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Direct measurement of the wave function (or at least the modulus square of the wave function,
the spectral function) is an important goal in electron spectroscopy. This requires a state-selective
(i.e. energy resolved) measurement of the momentum density in all of momentum space, not just
the reduced Brillouin zone). Photo emission has been used very successfully to measure disper-
sion, mainly in the reduced zone scheme. Compton measurements determine a projections of the
momentum density in the full momentum space, but do not contain energy information. Here we
present electron momentum spectroscopy measurements of extremely thin silicon single crystals,
that resolve both energy and momentum, not just the reduced momentum. Measurements were
done along different lines in extended momentum space, that are equivalent within the reduced
zone scheme. For different lines different bands dominate, resulting in dramatic different spectral
momentum densities. The observed intensities compare well to the spectral function as obtained
by linear muffin tin band structure calculations. The results show a unified picture that forms a
bridge between Compton measurements determining densities and photo emission measurements
determining dispersion.

I. INTRODUCTION

There are two rather different approaches to the study
of the electronic structure of matter. One approach, the
oldest1, is Compton scattering, and it aims to determine
the momentum densities2. For a free electron metal the
valence band resembles a sphere in momentum space with
radius kf , the Fermi momentum. Within this sphere the
momentum density is constant, outside the sphere it is
zero. For a correlated electron gas the sudden drop in
intensity at kf is reduced due to electron-electron in-
teractions. Also, additional structures appear due to the
lattice potential. As this technique does not resolve bind-
ing energy, it measures a projection of the momentum
density integrated over all occupied states (both valence
and core states). The full three dimensional momentum
density can be reconstructed from the result of Compton
measurements for different crystal orientations.

A second technique, that has dominated the re-
search of the electronic structure in recent decades, is
photoemission3. It is used to measure, with great accu-
racy, the band dispersion, i.e. the binding energy of the
Bloch waves as a function of the reduced momentum k.
The Bloch wave ψk is defined as

ψk(r) =
∑

G

ck−Ge
i(k−G)·r (1)

with the summation extending over all reciprocal lattice
vectors G. The density of this wave is non zero only at a
discrete set of momentum values: k−G and the momen-
tum density at these values is |ck−G|2. Thus knowledge of
the (modulus square of the) coefficients ck−G is required
to obtain the momentum density of the Bloch wave. This
information is difficult to obtain from the photoemission
measurement. Hence in almost all cases interpretation of
photoemission data is restricted to comparing observed
and calculated dispersion in the reduced zone scheme.

There is very little comparison possible between the
outcome of both techniques, each can be compared to
theoretical calculations, but a Compton profile by itself
does not contain information about dispersion, and a
dispersion measurement does not easily help interpret-
ing Compton profiles. Electron momentum spectroscopy
(EMS) relies just as Compton scattering experiments on
impulsive collisions of the incoming projectile with a tar-
get electron4, and it is able to resolve dispersion. EMS
provides thus an experimental link between Compton and
photoemission research. Here we want to demonstrate,
using the case of silicon as an example, that a more com-
plete picture emerges, if momentum densities and disper-
sion are measured simultaneously.

This paper is part of an ongoing project of determin-
ing what aspects of the band structure and momentum
densities can be measured by EMS, using silicon as an
example. We investigated the dispersion along the main
symmetry directions5, the influence of sample rotations
on the measured spectral momentum densities6, and the
possibility of measuring momentum densities along lines
not going through zero momentum7. This last option
is investigated in this paper in more details. We mea-
sure in a systematic way the momentum densities along
lines in momentum space that are separated by a recip-
rocal lattice vector. In the reduced scheme all these mea-
surements are equivalent. For a given momentum value
peaks are only found at energy levels as predicted by
band structure theory. The relative intensities of the
bands change dramatically, if we shift the measurement
by a reciprocal lattice vector, in a way that reflects the
momentum density, revealing new important information
about the (modulus square of) coefficients |ck−G|2 of the
Bloch function .
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FIG. 1: The EMS spectrometer and the working of its deflec-
tors. In (a) we show the geometry of the experiment. Scat-
tered and ejected electrons with momenta in the hatched area
are detected. In (b) we show the top view (looking down along
the y−axis) with the scattering angle θ that can be varied by
two sets of deflectors (dashed lines are trajectories with de-
flectors switched on). In (c) we show that the scattering angle
θ is chosen in such a way that the recoil momentum is along
the y− axis and proportional to φ1 − φ2. By applying volt-
ages to the deflectors one can change the scattering angle and
measure also the momentum densities for momentum values
with either one or both components of qx,z 6= 0 (d).

II. EXPERIMENTAL DETAILS

In an EMS experiment a beam of well-collimated elec-
trons with accurately known energies impinges on a thin
film. Some of these electrons collide with a target elec-
tron and transfer a large fraction of their energy to those
electrons. In our spectrometer the scattered and ejected
electron are detected in coincidence and analyzed for
their energy and momentum. EMS measurements are
often referred to as ’kinematically complete’ as the en-
ergy and momentum of the incoming and both outgoing
electrons are determined. Hence we can obtain the bind-
ing energy ε and momentum q of the ejected electron
before the collision:

ε = E0 − E1 − E2 (2)

q = p1 + p2 − p0, (3)
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FIG. 2: A comparison of the free electron band structure
(full lines) and occupied part of the LMTO band structure
of Si (dashed) plotted in the repeated zone scheme, for the
< 100 > direction. Line (b) and line (c) can be obtained by
shifting line (a) by a < 111 > or < 200 > type reciprocal
lattice vector, and are hence equivalent in the repeated zone
scheme. However the kinetic energy in the free electron gas
model is different along these three lines. Experimentally we
measure these lines using the deflectors, by shifting line (a)
by < 101 > or < 200 > respectively. As < 101 > is not a
reciprocal lattice vector, we will measure in case (b) the Γ
point not at py = 0, but at py=0.6 a.u.

with E0,1,2 the energy of the incoming, scattered and
ejected electron respectively, and p0,1,2 their momenta.
These equations only apply if the collision with the tar-
get electron is the only interaction with the target. For
gas-phase experiments this assumption is usually well-
justified, but for thin film experiments this becomes
a reasonable approximation only when using extremely
thin films (about 10 nm) and high energies (here 50 keV
for the incoming, 25 keV for the outgoing electrons).

Our spectrometer has a non-coplanar symmetric con-
figuration (see Fig. 1). This means that the scattering
angle of both detected electrons is identical (θ = 44.3◦),
but the momentum of the ejected electron is not nec-
essarily in the plane defined by the incoming and scat-
tered momentum vectors. For 50 keV incoming and 25
keV outgoing electrons the recoil momentum is zero if
all three trajectories are in the same plane (φ1 = φ2).
If these trajectories are not in the same plane then, to
a good approximation, the recoil momentum is directed
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FIG. 3: The calculated dispersion and momentum densities for the three lines shown in Fig. 2. The corresponding dispersion
and momentum density of a free electron gas is indicated by a dashed-dotted line (density is zero for the case with a [200]
offset).

along the spectrometer y−axis and its magnitude is pro-
portional to φ1 − φ2.

Between the sample and each of the analyzers there
is a double deflector. Applying voltages to the double
deflector changes which electrons are detected by the de-
tector: it effectively changes the scattering angle θ by
up to ±1.3◦ . This is sketched in Fig. 1(b). Thus if,
due to construction imperfections, the geometry without
deflector voltages of coplanar events (φ1 = φ2) does not
correspond to q = 0 we can use the deflectors to effec-
tively change the collision geometry in such a way that
qx = 0 and qz = 0. The value qy = 0 is always included,
due to the use of analyzers that measure simultaneously
a range of φ angles. This offset component can be de-
termined directly as the observed intensity distribution
is symmetrical around qy = 0.

In this paper we investigate silicon single crystal sam-
ples. Sample preparation techniques used were described
in8. If we, for example, align the y−axis of the spectrom-
eter with the sample < 010 > direction with we measure

the dispersion and momentum density along the py axis
( px = 0, pz = 0) i.e. Γ −X direction. Usually the elec-
tronic structure is plotted in the reduced zone scheme.
In this presentation all lines in momentum space than
can be reached by shifting the py axis by a reciprocal lat-
tice vector are equivalent. We can measure along these
equivalent lines by introducing an offset in the measure-
ment using the deflectors. If the shift corresponds to a
reciprocal lattice vector that is perpendicular to the py

axis then the measurement at py = 0 correspond again
to a Γ point.

Often the reciprocal lattice vector has a component
along the py-direction. The deflectors have only effect in
the px−pz plane. In that case the measurement at py = 0
will not correspond to a Γ point but the Γ point will be
reached for py values corresponding to the py component
of the reciprocal lattice vector.

Note that if we apply deflector voltages such that (
px 6= 0 or pz 6= 0), the measurement is along a line with
a fixed offset, and variable py magnitude. Thus such
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FIG. 4: A comparison of the free electron band structure and
LMTO band structure for the different measurements for the
Γ − K − X measurement. Line (b), (c) and (d) are obtained
by shifting line (a) by [001], [110] and [111] respectively.

a measurement does not correspond to a measurement
along a specific direction, but should be visualized as
a line in momentum space, that does not intersect the
origin.

III. DISPERSION AND MOMENTUM

DENSITIES

The approach used in EMS differs from the usual
studies of the electronic structure of matter. Here we
want explain in simple terms how momentum densities
and dispersion are related, by considering the electronic
structure of silicon as a free-electron gas perturbed by
a lattice potential. Thus first we consider a free elec-
tron material with the same electron density as Si, sub-
sequently consider the potential as a perturbation, and
compare this with the actual LMTO calculation. We
summarize it here to stress the importance of the funda-
mental properties we want to measure, that are theoret-
ically well established but until now elude direct experi-
mental observations.

Silicon has a valence electron density of 0.030e−/a.u.3

(we will work mainly in atomic units, this density corre-
sponds to 0.20 e−/Å3, 1 a.u. of momentum = 1.89 Å−1).
A free electron solid with the same density would have
occupied states within a radius of kf = 0.96 a.u. (1.8

Å−1). The total occupied band width of a free electron

solid with this density is 11.7 eV
Inside the Fermi sphere there is a constant momen-

tum density, as the allowed k values are determined by
the boundary conditions. For a cubic volume with side
L the separation is 2π/L . Thus the momentum density
is ρ = (L/(2π))3 and depends on the size of the sample.
In calculations the momentum density is usually given
normalized to a single unit cell volume. For a free elec-
tron solid with the same unit cell volume as silicon the
momentum density would be 1.09 a.u3.

Consider now an EMS measurement of this free elec-
tron gas. If we use the deflectors in such a way that
we measure along a line that intersects zero momentum
(by applying small voltages, correcting for spectrometer
imperfections, residual magnetic fields7), then, for a free
electron solid, we measure the total width of the occupied
free-electron band. The binding energy is determined by
the potential energy of the free electron material V0 and
its kinetic energy Ekin = (~q)2/2me which simplifies to
q2/2 in atomic units. The maximum binding energy is
thus at qy = 0 and the minimum binding energy (Fermi
level) is observed for |qy| = kf . The measured intensity
would be along the thick line in Fig. 2. Changing the
deflectors setting so we measure along a line that crosses
the qx, qz plane at a distance ∆qxz from the origin will
cause the maximum binding energy observed to decrease
by ∆q2xz/2. The maximum momentum for which inten-
sity is observed (again at the Fermi level) is now the qy
value for which q2y +∆q2xz = k2

f , thus the width (in terms

of momentum and energy) of the observed parabola de-
creases with increasing ∆qxz.

Now we turn on the crystal lattice, and first consider
it as a small perturbation. Two points that are now sep-
arated by a reciprocal lattice vector are considered equiv-
alent in the reduced zone scheme. We want to compare
EMS measurements along lines in momentum space that
are separated by reciprocal lattice vectors. The short-
est reciprocal lattice vector for silicon (which has a BCC
reciprocal lattice) is < 111 >, followed by < 200 >. In
Fig. 2 (top) we show such a shifted line. We can mea-
sure this line again if we apply voltages to the deflector
in such a way that ∆qx = ∆qz = 0.61 a.u. Note that
qy = 0 now does not correspond to a reciprocal lattice
point, but corresponds to < 101 > a symmetry point
that is usually referred to as an X point. Thus, as long
as the effect of the lattice potential is small we expect to
measure again a parabola. It has its maximum binding
energy at < 101 >, an X point rather than at a Γ point).
If we plot this line in the band structure plot it would
correspond to the thin full line, highlighted by an arrow
in Fig. 2.

Now consider the true potential of a silicon crystal.
The dispersion is now obtained from a full potential
LMTO calculation, and is shown by dashed lines and
dashed-dotted lines in Fig. 2. It deviates substantially
from the free electron model. However the underlying
free electron band structure can still be recognized. The
thick dashed line follows for small momenta the free elec-
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together with the three measurement directions.

tron band closely. Hence we expect to measure this band
if we measure along a line through zero momentum. If we
measure along a line shifted by < 101 > then we expect
intensity along the dashed-dotted (red) line, as it fol-
lows the shifted free electron parabola. Near the Γ point,
reached for the < 101 > shifted line at qy = 0.61 a.u.,
there are substantial deviations of the LMTO calcula-
tions from the free electron band and hence we expect to
find experimentally rather different intensities than pre-
dicted by the free electron band model, as here the lattice
potential causes a strong mixing of the wave function.

Comparison of the experiment with theory is easier
if we plot the dispersion and intensities in momentum
space (extended zone scheme) as a function of qy. This
is done in Fig. 3 for the standard measurement (through
zero momentum) and measurement shifted by < 101 >
and < 200 >. In the second case qy = 0 correspond to
an X point, whereas the first and last ones qy = 0 cor-
respond to the Γ point. The momentum densities are
always lower than those predicted by the free electron
model. This is attributed to the fact that in silicon the
valence wave function are orthogonalised to the core wave
function. This introduces a rapidly oscillating behavior
in the wave function near the nuclei, corresponding to a
high momentum component, and hence reduces the den-
sity at low momentum values. However, our conclusion,

based on the free electron model, that for ∆qxz = 0,
band 1 and 2 dominate, and for the ∆qxz = [101] band
3,4 dominate, is corroborated by the LMTO calculation.
If we apply voltages such that ∆qxz = [200], then the line
along which we measure is always well outside the Fermi
sphere. Hence only relative small densities are expected,
and indeed the LMTO calculation shows only minor den-
sities in band 3,4 near qy = 0. The calculated density
and energy at ∆qxz = [000], qy = 1.2 a.u is equal to
those at ∆qxz = [200], qy = 0 as these points correspond
to Γ<200> and Γ<020> respectively, equivalent points for
a cubic lattice. In the first case increasing qy will cause
intensity along band 2, in the second case along band 3,4.

By rotating the crystal over 45◦ along the surface nor-
mal we can align the < 110 > symmetry (the Γ−K direc-
tion) direction with the spectrometer y-axis. In this di-
rection the dispersion shows 4 bands, and because of the
somewhat lower symmetry we can measure the spectral
momentum density for 3 inequivalent shifts of the mea-
surement line away from the origin. The relation between
the shifts, free electron dispersion and actual LMTO dis-
persion is emphasized in Fig. 4. Now the x−,y− and
z− axis of the spectrometer coincide with the < 110 >,
< 110 > and < 001 > crystallographic directions respec-
tively. The shifts introduced by the deflectors are now
[001], [110] and [111]. For the first two shifts qy = 0 cor-
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FIG. 6: Similar plots as Fig. 5, but now for measurements along Γ − K − X lines.

responds again to an X point (The [001] and [110] points
are separated by [111], a reciprocal lattice vector, and
are hence both points are equivalent in the reduced zone
scheme).

IV. EXPERIMENTAL RESULTS

Now let us compare the actual EMS measurements
with LMTO calculations for three measurements of Γ−X
lines (Fig. 5). In these measurements we used the pro-
cedure described in6 to minimize the influence of diffrac-
tion. At first glance, the three experimental measure-
ments seem completely different, but closer inspection
and a comparison with Fig. 3 reveals that the calculated
intensities are well reproduced in the experiment. For
the measurement through zero momentum we see that
band 1 and 2 dominate. For measurements shifted by
[110] bands 3,4 dominates but traces of band 2 can be
seen in both theory and experiment. Finally if we apply
voltages to the deflectors corresponding to a shift of the
measurement line by [200] (a reciprocal lattice vector) we
measure again a Γ point at py = 0 and intensity corre-
sponds to the top of the valence band. Increasing py = 0
shows an increase in binding energy, in spite of the fact
that the magnitude of the momentum (and hence kinetic
energy) increases with py. Thus here the influence of the

lattice potential dominates the dispersion behavior.
Thus a large variety in spectral momentum distribu-

tions is obtained, as the main intensity is concentrated
along lines that follow the dispersion of the bands. In
first approximation the momentum values for which there
is a large intensity can be obtained by considering the
intensity as would be obtained for a free electron gas.
However, especially near the Brillouin zone boundaries
there are significant deviations. The agreement between
LMTO theory (see also Fig. 3) and experiment is sat-
isfactorily, considering the level of multiple scattering in
the experiment.

For a more quantitative comparison we plot in Fig. 7
the spectra obtained for the Γ − K − X measurement.
This set of data is less affected by diffraction7 and hence
more suitable for quantitative analysis. For the deepest
part of the valence band life time broadening is signifi-
cant, hence the calculated spectra are much sharper and
higher near the bottom of the band compared to the ob-
served ones. This variation in width makes quantitative
comparison of the intensity at the bottom and top of the
band difficult. We want to focus here on the intensity at
the top of the band. We have two measurements here of
the intensity of Γ2,5′ . In the second panel we have an off-
set due to the deflectors of < 001 >. At py = 0.86 a.u. we
have an offset along the Γ−K−X direction correspond-
ing to < 110 >, hence the measurement at py = 0.86
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FIG. 7: Measured intensity (dots) along various Γ − K − X lines compared with the LMTO calculations. All plots have the
same normalization, except the LMTO graphs in the left-most panel, for which the height is reduced by a factor of 2.

corresponds to a < 111 > reciprocal lattice point. For
the measurement with a < 110 > offset (third panel) we
reach the < 200 > reciprocal lattice point when py corre-
sponds to < 110 >. Finally for the last measurement we
have an offset of < 111 > due to the deflectors and hence
py = 0 corresponds to a < 111 > reciprocal lattice point.
All four spectra are obtained in a single four day run,
with the deflector voltages changing every minute under
computer control. Thus the intensity of each of the four
measurements can be compared to each other. The the-
ory predicts that the occupation at Γ<111> is 0.55 times
that of Γ<200> (see table I. The measurements seems to
collaborate that. For a fully quantitative comparison the
small diffraction effects have to be properly accounted
for, which is beyond the scope of the current paper. The
measurement at zero momentum (py = 0, no offset) does
not show a peak at the top of the valence band. Thus no
contribution to the density of the outermost wave func-
tion at zero momentum ( Γ<000>) is observed.

V. CONCLUSION

We measured the electronic structure of silicon in the
extended zone scheme. Measurements taken at momenta
that differ by a reciprocal lattice vector show peaks at
similar energies, but completely different intensities. A
simple free-electron model is useful to predict which part
of the LMTO band structure gives intensity in a cer-
tain region of (extended) momentum space. On a semi-
quantitative level good agreement is found between mea-

sured intensities and those predicted by LMTO theory.
In the calculation the calculated intensity is equal to
|ck−G|2. Hence we have shown here that EMS measure-
ments contain direct information about these coefficients.
In particular the measurements seems to corroborate that
the wave function at the top of the valence band consists
out of plane waves of type < 111 > and < 200 >, the
latter being smaller than the first.

In conclusion we have demonstrated that we can mea-
sure dispersion and momentum densities simultaneously
at least in a semi-quantitative way, hence building a
bridge between Compton scattering and photoemission
experiments.
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Γxyz |q| ρ (Γ1) ρ (Γ2,5′)

< 000 > 0 0.92 0

< 111 > 1.06 6.7E-3 0.27

< 200 > 1.22 0 0.15

< 220 > 1.73 1.5E-3 3.2E-3

TABLE I: The momentum density of the inner and outer
valence band at the innermost Γ points.
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