for the analysis of the
spectral power transfer in the H-1 turbulence.

C. Power transfer function estimation and amplitude
correlation technique

For the sake of completeness we describe the analysis
techniques proposed in Refs. 18 and 19. To estimate the non-
linear coupling coefficients and the energy transfer between
waves for a fully turbulent system, it can be assumed that the
nonlinear wave coupling equation can be written in the
form19

]f~k,t !

]t
5~gk1 ivk!f~k,t !

1
1

2 (
k1 ,k2

k5k11k2

Lk
Q~k1 ,k2!f~k1 ,t !f~k2 ,t !, ~2!

where the spatial Fourier spectrumf(k,t) of the fluctuating
field is defined byw(x, t)5(kf(k, t)eikx. The wave cou-

pling equation describes the rate of change of the spectrum
due to linear and nonlinear~quadratical! effects, namely, due
to the growth rategk , the dispersion relationvk , and the
wave–wave coupling coefficientLk

Q(k1 , k2). The coupling
coefficientLk

Q(k1 , k2) describes the strength of the coupling
which leads to a decay of the (k, v) wave into two waves
(k1 , v1) and (k2 , v2), or to the merging of two waves into
one.

It is convenient to represent the spectrumf(k, t) by its
amplitude and its phase, where the amplitude is slowly vary-
ing in time with respect to the phase changes asf(k, t)
5uf(k, t)ueiQ(k, t).

The change of the spectrum in time, Eq.~2!, can then be
estimated by a difference approach:

]f~k,t !

]t
5 lim

t→0
S if~k,t1t!u2uf~k,t !i

t

1

uf~k,t !u

1 i
Q~k,t1t!2Q~k,t !

t Df~k,t !. ~3!

Substituting Eq.~2! into Eq. ~3! and solving forf(k,t
1t) with a very short time intervalt, we obtain

f~k,t1t!5
Lk

Lt112 i @Q~k,t1t!2Q~k,t !#

e2 i [Q(k,t1t)2Q(k,t)] f~k,t !

1
1

2 (
k1 ,k2

k5k11k2

Lk
Q~k1 ,k2!t

e2 i [Q(k,t1t)2Q(k,t)]

3f~k1 ,t !f~k2 ,t !, ~4!

whereLk
L5gk1 ivk .

The spectrum att1t, f(k,t1t) is thus defined by the
spectrumf(k, t) at t through the linear coefficientLk

L and
the quadratic coefficientLk

Q(k1 ,k2). To simplify, we rede-
fine Xk5f(k,t), Yk5f(k,t1t) and

Lk5
Lk

Lt112 i @Q~k,t1t!2Q~k,t !#

e2 i [Q(k,t1t)2Q(k,t)] , ~5!

Qk~k1 ,k2!5
Lk

Q~k1 ,k2!t

e2 i [Q(k,t1t)2Q(k,t)] , ~6!

wherek5k11k2 . Then Eq.~4! can now be written as

Yk5LkXk1
1

2 (
k1 ,k2

k5k11k2

Qk~k1 ,k2!Xk1
Xk2

. ~7!

The wave coupling equation~7! is thus represented by a
model in which the output signalYk contains linear and non-
linear ~quadratic! responses to the input signalXk . The co-
efficients Lk and Qk(k1 ,k2) are referred to as the linear
transfer function and the quadratic transfer function, corre-
spondingly.

The wave kinetic equation with the spectral powerPk

5fk(t)fk* (t) ~asterisk denotes complex conjugate! can then
be written as
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]Pk /]t'gkPk1 (
k1 ,k2

k5k11k2

Tk~k1 ,k2!, ~8!

where Tk(k1 ,k2)5Re@Lk
Q(k1 ,k2)^fk* fk1

fk2
&# is the non-

linear power transfer function, which quantifies the energy
exchanged between different waves in the spectrum due to
three-wave interactions.

The energy stored in the electrostatic fluctuationsfk can
be written as15 Wk5(11k'

2 )ufku2. The nonlinear energy
transfer function~NETF! then can be defined as

WNL
k 5~11k'

2 ! (
k1 ,k2 ,

k5k11k2

Tk~k1 ,k2!. ~9!

To determine the coupling coefficientsLk andQk
k1 ,k2 in

Eq. ~7!, the linear growth rategk and theTk(k1 ,k2) of Eq.
~8! and eventuallyWNL

k , the following are needed: statisti-
cally averaged estimations of the auto-power spectrum
^XkXk* &, cross-power spectrum̂YkXk* &, auto-bispectrum
^XkXk1

* Xk2
* &, cross-bispectrum̂YkXk1

* Xk2
* & and the fourth or-

der moment̂ Xk1
Xk2

Xk
18

* Xk
28

* &.

In the process of estimation, the analyzed signal is di-
vided into a large number of time segments~realizations!,
NR , overlapping by 50%. Power spectra, bispectra and the
fourth order moments are estimated for each realization.
Then they are averaged over all realizations to compute the
NETF. A proper choice ofNR will be discussed later.

To test the accuracy of the NETF estimation, we first
generate some model data with known linear and nonlinear
coupling coefficients as suggested in Ref. 19. The nonlinear
coupling coefficients are chosen arbitrarily but have the same
order of magnitude as the ones predicted by the Hasegawa–
Mima equation. The linear coupling coefficient is defined
such that the input and output spectra are similar as would be
expected for a stationary state. Model tests have been per-
formed as follows. The random noise signal is generated.
The NETF estimation of this signal is performed to make
sure that the nonlinear energy transfer is zero. Then the cou-
pling coefficients are applied to the noise signal. This proce-
dure is repeated several times to make sure that the resulting
signal is non-Gaussian, i.e., that it has a non-zero bispec-
trum.

In Ref. 18 the fourth-order moment^Xk1
Xk2

Xk
18

* Xk
28

* & is

approximated by the square of the second-order moment
^uXk1

Xk2
u2& by neglecting terms with (k18 ,k28)Þ(k1 ,k2). This

approximation is often used in weak turbulence theories and
has also been applied to strong turbulence.19 In the later
modification of this method,21 several improvements to the
spectral power transfer estimation technique have been
implemented. First, stationarity or statistical ergodicity of the
turbulence is enforced to eliminate effects of noise and fluc-
tuations not described by Eq.~7!, which otherwise may, in
principle, give unphysically large damping rates in the origi-
nal method. Second, the fourth-order moment is retained.
Both techniques have been tested using the simulated data.

Figure 2~a! shows spectra of the real part of the linear

transfer function,LR @see Eq.~7!#, where the model and
computed spectra using the original18 and modified21 meth-
ods are shown in dashed, solid, and dotted lines, respectively.
Figure 2~b! shows the spectra of the imaginary part of the
linear transfer function,LI . These results indicate that both
methods recover the transfer functionLk @Eq. ~7!# almost
equally well. Due to the stationarity approximation used in
this nonlinear energy transfer model, the linear coupling is
balanced by the nonlinear coupling between the modes. This
is why only linear coefficients are shown in Fig. 2. Note that
these results are obtained using 400 realizations so that each
segment consists of 80 data points.

For the experimental data, the NETF are estimated using
the original18 and the modified21 methods. Both results are in
the qualitative agreement. All experimental results presented
in this paper are obtained by retaining the fourth-order mo-
ments in the computation of NETF.

Averaging over a large number of realizations is essen-
tial for the statistical error of the higher-order spectral esti-
mation to be small. We introduce two parameters which char-
acterize the numerical convergence of the method. The first
one is the total positive value of the power transfer estima-
tion, Ptot5(k(Tk(k1,k2).0). The second parameter is the
maximum value of the estimated linear growth rate,gmax

5max(gk) with gk defined as in Eq.~8!. Figure 3~a! shows
these two parameters as functions of the number of realiza-
tions, NR . Ptot decreases rapidly with the increase inNR

when NR is less than 200. StablePtot is obtained whenNR

reaches 400. It can been seen that stablegmax computation
can be obtained whenNR exceeds 430.

It is also important to estimate the accuracy of the results
using some physically meaningful criterion. The energy con-
servation in the spectrum,(kWNL

k 50, is used as the ‘‘test of

FIG. 2. ~a! The real partLR and ~b! the imaginary partLI of the linear
coupling coefficient with model~dashed line!, computed results using the
original ~Ref. 18! ~solid line! and modified~Ref. 21! ~dotted line! methods.
f Nq is the Nyquist frequency.
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goodness’’ of the estimation. We define the error in the en-
ergy conservation asWmis5(kWNL

k /(kuWNL
k u. Thus, Wmis

characterizes the energy mismatch. When the energy conser-
vation is satisfied, that is when(kWNL

k 50, Wmis50. In Fig.
3~b! we showWmis as a function ofNR . At small numbers of
realizations, the result is meaningless since computations
have not converged, as seen in Fig. 3~a!. When NR is be-
tween 450 to 550,Wmis decreases to less than 20%.Wmis

increases again afterNR exceeds 550. This increase is prob-
ably due to the fact that the frequency resolution of the esti-
mation becomes too poor at largeNR if the signal length is
fixed. The number of realizations is chosen by trading off
minimal Wmis for a slightly better frequency resolution at
NR5460.

In the model described by Eq.~8!, the wave number
domain is transformed into the frequency domain, so that the
three-wave interactions satisfying matching conditionsk
5k11k2 obey the frequency selection rule,f 5 f 11 f 2 . This
transformation is justified in case of the linear dispersion. In
our conditions, such a dispersion is confirmed by the linear
trend of the measuredku( f ) spectrum shown in Fig. 1~b!.

A floating potential signal is digitized at 0.3 MHz while
the typical plasma pulse length is;(60– 80) ms. The signal
is divided into 460 overlapping segments, so that each seg-
ment contains 80 data points. Such a severe statistical aver-
aging results in the reduced frequency resolution of the spec-
tra of the NETF,D f '4 kHz. Considering the large amount
of averaging needed to obtain the linearku( f ) dependence,
we may suggest that the averaging needed for the NETF
estimation is not just a numerical effect, but it is dictated by
the need to satisfy the model assumption about theku( f )
linearity.

The amplitude correlation is another technique which
has been used in studies of nonlinear energy transfer in the

fluctuation spectrum.23 Two frequency bands of interest are
selected from the fluctuation signal, which are first bandpass
filtered to obtain two time series. These two time series are
then squared and passed through a low-pass filter to obtain
only the slow varying amplitude information. Then the cross-
correlation function~CCF! between these signals is com-
puted, K(t)5^@x1

2(t)#@x2
2(t1t)#&. The energy flow direc-

tion can then be determined from the sign of the time delay
of the CCF.

III. RESULTS ON THE SPECTRAL ENERGY
TRANSFER ANALYSIS

A typical power spectrum of the floating potential fluc-
tuations in the L-mode plasma discharge in H-1 is shown in
Fig. 4. The spectrum contains several coherent features in the
frequency range off <20 kHz and an exponentially decay-
ing broadband turbulence up to the frequency off
'80 kHz.

The NETF, the linear growth rategk derived from Eq.
~8! and the power spectrum are shown in Fig. 5. The fre-
quency resolution here isD f '4 kHz. As a result of this low
frequency resolution, coherent spectral features seen in Fig. 4
do not show up in Fig. 5~a!. The nonlinear energy transfer
function WNL

k is presented in Fig. 5~b!. WNL
k is negative in

the broadband spectral region off 5(20– 50) kHz suggest-
ing that waves in this range lose energy, whereas the lower
frequency spectral components (f ,20 kHz) gain energy. It
is in this spectral region where strong quasicoherent fluctua-
tions in L-mode are observed as seen in Fig. 4. It is natural to
suggest that these structures are generated nonlinearly as a
result of the inverse energy cascade in the spectrum. The
linear growth rate shown in Fig. 5~c! has maximum atf
'25 kHz. This range is identified as the unstable range, as
will be discussed later.

The inverse energy cascade similar to that shown in Fig.
5 is observed in all plasma discharges in which strong coher-
ent structures are generated. It has been shown in Ref. 36
that the coherent fluctuations in H-1 observed using both
2D-scannable probe and the two-view multi-channel spec-
troscopy diagnostic are the dipole structures propagating in

FIG. 3. ~a! Ptot ~solid line! andgmax ~dashed line! and~b! Wmis of the power
transfer function estimation as a function of the number of realizations,NR .

FIG. 4. Power spectrum of the floating potential fluctuations.
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the poloidal direction. Another example of turbulent struc-
tures observed in H-1 are zonal flows found in the L-mode.25

We will discuss zonal flows later in this paper.
As seen in Fig. 4, the L-mode spectrum obeys the power

law fit of P(ff* ); f 2a, wherea'6. This power law holds
over 3 decades in the L-mode spectrum and is observed in all
spectra in which the low frequency condensate is present.
Since for large wave numbers the spectral energy isWk

;k2Pk ,15 the observed scalingW;k24 agrees with the
theoretically expected scalings ofW;k24 ~Ref. 15! and
P(ff* );k26.35

The above results on the nonlinear energy transfer func-
tion indicate that the spectral energy is transferred from a
higher frequency range to a low frequency range where co-
herent structures are observed. However, in view of the poor
spectral resolution, it is not clear if the spectral energy flows
from the higher frequency range predominantly to the coher-
ent modes, or if it is distributed evenly into the broadband
turbulence. The amplitude correlation technique is used here
to study the energy flow with a better frequency resolution.

Shown in Fig. 6~a! is the power spectrum of the floating
potential fluctuations. The shaded spectral region of~0–15!
kHz corresponds to the region which nonlinearly receives
spectral energy, as observed in Fig. 5~b!. The second shaded
spectral region of~20–50! kHz corresponds to the region
giving the energy away. The CCF between these two fre-
quency bands is shown in Fig. 6~b!. The maximum correla-

tion is high, max(CCF)'0.5. The CCF has a maximum at
the negative time lag which means that the amplitude of the
low frequency band lags with respect to the higher frequency
band. The interpretation of the negative time lag is that the
low frequency band receives its energy from the higher fre-
quency band.23 This result agrees with the NETF estimation
result which also suggests the higher frequency band being
the donor of the spectral energy and the low frequency being
the receiver.

Now we ask a more specific question: where does the
nonlinear energy flow in the low frequency band? The am-
plitude correlation functions between frequency bands off
'6.7 kHz andf '23 kHz, and off '8 kHz and f '23 kHz
are shown in Fig. 7. Frequenciesf '6.7 kHz andf '8 kHz
are chosen from the power spectrum of Fig. 7~a!, such that
the f '6.7 kHz corresponds to a maximum of one of the
structures while thef '8 kHz corresponds to a local mini-
mum in the spectrum. The frequency off '23 kHz is chosen
to represent the frequency band of the source. It is at this
frequency where the linear growth rate has maximum as seen
in Fig. 5~c!. The width of the frequency band for the CCF
computations is chosen asD f 51 kHz. The CCF between the
frequency bands off '6.7 kHz andf '23 kHz is shown in
Fig. 7~b!. The negative time lag indicates that thef
'6.7 kHz feature receives energy from thef '23 kHz band.
The maximum of the correlation function is high,
max(CCF)'0.5. The CCF between the frequency bands of
f '8 kHz andf '23 kHz is shown in Fig. 7~c!. The CCF is
lower compared with Fig. 7~b!. This low correlation between
the source and the local minimum is probably due to a lower
nonlinear coupling between these two bands.

The above results indicate that the spectral energy is
mostly delivered into coherent structures. We observe high
levels of the correlation between selected frequency bands in
the unstable spectral region of~20–40! kHz and the frequen-
cies of the coherent structures. This is illustrated in Fig. 8~a!

FIG. 5. ~a! Power spectrum of the floating potential fluctuations;~b! the
nonlinear energy transfer functionWNL

k ; ~c! linear growth rategk derived
from Eq. ~8!. The frequency resolution isD f '4 kHz.

FIG. 6. ~a! The power spectrum of the fluctuation showing two frequency
ranges for the amplitude correlation~shadowed!; ~b! the amplitude correla-
tion between the frequency bands of~0–15! kHz and~20–50! kHz in the L
mode.
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in which maxima of the CCF betweenf 156.7 kHz andf s in
the range from 20 to 40 kHz are plotted against frequency
f s . Several prominent peaks in this plot correspond to fre-
quencies satisfying the matching rulef 15 f 32 f 2 for the
three-wave interactions involvingf 156.7 kHz. High values
of the maxima of the CCF point to the conclusion that the
inverse energy cascade which leads to the generation of the
coherent structures is due to thecoherent phasethree-wave
interactions. Figure 8~b! shows similarly computed CCF
maxima for the frequency band of a local minimum in the

spectrum atf 158 kHz. The maxima do not exceed 0.4 any-
where in the spectral range of~20–40! kHz. Thus we may
speculate that the broadband part of the low frequency range
is driven mostly by therandom phasethree-wave interac-
tions.

We can summarize at this point that the low-frequency
coherent structures, or the condensate15 are driven via the
inverse energy cascade from the unstable range. Now we will
discuss the spectral content of the condensate and its relation
to the nonlinear energy transfer.

Fluctuation spectra in the L-mode of confinement in H-1
depend on the magnetic field and on the RF power. BothB
andPrf can be used as control parameters to drive plasma to
the confinement bifurcation.37 As the magnetic field is in-
creased, an increase in the number of spectral features in the
condensate is observed. At higherB, closer to the L-H bifur-
cation, zonal flows appear in the condensate spectra.30

Changes in the spectra withB are illustrated in Fig. 9 for two
magnetic fields,B50.05 T andB50.062 T. The increase in
the number of spectral features as well as in the spectral
power of the fluctuations is evident from Fig. 9.

The increase in the spectral power of the condensate
with B is correlated with an increase in the pressure gradient
in the plasma during theB-scan. The pressure gradient is
believed to be the free energy reservoir for the underlying
linear instability.30 We estimate the pressure gradient¹Pi

from the radial force balance equation

Er'~Zieni !
21¹Pi , ~10!

in which the ion velocity termsvu iBf and vf iBu are ne-
glected for the reasons discussed in Ref. 34.

The ion pressure gradient is estimated from the mea-
sured radial electric field,Er , and the electron density,ne ,
as¹Pi5(Zieni)Er . The estimated ion pressure gradient in-
creases withB. Figure 10 shows the linear growth rategk

averaged over the range off 5(25– 35) kHz versus the esti-
mated ion pressure gradient. The instability growth rate ap-

FIG. 7. ~a! The power spectrum of the floating potential fluctuation. Shad-
owed bands correspond to the frequency ranges used in the CCF estimation;
CCF~b! betweenf '6.7 kHz andf '23 kHz, and~c! betweenf '8 kHz and
f '23 kHz.

FIG. 8. The maximum of the CCF betweenf 1 and f s , with ~a! f 1

56.7 kHz; ~b! f 158 kHz, respectively.f s varies between 20–40 kHz.

FIG. 9. Power spectra of the floating potential fluctuations at~a! B
50.05 T; ~b! B50.062 T, respectively.
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pears to be well correlated with the free energy level as mea-
sured by¹P, thus confirming that the resistive pressure-
gradient-driven mode is the likely candidate for the
fluctuations in H-1.30 As the free energy driving the instabil-
ity increases, the linear growth rate is also increased. As the
result, the total nonlinear energy outflow from the unstable
range increases leading to a larger spectral energy transfer
into the coherent structures. The spectral power of the con-
densate is also increased.

The above conclusions are also confirmed by comparing
spectra and spectral transfer functions across the confinement
transitions in H-1. Two plasma confinement modes, namely,
L and H modes, are observed in the H-1 heliac at low mag-
netic fields (B<0.2 T).30 Close to the L–H transition thresh-
old plasma spontaneously jumps from L to H mode within
;1 ms. The electron density and the ion temperature of the
plasma increase across the transition by~50–100!%. Transi-
tions are accompanied by the fluctuation suppression and by
the onset of the strongly sheared radial electric field,Er .30

Turbulence spectrum is strongly altered across the transition
as shown in Fig. 11. The long wavelength fluctuations are
suppressed in H-mode by theEr shear as discussed in Ref.

30. The fluctuation level is reduced across the L–H transition
over the entire spectrum except for the region aroundf
'40 kHz, where the fluctuation level even increases in
H-mode. The convergence test of the NETF calculation is
performed for H-mode data and we find that the convergence
is faster in H-mode compared with L-mode, probably due to
a narrower fluctuation spectrum~just one peak at 40 kHz
seen in Fig. 11!.

Figure 12 shows the NETF,WNL
k and linear growth rates

gk computed for the fluctuations in the floating potential in L
and H confinement modes. The linear growth rategk is
shown in Fig. 12~b!. This growth rate has a positive maxi-
mum at f '25 kHz in L-mode, while in H-mode it peaks at
f '40 kHz. The frequency shift of the maximum of the lin-
ear growth rate from 25 kHz in L-mode to 40 kHz in
H-mode is probably due to an increase in the radial electric
field and the associated Doppler shift across the L–H
transition.34

The f '40 kHz feature in the H-mode spectrum seen in
Fig. 11 is probably indicative of the spectral region of the
underlying linear instability which also drives turbulence in
the L-mode. We may speculate that when the nonlinear spec-
tral transfer is high in the L-mode, the energy is transferred
from the initially unstable region off '25 kHz both up and
down the spectrum, with the inverse cascade dominating
over the forward cascade. The inverse cascade leads to the
formation of the spectral condensate observed as quasicoher-
ent structures. When the level ofWNL

k aroundf '40 kHz is
reduced in H-mode as seen in Fig. 12~a!, the spectral energy
becomes peaked in this spectral region. Since the free energy
for this instability~pressure gradient! is increased across the
transition from L to H mode~more peaked density profile in
H-mode30!, one would expect a linear growth rate to in-
crease. This expectation agrees with the observed increase in
the fluctuation level atf ;40 kHz seen in Fig. 11 and also
with our estimation of the linear growth rate shown in Fig.
12~b!.

FIG. 10. The computed linear growth rategk around 30 kHz versus the
estimated¹Pi .

FIG. 11. Power spectra of the floating potential fluctuation in L~solid line!
and H ~dashed line! mode.

FIG. 12. ~a! Nonlinear energy transfer functionWNL
k ; ~b! linear growth rate

gk in L ~solid line! and H ~dashed line! modes, respectively.
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The condensate formation is linked to the level of the
energy which is nonlinearly transferred into the low fre-
quency part of the spectrum. A correlation between the in-
verse cascade of energy from the unstable range and the
spectral power in the low-frequency range is illustrated in
Fig. 13 which combines results of the spectral energy trans-
fer estimation in L and H modes during theB-scan.WNL

In is
defined as the total nonlinear energy flow into the low fre-
quency range,WNL

In 5(k(WNL
k .0). The spectral power in

the range off <20 kHz increases withWNL
In in this range in

L-mode, while in H-mode a zero spectral power~no conden-
sate in H-mode! is observed at nonzero spectral energy trans-
fer, 0.1,WNL

In 31026,3. Such a dependence may be indica-
tive of the threshold nature of the condensate generation via
the inverse energy cascade.

It has been mentioned earlier that when the nonlinear
energy transfer becomes sufficiently high, we observe zonal
flows, which typically appear as one of the coherent features
in the condensate spectrum. Zonal flows are poloidally sym-
metric (kr@ku;0, wherekr andku are the radial and poloi-
dal wave number, respectively! potential structures observed
in the L-mode discharges in H-1.25 Figure 14~a! shows an
example of such a spectrum containing a zonal flow feature
at f 56 kHz. The nonlinear energy transfer function is shown
in Fig. 14~b!. This NETF is qualitatively similar to the NETF
of other spectra containing coherent structures. Similarly to
other coherent structures, the energy is transferred directly
from the unstable region into zonal flows. This is illustrated
in Fig. 14~c! which shows the CCF between the frequency
band of the zonal flowf ;6 kHz (D f 51 kHz) and the un-
stable range off 518– 24 kHz. The maximum correlation is
high, max(CCF)'0.6. As in cases with other coherent struc-
tures, the CCF between the zonal flow and the unstable range
has maximum at the negative time lag, confirming the energy
transfer from higher to lower frequencies.

Zonal flows are typically localized in the plasma in a
relatively narrow radial region, as described in Ref. 13. A
radial profile of the normalized intensity of the zonal flow
defined asẼr(6 kHz)/^Er& ~Ref. 13! is shown in Fig. 15~a!.
The zonal flow has a maximum at the radial position ofr

'0.4 and its minimum is atr'0.7. The root-mean-square
level of the poloidal electric field fluctuationsẼu , is also
shown in Fig. 15~a!. The Eu fluctuation level does not
change very much along the radius. A total nonlinear energy

FIG. 13. Root-mean-square value ofṼf ~proportional to the spectral power
of the condensate! as a function of the nonlinear energy transferWNL

In into
the spectral range off <20 in L ~circles and triangles! and H ~crosses!
modes.

FIG. 14. ~a! Power spectrum of the floating potential fluctuations. Af
56 kHz feature has been identified as a zonal flow.~b! The nonlinear energy
transfer function.~c! The cross-correlation function between the zonal flow
frequency band and the unstable range off 518– 24 kHz.

FIG. 15. Radial profile of~a! the normalized fluctuations in the radial elec-
tric field due to the zonal flow like structure atf 56 kHz ~solid line! and the
fluctuation amplitude in the poloidal electric field~dashed line!; ~b! the total
nonlinear energy flows into the low frequency range of the spectrum,WNL

In .
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flow into the low frequency range,WNL
In , is plotted in Fig.

15~b! as a function of the radial position. The maximum
nonlinear energy flowWNL

In is observed atr50.4, which cor-
responds to the maximum level of the zonal flow shown in
Fig. 15~a!. The profile ofWNL

In is similar to the profile of the
zonal flow level.

IV. CONCLUSIONS

Detailed studies of the spectral transfer in turbulent spec-
tra in the H-1 heliac have been performed. Main issues ad-
dressed in this paper are related to mechanisms of generation
of large coherent structures and zonal flows.

Two methods of analysis were used in these studies: the
nonlinear power transfer function estimation method18,21and
the amplitude correlation technique.23 It has been demon-
strated that these methods complement each other. The PTF
method gives good estimation of the average energy transfer
within spectra, while the CCF computations allow a better
spectral resolution to be achieved. Both methods rely on a
single-field description of the plasma turbulence. It is dem-
onstrated that such an approximation is justified in the re-
ported experiments. In the H-1 plasma the polarization drift
nonlinearity dominates over theE3B drift nonlinearity due
to the large ion gyroradius and high collisionality thus mak-
ing the Hasegawa–Mima model of turbulence20 a good ap-
proximation in our conditions.

It has been shown that the frequency spectra of the fluc-
tuations in the electrostatic potential exhibit exponentially
decaying broadband fluctuations~0–80 kHz! and strong co-
herent structures in the lower frequency range~0–20 kHz!.
The inverse energy cascade from the spectral region of the
underlying linear instability~20–30 kHz! to the low fre-
quency range is observed in all L-mode spectra. The unstable
range has been identified as a region of the largest positive
linear growth rate. The growth rate increases with the in-
crease of the plasma pressure gradient which is believed to
be the free energy source for linear instability.

Coherent structures which exist in the low frequency
range receive their energy nonlinearly from the unstable
range. Results obtained using the amplitude correlation tech-
nique indicate that the spectral energy flows from the source,
directly into coherent structures. Large amplitudes of the
cross-correlation functions are indicative of the coherent
phase three-wave interactions between structures and the un-
stable range.

A very similar situation is observed for zonal flows.
Strong inverse energy cascades are observed when zonal
flows are generated in the plasma. Radial regions of the
strongest zonal flow and that of the largest~positive! nonlin-
ear energy transfer function coincide, as seen in Fig. 15.

The spectral power of the condensate is found to corre-
late with the nonlinear energy transfer into the low frequency
range,WNL

In . Above a certain threshold value ofWNL
In coher-

ent structures are formed. Below this threshold, presumably
only the broadband turbulence is developed. Further increase
in WNL

In , leads to the generation of zonal flows as seen in Fig.
13. Shown in this figure is the root-mean-square value of the

Ṽf fluctuations, which is proportional toWNL
In ~since coherent

structures dominate the spectrum, see Fig. 9!.
The analysis of the spectrum evolution across L–H tran-

sitions shows that the linear growth rate of the instability
increases from L to H-mode of confinement. Both inverse
and forward energy cascades are substantially reduced from
L to H mode as seen in Fig. 12. The most significant differ-
ence between the two modes is the onset of the strongly
sheared radial electric field in H-mode. One could speculate
that the decorrelation of the large structures by this sheared
Er is responsible for the dramatic decrease in the spectral
power in the low-frequency part of the spectrum. It is not
clear however, why forward cascade from the unstable range
toward smaller scale fluctuations is reduced. Such a reduc-
tion is evident from the decreased fluctuation level in the
frequency range from 45 to 60 kHz seen in Fig. 11. One can
assume that in H-mode the spectral energy from the unstable
range is transferred into thef 50 zonal flow, pumping the
spectral energy directly into the mean shearedEr .
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