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We utilize the process of Reconstruction of Attosecond Beating By Interference of Two-photon
Transitions (RABBITT) driven by circularly polarized radiation to map under-threshold discrete
excitations in noble gas atoms. Great advantage of circular polarization is that it allows to reach
selectively various angular components of the photoelectron wavepacket and to resolve two-photon
ionization amplitudes including their phases. By doing so, we picture resonant two-photon ionization
in an unprecedented detail not seen previously. In particular, we break, with high confidence, the
Fano propensity rule formulated for two-photon ionization by Busto et al [Phys. Rev. Lett. 123,
133201 (2018)]. We also demonstrate a great utility of the Coulomb Green’s function approach
proposed by Krylovetsky et al [Sov. Phys. – JETP 92, 37 (2001)] more than two decades ago.

PACS numbers: 32.80.Rm 32.80.Fb 42.50.Hz

Two-photon XUV+IR ionization of atomic and molec-
ular targets has been a powerful driver of attosecond sci-
ence [1–3] facilitating its recent award of the Nobel Prize
in Physics [4]. The technique of Reconstruction of At-
tosecond Beating By Interference of Two-photon Transi-
tions (RABBITT) [5, 6] is one of the pillars of attosecond
metrology. This technique offers convenient means to re-
solve atomic and molecular ionization processes in time
and it has been particular beneficial for studying reso-
nant two-photon ionization [7–14]. In most RABBITT
applications, the XUV and IR pulses are co-linearly po-
larized. More recently, RABBITT with circularly polar-
ized XUV and IR radiation, has been suggested [15] and
then successfully implemented [16–18].

Common to all the RABBITT applications is a comb
of odd XUV harmonics (2q ± 1)ω from an attosecond
pulse train (APT) which is augmented by an absorption
or emission of one driving laser IR photon with the car-
rier frequency ω. This IR photon absorption/emission
creates sidebands (SBs) centered at 2qω as illustrated in
the photoelectron spectrum exhibited in Fig. 1a. The
height of the sidebands oscillates at twice the IR photon
frequency as the XUV/IR pulse delay τ varies:

SSB(τ) = A+B cos[2ωτ − C] , C = 2ωτa . (1)

Here A,B are the RABBITT magnitude parameters and
C is its phase. The latter is directly linked with the
atomic time delay τa = τW + τcc decomposed into the
Wigner time delay τW and the continuum-continuum
(CC) component τcc [19].

If one harmonic energy submerges below the ionization
threshold (2q−1)ω < |Ei| < (2q+1)ω , the corresponding
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FIG. 1: Graphical illustration of the conventional (a) and
the under-threshold (b,c) RABBITT processes. Rainbow SB
spectral analysis is highlighted in (b). Continuously rainbow
RABBITT is visualized in (c).

harmonic peak H2q−1 disappears from the photoelectron
spectrum. Instead, the missing absorption path of the
conventional RABBITT process can proceed via a series
of discrete Rydberg excitations En < 0. Such an under-
threshold or uRABBITT process is illustrated graphi-
cally in Fig. 1b. The uRABBITT process has been ob-
served experimentally in He [12, 20–23], Ne [24] and Xe
[25]. Theoretically, it has also been studied in Ne [26, 27]
and Ar [28].

With circular radiation, the RABBITT parameters en-
tering Eq. (1) become dichroic, i.e. they differ for the
co-rotating (CO) and counter-rotating (CR) XUV and
IR fields. The knowledge of the dichoric phase C in both
cases allows for a retrieval of the two-photon ionization
amplitudes and their phases. More specifically, the circu-
lar XUV photon absorption with M = 1 drives the initial
atomic state li,mi ≥ li− 1 to the uniquely defined inter-
mediate state with ` = li + 1. Depending on the CR or
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CO polarization of the IR photon, the angular momen-
tum of the final state acquires the two values L = `± 1.
The set of the two CO/CR phases allows to determine
the moduli ratio of the two ionization amplitudes and
their relative phase [29, 30]

R±` =
∣∣∣T±`→`−1/T

±
`→`+1

∣∣∣ , ∆Φ±` = arg
[
T±`→`−1/T

±
`→`+1

]
(2)

The moduli ratios R±` are of particular interest because
of the recently formulated Fano propensity rule in two-
photon XUV+IR ionization processes [31]. By virtue of
this rule, the angular momentum is preferably increased
or decreased in the IR photon absorption/emission pro-
cesses, respectively. This implies the inequalities R+

` < 1

and R−` > 1. These inequalities have indeed been con-
firmed by numerical circular RABBITT (cRABBITT)
simulations [29, 30]. Various analytic theories [32–35]
do also generally support the Fano rule in two-photon
ionization. However, at a sufficiently high IR photon fre-
quency, a large orbital momentum of the target and a low
photoelectron energy, a departure from the Fano propen-
sity rule is predicted [34] with the CR polarization being
able to produce R+

` > 1. At the photoelectron energies in

between the two regimes of R+
` < 1 and R+

` > 1, the ab-
sorption ratio passes through a characteristic Cooper-like
minimum.

These analytic predictions are hard to verify either nu-
merically or experimentally because sufficiently low pho-
toelectron energies always imply the uRABBITT regime.
So the circular RABBITT should necessarily go under
threshold. In this Letter, we demonstrate such a circu-
lar under threshold RABBITT (cuRABBITT). In this
demonstration we employ a rainbow spectral analysis
which is illustrated graphically in Fig. 1b. In the rain-
bow RABBITT (rRABBITT), each of the dense grid of
energy points in the photoelectron spectrum under the
SB2q is the subject of the time variation (1) instead of
the overall peak height as in Fig. 1a. Such an extended
spectral analysis has proven instrumental to disentangle
various ionization pathways involving autoionizing res-
onances [7, 9, 36, 37], below threshold discrete states
[12] and fine-structure splittings [11, 38]. The same tech-
nique is beneficial when the presence of multiple ioniza-
tion channels leads to spectral congestion in atoms [39]
and molecules [40].

The restriction of the rRABBITT is that the useful
data set is limited to the spectral width of the single
above-threshold SB2q. To span a sufficiently wide portion
of the photoelectron spectrum, the IR photon energy ω
should be continuously adjusted. This is not permitted in
the present context as the ratios R±` also change rapidly
with ω. To circumvent this difficulty, we realize the con-
tinuous rRABBITT which is not limited to any particu-
lar SB. To this end, we replace a narrow-band APT with
a short single attosecond pulse (SAP) thus producing a
broad spectrum overlapping with an extended interval
of the photoelectron energies as illustrated in Fig. 1c.
This photoelectron spectrum is strongly dominated by

single XUV photon ionization. To enhance two-photon
ionization and to deduce the parameters of the cosine
2ωτ oscillation in Eq. (1), we subtract the single-photon
ionization component from the total ionization amplitude
thus bringing out the net two-photon ionization contri-
bution. An alternative and more general enhancement
method is based on the parity separation of the single-
photon and two-photon ionization processes. In the case
of an atom or a symmetric molecule, the two-photon ion-
ization amplitude has the same parity as the initial state
of the target while the single-photon ionization amplitude
has an opposite parity. Hence, the two-photon ionization
can be effectively isolated by performing the amplitude
symmetrization A(k)+(−1)pA(−k) , where parity p = li
for a closed-shell atom.

Our computer simulations have been conducted by
solving numerically the time-dependent Schrödinger
equation (TDSE) in the single active electron approx-
imation. The two independently developed computer
codes [41, 42] were used for cross-checking. The TDSE is
driven by the vector potential A(t) which includes both
the XUV and IR fields. The XUV field is represented by
a Gaussian pulse Ax(t) = A0 exp

(
−2 ln 2[t2/τ2

x ]
)

cosωxt .
Here A0 is the vector potential peak value and the central
frequency ωx is chosen close to the ionization threshold
of the atom under consideration. The IR pulse has a
cosine squared envelope shifted from the center of the
XUV pulse by a variable delay τ which is incremented
in several steps. Unlike the attosecond streak camera,
which also utilizes SAP [43], both the XUV and IR in-
tensities are kept low in the 1010 W/cm2 range to retain
the ionization process within the lowest order of pertur-
bation theory (LOPT). The photoelectron spectrum in
the given emission direction is obtained by using the sur-
face flux method [44–46]. The angular and energy re-
solved RABBITT parameters are deduced by projecting
the time oscillation signal (1) on the unity, cos 2ωt and
sin 2ωt basis. The amplitude ratios and the phase differ-
ences (2) are obtained by fitting the angular dependent
RABBITT phase C(θ) with the following expressions [29]

C
CR/CO
li=0,mi=0

`=1
= arg

[
T−2 T

+∗
2

]
+ arg

[
P2(cos θ)− T±0

T±2

]
(3)

C
CR/CO
li=1,mi=0

`=2
= arg

[
T−3 T

+∗
3

]
+ arg

[
P̄3(cos θ)− T±1

T±3

]
.

Here CR/CO orientation corresponds to the +/– signs
and P̄ 1

3 ≡ P 1
3 /P

1
1 = 3

2 (−1+5 cos2 θ) . Similar expressions
can be derived for higher orbital momenta [30].

Results of our numeric simulations are exhibited in Fig.
2 which displays the moduli ratios |T±`−1/T

±
`+1| (the top

row) and the phase differences arg[T±`−1/T
±
`+1] (the bot-

tom row) for He 1s (left, ` = 1), Ar 3p (center, ` = 2) and
Xe 4d (right, ` = 3). Here we choose the laser photon
frequency in the 200 nm spectral range at ω = 6.09 eV
to span efficiently the whole manifold of the discrete tar-
get states. These states are revealed in the photoelectron
spectrum at the energies En + ω.
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FIG. 2: The moduli ratio |T±
`−1/T

±
`+1| (top) and the phase difference arg[T±

`−1/T
±
`+1]/π (bottom) for He 1s (left, ` = 1), Ar

3p (center ` = 2) and Xe 4d (right, ` = 3). In the He and Ar cases, the modified Sturmian expansion is used to evaluate the
singular term in Eq. (4). In the case of Xe, the analytic results of [34] extended continuously towards the threshold are plotted.
Note a broadened photoelectron energy range in Xe allowing to visualize the Cooper minimum.

As expected from the uRABBITT diagrams of Fig.
1b and c, it is the absorption path of the RABBITT
process that should probe the discrete under-threshold
excitations most directly. In the circular RABBITT, the
absorption path is encoded into the CR phase. So it
is the complex amplitude ratio T+

`−1/T
+
`+1 that should

reveal the resonant structure most clearly and indeed we
observe this structure with the CR orientation in He 1s
and Ar 3p. In He, some weaker resonant structure is also
present at the CO orientation.

In the top row of panels, we draw the Fano line R = 1
that divides the R− > 1 and R+ < 1 ratios provided
they comply with the Fano propensity rule. The Fano
line is crossed and the rule is broken in all the considered
target atoms. In He, the line is crossed with both the
CR and CO orientations while in Ar and Xe it is the CR
orientation that breaks the Fano rule.

The strong resonant behavior seen in the cases of He
1s and Ar 3p can be interpreted qualitatively within the
LOPT. In this framework, the two-photon ionization am-
plitudes can be presented as [19, 21]

T±` (E = k2/2) ∝ 1

i
EΩEω

{ ∑
En`<0

+

∫ ∞
0

dκ2

}
(−i)LeiηL

×
[
〈kL‖r‖n`〉〈n`‖r‖nili〉
Ei + Ω± − En` − iγ

+
〈kL‖r‖κ`〉〈κ`‖r‖nili〉
Ei + Ω± − κ2/2− iγ

]
(4)

Here EΩ, Eω are the spectral contents of the XUV and
IR fields, respectively, while 〈nili‖, 〈κ`‖ and 〈kL‖ are
the initial, intermediate and final electron states de-

fined by their linear and angular momenta. The first
term in the second line of Eq. (4) describes the dis-
crete excitations whereas the second term contains the
continuum-continuum transitions. The first term be-
comes singular at the excitation energy Ei + Ω+ = En`.
The second term remains regular and can be evaluated
analytically [32–35]. As shown by Drescher et al. [21],
the singular term manifests itself by the series of reso-
nances and anti-resonances each accompanied by a π up
and down phase jump. It is exactly this behavior that is
seen in the phase diagrams of the bottom row of Fig. 2
in the cases of He (both the CR and CO) and Ar (CR
only). Due to a much larger threshold energy, the Xe
4d ratios remain largely smooth. Here, the CR ratio dis-
plays a deep Cooper-like minimum and breaks the Fano
line near the threshold as predicted in [34]. The only
trace of discrete excitations can be observed in very mi-
nor oscillation of the CR phase.

Direct evaluation of the singular term in Eq. (4) is not
practical as it is difficult to enforce a smooth transition
over the threshold seen in our TDSE results. Instead,
we adopt a combined approach. The singular term in
Eq. (4), which is important in the absorption pathway,
is evaluated using the modified Sturmian expansion of
the Coulomb Green’s function [47]. Meanwhile the reg-
ular term, which is dominant in the emission pathway,
is dealt with as in the preceding work [34] by expressing
the integrals of the confluent hypergeometric functions
via the Appell F1 function.

Our evaluation was performed in Python using the sci-
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entific libraries [48, 49]. By using the formulae from [47],
the explicit summation in Eq. (4) is avoided. The p-
values considering a finite pulse duration were given by
−2p−2 = Ω+ + Ei − iγ , with Re{p} > 0 and γ = 10−3

was used. The energy displacement of Rydberg states
between hydrogen and helium was accounted for by a
quantum defect interpolated from the Rydberg series
neff = 1/

√
−2(Ω+ + Ei) + d with d = 0.0667 for He and

0.359 for Ar. The emission pathway was aligned to the
absorption pathway with the same final kinetic energy.

Such an evaluation for the amplitudes (4) produces the
moduli ratios which agree rather closely with the TDSE
results for He and Ar as is seen in the top left and central
panels of Fig. 2. There a slight offset in phases between
the two methods which can be removed by lifting the
hydrogenic phase by a small constant value. Then the
phases match fairly closely as is seen in the bottom left
and central panels of Fig. 2.

By validating the Coulomb Green’s function approach,
we can now look at the amplitudes T+

`→`−1 and T+
`→`+1

individually rather than at their ratio which is the only
result of the numerical TDSE simulations. The mod-
uli of the amplitudes |T+

`±1| with ` = 1 in He 1s and
` = 2 in Ar 3p are displayed in the left and right pan-
els of Fig. 3, respectively. As expected from Eq. (4),
both pairs of amplitudes pass through the series of reso-
nances and anti-resonances and display the set of peaks
and troughs. Quite understandably, the resonant peaks
of both the ` → `± 1 amplitudes match the same set of
discrete energies shifted by the photon energy ω. How-
ever, quite remarkably, the anti-resonances and troughs
are displaced between `±1 amplitudes because of the dif-
ferent strength of the non-resonant continuum. This dis-
placement brings about the strong oscillatory structure
into the amplitude ratio T+

`→`−1/T
+
`→`+1 as displayed in

Fig. 2. Quite interestingly, the ratio becomes less oscilla-
tory in Ar in comparison to He and all but flattens in Xe.
In the latter atom, because of a considerably larger ion-
ization threshold, the strengths of the two non-resonant
continua equalize and the Cooper minimum further sup-
presses the resonant structure.

To summarize, we conduct a systematic investigation
of discrete excitations in noble gas atoms using under-
threshold circular RABBITT. By employing the rainbow
spectral analysis combined with an ultrashort single XUV
pulse, we are able to map these excitations continuously
over an extended interval of photoelectron energies. Dis-
crete under-threshold excitations manifest themselves as
a series of resonances and anti-resonances detected with
counter-rotating XUV and IR pulses. In the meantime,
such a resonant structure is much weaker or absent with
co-rotating ionizing and dressing XUV and IR fields.

We use our numerical TDSE simulations to validate
the two analytic models. One such model employs the
Coulomb Green’s function [47] to evaluate the singular
term in the lowest order perturbation theory expression
(4) for the two-photon ionization amplitudes. The ampli-
tude ratios and phase difference in He and Ar are found
to be very close between the Green’s function and TDSE
calculations. This allows us to picture the individual two-
photon ionization amplitudes in the two Es and Ed con-
tinua. Understandably, these amplitudes share the same
resonant energies but quite surprisingly differ in location
of their anti-resonances. This explains the strongly res-
onant behavior of the amplitude ratios which weakens
from He to Ar and then almost wains in Xe.

Away from the resonance region, our moduli ratios and
phase differences tend to predictions of the analytical
model [34]. For target orbitals with large orbital momen-
tum at small photoelectron energy, this model predicts
existence of a Cooper-like minimum whose presence is
confirmed in our numerical simulations. Below the min-
imum, the moduli ratio in the CR channel |T+

`−1/T
+
`+1|

exceeds unity thus breaking the Fano propensity rule
formulated for the two-photon XUV+IR ionization [31].
This rule, which favours increase of the orbital momen-
tum with absorption of the IR photon, is also broken
near the anti-resonances of the T+

`+1 amplitude close to
discrete under-threshold excitations.

The proposed combination of the rainbow spectral
analysis and ultra-short XUV pulse utilization relies on
an efficient enhancement of the two-photon ionization
above normally much stronger single ionization back-
ground. This enhancement is achieved most effectively
by a parity based symmetrization of the ionization am-
plitude. While the amplitude symmetrization is only pos-
sible in numerical experiments, the ωτ oscillation which
is characteristic to single IR photon absorption can be
projected out in the experiment. This opens up a wider
application of the proposed continuous rainbow RAB-
BITT technique.

To conclude, we demonstrate feasibility of a novel
continuously rainbow RABBITT technique with circular
radiation which enriches the attosecond metrology and
opens up a new direction for experimental and theoreti-
cal investigations.
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