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1. Introduction

Single ionization of atoms by electron impact is a well researched topic (see, e.g. a

recent book by McCarthy & Weigold (2005) and a review by Schulz & Madison (2006)

and references therein). Physical mechanisms driving electron impact ionization of an

atomic shell are well understood. For an energetic projectile with the incident energy

significantly larger than the ionization potential, the single knock-out collision ejects the

initially bound target electron into continuum. Multiple collisions of the projectile with

the target can be safely neglected in this case. This justifies a theoretical description

within the lowest order perturbation theory known as the first Born approximation

(FBA). In the meantime, the distorting effect of the target potential on the continuum

electron states, especially the slow ejected electron moving in the field of an ion, are

generally strong and should be treated non-perturbatively. Account for these physical

processes constitute the so-called distorted wave Born approximation (DWBA). Since

the pioneering work by Madison et al (1977), numerous realizations of DWBA have been

reported in the literature (Whelan et al 1993, Kheifets 1993, McCarthy 1995, Mazevet

et al 1998), to name just a few. Relativistic extension of DWBA is also available (Nakel

& Whelan 1999). There was also developed a hybrid of DWBA and the R-matrix model

(DWB-RM) which took into account the same interactions of the projectile with the

target but was more elaborate in description of many-electron processes in the ionized

target (Bartschat & Burke 1987).

When the scattered and ejected electron acquire comparable energies, their post-

collision interaction (PCI) is also strong and should be treated to all orders. This can

be achieved within the so-called BBK method (Brauner et al 1991). The basic idea

is that the final state is described by a product of three Coulomb waves, (hence the

alternative name of 3C). The main characteristic of the model is that both the PCI

between the three Coulomb particles in the final state and multiple scattering effects

are included. The drawback of the BBK method is that the distorting effects of the

target on the projectile are ignored. This limits application of the BBK method to light

targets such as the H and He atoms. For these atoms, however, more elaborate non-



DWBA-G calculations of electron impact ionization 3

perturbative methods, for example but not exclusively, the convergent close-coupling

(CCC) (Bray et al 2002) and the exterior exterior complex scaling (ECS) (Rescigno

et al 1999) produce, generally, more accurate results. A merger of the DWBA and BBK

methods resulted in development of the so-called 3DWBA method (Jones & Madison

1994) which could take into account both the key interactions of the DWBA model and

the PCI. This has been successfully demonstrated in the case of (e,2e) on the 4s2 shell

of Kr (Haynes et al 2003).

Owing to massive experimental and theoretical efforts, the field of electron impact

single ionization of atoms by energetic projectiles was considered to be fairly well

explored. Good agreement between theory and experiment was achieved in the most

demanding coincidence (e,2e) mode for a wide range of targets other than H or He. Noble

gas atoms from Ne to Xe were particularly well studied (Lahmam-Bennani 2002). Latest

experimental data on Mg were also found in good agreement with DWBA calculations

(Bolognesi et al 2008).

That is why a recent measurement of (e,2e) on Ar by Catoire et al (2006) came

as a surprise as it was in manifest disagreement with both the DWB-RM and BBK

calculations. A relatively high energy of the projectile E0 = 721 eV as well as the

energies of both outgoing electrons E1 = 500 eV and E2 = 205 eV clearly warranted

a successful application of the DWBA or DWB-RM methods. Theoretical results,

however, were quite disappointing. The binary peak was significantly overestimated by

the DWB-RM calculation whereas the BBK model predicted the right magnitude of the

binary peak but showed virtually no recoil peak. Going beyond the FBA by considering

repeated interactions of the projectile with the target (the so-called DWB-RM2 model)

did not change theoretical results in an appreciable way.

In the follow-up paper by Naja et al (2008), the authors concluded that argon

was a somewhat complicated target and turned their attention to a lighter noble gas

atom - neon. For this target, they were able to achieve a good agreement between

two independent sets of experiments and the DWBA and DWB-RM calculations.

Particularly good agreement was reported for the DWBA calculation corrected for the
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PCI effects by the so-called Gamow factor. This factor, also known as the Coulomb

density of states (Brauner et al 1991) or Nee factor (Rouvellou et al 1998), represents

the normalization constant of the two-body Coulomb function describing the interaction

of the two continuum electrons in the final state.

In the present manuscript we demonstrate that the DWBA-G model (DWBA

corrected by the Gamow factor) describes very well the experimental data on Ar reported

previously by Catoire et al (2006). We also validate this model by making an extensive

comparison with experimental data on He 1s2, Ne 2s2, 2p6 and Ar 3p6 taken at the

scattered electron energy E1 = 500 eV, the scattering angle θ1 = 6◦ and ejected electron

energies E2 = 37, 74 and 205 eV. Such a kinematics is characterized by large energy

transfer and close to minimum momentum transfer from the projectile to the target.

Except for the He 1s and Ar 3p measurements at E2 = 205 eV reported previously by

Catoire et al (2006), all the experimental data are new and performed on purpose of

making an exhaustive comparison with the theory. A wide range of targets and varying

ejected electron energy allows to observe some trends which reveal the underlying physics

of the (e,2e) reaction on closed-shells atomic targets.

The paper is organized as follows. In Section 2 we outline the theoretical model. In

Section 3 we give a brief account of experimental procedures. We compare and discuss

experimental and theoretical results in Section 4. The atomic units are used throughout

the paper unless otherwise indicated.

2. Theory

In this section, we follow closely derivations of Kheifets (1993). This earlier paper,

however, was concerned with electron impact ionization of He and the associated

formalism exploited the two-electron structure of the target. In the present work, we

extend this formalism to an arbitrary closed-shell target. We consider an (e,2e) reaction

in which the incident electron k0 impinges onto the atomic shell i resulting in two

outgoing electrons k1 (scattered) and k2 (ejected) in the final state. According to a

general formalism (see, e.g. Rouvellou et al (1998)), the fully resolved triply differential
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cross-section (TDCS) of such a reaction can be written as

d3σ

dΩ1 dΩ2 dE2

=
1

(2π)5

k2 k1

k0

Ni

2li+1

∑

mi

1

4

∑

S

(2S + 1) |TS(k0, k2, k1)|2 , (1)

where averaging is performed over the magnetic quantum number of the target electron

mi and the total spin S of the scattering system projectile + atom. The continuum

states are normalized to 〈k|k′〉 = (2π)3δ(k−k′) and have the asymptotics 〈r|k〉 ≈ eik·r.

The matrix element TS is the combination of the direct Di and exchange Ei Coulomb

matrix elements:

∑

S

(2S + 1) |TS|2 =
[
T0 + 3T 2

1

]
=
[
(Di + Ei)

2 + 3(Di − Ei)
2
]

. (2)

For a closed-shell atomic target, we can adopt the electron-hole formalism and refer

to the initial atomic state as the vacuum state. The final state of the target has one

hole i and one electron k2. In this formalism, the direct and exchange Coulomb matrix

elements can be written as

Di = 〈k1k2|V |k0i〉 , Ei = 〈k2k1|V |k0i〉 , V = |r1 − r2|−1 (3)

The electron-hole formalism is illustrated in Figure 1. Here we employ the following

graphical symbols. A solid line with an arrow pointing to the left denotes a hole whereas

an arrow pointing to the right indicates a continuum electron state. The wavy line stands

for the Coulomb inter-electron interaction. The left diagram of Figure 1 illustrates the

direct Coulomb matrix element Di. The exchange matrix element Ei can be exhibited

by a similar graph in which the electrons k1 and k2 are swapped.

k0 k1

2k

i

k0
k

i

1 k1

2k2k 2k

i

j

p
q

Figure 1. Left: Graphical representation of the direct matrix element Di in Equation
(3). Arrows to the left and right denote the hole and electron states, respectively. The
wavy line exhibits the Coulomb interaction. Center: Post-collision interaction in the
final state accounted for by the Gamow factor (9). Right: Inter-shell correlation of the
RPA type represented by Equation (13). The dashed line denotes the Born operator
exp(iq · r).
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We separate the radial and angular parts 〈r|i〉 = r−1Pnili(r)Ylimi
(r̂) and employ a

partial wave expansion

〈r|k〉 =
(2π)3/2

k1/2

∑

lm

e±iδlilY ∗
lm(k̂)Ylm(n̂)

1

r
PEl(r) (4)

with the continuum radial wave functions normalized on the energy scale and having

the asymptotics PEl(r → ∞) ∝
√

2
πk

sin(kr − lπ
2

+ δl) . The plus sign in the phase

factor corresponds to the incident electron k0 whereas the minus sign should be taken

for the two outgoing electrons k1 and k2. We align the z axis with the vector k0 and

perform the angular integration of the products of three spherical harmonics according

to Varshalovich et al (1988). Finally, we get the following expression for the direct

Coulomb matrix element:

Dmi
=

(2π)9/2(4π)−1/2

(k0k1k2)1/2

∑

l0l1l2 λ
m1m2

ei(δl0
+δl1

+δl2
) il0−l1−l2 l̂0 Yl1m1(k̂1)Yl2m2(k̂2) (5)

(−1)m2

(
l1 λ l0

−m1 m1 0

)(
li λ l2

−mi m1 m2

)
〈k1 k2 ‖ Vλ ‖ k0 i〉 .

Here we introduced a reduced Coulomb matrix element:

〈k1 k2 ‖ Vλ ‖ k0 i〉 = l̂0 l̂2 l̂1 l̂i

(
l1 λ l0
0 0 0

)(
li λ l2
0 0 0

)
Rλ

l0 l2 l1 li
(k0, k1, k2, ni) (6)

defined in terms of a Slater integral

Rλ
l0 l2 l1 li

(k0, k1, k2, ni) =
∫ ∞

0
dr1

∫ ∞

0
dr2PE0(r1)PE1(r2)

rλ
<

rλ+1
>

PE2(r2)Pnili(r2) , (7)

where r< and r> are, respectingly, the smaller and larger of the coordinates r1, r2. We

also introduced the hat symbol l̂ =
√

2l + 1. The exchange matrix element Emi
is

expressed by an equation similar to (5) in which the reduced Coulomb matrix element

is changed to

〈k1 k2 ‖ Vλ ‖ k0 i〉 → (2λ + 1)
∑

λ′
(−1)λ+λ′

{
l1 λ l0
l2 λ′ li

}
〈k2 k1 ‖ Vλ′ ‖ k0 i〉 (8)

In order to include the long-range Coulomb interaction in the final state, which is

illustrated by the middle diagram of Figure 1, the final two-electron state should be

multiplied by the Coulomb factor (Brauner et al 1991):

C(α, k, R) = Γ(1 − iα)e−πα/2
1F1

[
iα, 1; −i(kR + k · R)

]
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Here α = 1/k, k = k1 − k2 and R = r1 − r2. The normalization factor is known as the

Gamow factor or the Coulomb density of states:

∣∣∣Γ(1 − iα)e−πα/2
∣∣∣
2

=
2πα

e2πα − 1
≡ G(k) (9)

Explicit evaluation of the matrix elements Di and Ei modified by the Coulomb factor

is cumbersome. We argue, however, that the largest effect of the PCI is contained in

the Gamow factor alone. We can prove this in a special case of a very fast projectile

and a relatively slow ejected electron. In this case, we can represent the incident and

scattered electron by the plane waves 〈r|k〉 = eik·r and neglect the exchange term

which constitutes the so-called plane-wave Born approximation (PWBA). The Coulomb

interaction in this case is reduced to the Born operator:

Di = 〈k1k2|V |k0i〉 ≈ 〈k2|M(q)|i〉 , (10)

where

M(q) = eiq·r
∫

d3R eiq·R 1

R
= eiq·r lim

γ→0
4π

∞∫

0

sin qR

q
e−γR dR =

4π

q2
eiq·r . (11)

Here R = r1 − r2 and q = k0 − k1 is the momentum transfer from the projectile to the

target. Using the integral representation of the hypergeometrical function (Landau &

Lifshitz 1985), we can write the Born operator modified by the Coulomb factor in the

integral form similar to Equation (11). In result, we get

M(q) =
4π

q2

√
G(k)



−

1

2πi

∫

C

(−t)α−1(1 − t)−α(1 − tz)−1 dt





=
4π

q2

√
G(k) 2F1

(
iα, 1, 1; 2q · k/q2

)
=

4π

q2

√
G(k)

(
1 − 2q · k

q2

)−iα

(12)

Here we used Eq. (15.1.8) of Abramowitz & Stegun (1975). The factor in the bracket is

positive and hence the modulus squared of its imaginary power is equal to one. Thus,

the Gamow factor alone accounts for the bulk of the PCI effect.

Another type of many-electron correlations which can be accounted for in the

present model is ionization of the inner atomic shell by creating a virtual electron-

hole pair in the nearby outer shell. This type of correlation, illustrated by the right

diagram of Figure 1, is known to modify significantly photoionization cross-section of

the valence shells of noble gas atoms (Amusia 1990). Similar effect can be noticeable in
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electron impact ionization as well. To account for such an effect, we employ the random

phase approximation (RPA) and modify the Born matrix element in Equation (10) by

the following integral equation:

〈k2|M(q)|i〉 = 〈k2|M(q)|i〉 +
∑∫

j,p

〈p|M(q)|j〉 〈k2 j|V |p i〉
k2

2 − εi − p2 + εj + iδ
(13)

Now we turn our attention to calculation of the bound target orbitals Pnili(r) and

continuum orbitals PEl and their phases δl. We obtain the target orbitals using the

self-consistent field Hartree-Fock (SCFHF) method implemented in the computer code

by Chernysheva et al (1976). These orbitals are then frozen to obtain the frozen-core

Hartree-Fock (FCHF) potential which is then fed into a set of FCHF equations solved

by the computer code of Chernysheva et al (1979).

It is known that the virtual electron-hole excitations within a single atomic shell

(the right diagram of Figure 1 with i = j) can be accounted for within the standard

electron-hole PWBA formalism by a particular choice of the ejected electron continuum

orbitals (Amusia 1990). These orbitals should be calculated in the FCHF potential of

the singly ionized target with the hole i. A similar treatment should be given to the

scattered electron but its interaction with the ionized target is less important since the

projectile is fast. As to the incident electron, its continuum orbitals should be calculated

in the field of the neutral target as the hole is created after the encounter of the projectile

with the target.

After the radial orbitals and phases are defined, they are plugged into Eqs. (5–7).

The Born matrix element is evaluated by a partial wave expansion similar to Eq. (5) :

〈k2|M(q)|i〉 ∝ 1

q2

∑

Jl

eiδliJ−lYlmi
(k̂2) (−1)mi

(
l J li

−mi 0 mi

)
Ĵ2 DJl nili(q, E) (14)

Here the quantization axis z is directed along the vector of the momentum transfer q.

The reduced matrix element is defined as

DJl nili(q, E) = l̂l̂i

(
l J li
0 0 0

)∫
dr PEl jJ(qr) Pnili (15)

A set of RPA equations (13) is solved by using the computer code of Chernysheva et al

(1975).
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3. Experiment

The experimental set-up currently in use in Orsay, which combines three high-efficiency,

multi-angle toroidal electrostatic energy analyzers was described in detail elsewhere

(Catoire et al 2007). The experimental procedure is essentially identical to the one

reported in Naja et al (2007) and Catoire et al (2006). Briefly, a monochromatic

incident electron beam collides with the gas jet formed at the collision centre. A coplanar

geometry is used, where all electrons are observed in the collision plane defined by the

incident and scattered momentum vectors k0 and k1, respectively. The ’slow’ ejected

electrons (designated with an index 2) are multi-angle analyzed in a double toroidal

analyzer, with energies E2 = 37, 74 and 205 eV, successively, and over the angular

ranges θ2 = 20◦ − 150◦ and 210◦ − 340◦, where 0◦ is defined by the incident beam

direction. In the off-line analysis, the total θ2 -angular range is divided into sectors of

width ∆θ2 = 5◦. The ’fast’, forward-scattered electron (indexed 1) is collected by the

third toroidal analyzer (Catoire et al 2007) at the scattered energy E1 = 500 eV. In

the present work, the k1-electron is simultaneously observed at two symmetrical angles,

θ1 = +(6◦± 0.25◦) and θ1 = −(6◦± 0.25◦) as mechanically imposed by input slits at the

entrance to the electrostatic lenses associated with the toroidal analyzer. The incident

energy E0 is consequently adjusted to fulfill the energy conservation requirement for the

target under study, E0 = E1 + E2 + IP , where IP is its ionization potential.

Because of a low coincidence rate due, in particular, to the high ejection energy

used, all the three toroidal analyzers were operated at a reduced energy resolution,

∆E1 ∼ ±2.3 eV and ∆E2 ∼ ±1eV, resulting in a coincidence energy resolution (Dupre

et al 1991), ∆Ecoin ∼ ±2.5 eV (the energy dispersion of the incident beam is negligible,

∆E0 ∼ ±0.25 eV). The choice of a modest resolution was deliberate in order to be

able to measure the inner 2s orbital of neon (IP = 48.5 eV). This orbital is well

isolated from the other outer orbitals and from the neighbouring satellite structures,

2s22p43d (Samardzic et al 1993), but being an inner one its ionization cross section is

appreciably smaller. Combining all these figures, the momentum transfer resolution

amounts to ∆q = ±0.02 au while the spread in the momentum transfer direction is
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about ∆θq ∼ ±1◦.

Finally, we note that the He data discussed here are similar to those published

in Catoire et al (2006) and Staicu Casagrande et al (2008), though it was preferred

here to re-measure them immediately before and after the new Ne and Ar runs for more

consistency, on the one hand, and for monitoring the good response of the spectrometer,

on the other hand. The new He sets of data are found to be in very good agreement

with the older ones and in fair agreement with CCC calculations, thus validating the

experimental procedure.

4. Results and Discussion

4.1. Helium
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E2=205eV Figure 2. (Color online) He 1s2 TDCS
at E1 = 500 eV, θ1 = 6◦ and E2 = 37
(top left) 74 eV (top right) and 205 eV
(bottom left). The (blue) dashed line (- - -
) denotes the DWBA result. The solid (red)
line ( ) denotes the DWBA-G result. The
(purple) dotted line (· · ·) represents the CCC
calculations from Naja et al (2008) and Staicu
Casagrande et al (2008). The experiment is
shown with error bars. All the calculations
and the experiment are normalized to the
CCC TDCS. The vertical lines indicate the
directions of the momentum transfer ±q̂.

The TDCS of (e,2e) on the He atom is presented in Figure 2 corresponding to the
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scattered electron energy and angle of E1 = 500 eV and θ1 = 6◦. The three panels

display the TDCS at the ejected electron energies of E2 = 37, 74 and 205 eV. The

corresponding values of the momentum transfer are q = 0.74, 0.87 and 1.44 a.u. The

(blue) dashed line denotes the DWBA result while the (red) solid line denotes the

DWBA-G result. The CCC calculations from Naja et al (2008) and Staicu Casagrande

et al (2008) are shown by the (purple) dotted line. This model is known to produce very

accurate TDCS results for electron impact single ionization of He when the residual ion

is left in its ground state. Accordingly, we normalized both the DWBA and DWBA-G

as well as the experiment to the CCC TDCS. To scale DWBA to CCC, a normalization

factor close to 1 was applied. The Gamow factor is known to violate normalization

strongly. So some additional rescaling to CCC was required with a normalization factor

of the order of ∼ 2.

As we see from the figure, the DWBA calculation is in agreement with experimental

data for E2 = 37 eV and 74 eV. For this ejected electron energies, the disparity between

E1 = 500 eV and E2 is very large and the Gamow factor corrections are insignificant.

However, for E2 = 205 eV this situation changes and the DWBA-G calculation is much

closer to the CCC calculation and to the experiment than DWBA displaying a significant

angular shift from the direction of the momentum transfer.

It is seen from the figure that the magnitude of the TDCS is rapidly decreasing as

the energy of the ejected electron increases from 37 eV to 205 eV. This is understandable

since the TDCS is roughly proportional to q−4. Also noticeable is a steady decrease of

the recoil peak intensity relative to the magnitude of the binary peak as the energy of the

ejected electron increases. The origin of the recoil peak was explained qualitatively by

Vriens (1969) who attributed it to reflection of the ejected electron from the atomic

potential well. The relative recoil-to-binary intensity ratio is proportional to the

reflection coefficient which is decreasing as the energy of the ejected electron is getting

larger. As it will be demonstrated in the next section, this is not always the case.

For instance, the recoil-to-binary intensity ratio is, in fact, increasing with the ejected

electron energy in the case of (e,2e) on Ne 2s2.
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4.2. Neon

The TDCS of (e,2e) on the Ne 2s2 shell is presented in Figure 3 corresponding to the

scattered electron energy and angle of E1 = 500 eV and θ1 = 6◦. The top two panels

display the TDCS at the ejected electron energies of E2 = 37 and 74 eV. The (blue)

dashed line denotes the DWBA result while the solid (red) line denotes the DWBA-G

result normalized to that of DWBA. As in the case of He, the Gamow factor correction

improves agreement with experiment, especially for 74 eV ejected electron energy.

It is noticeable that, in contrast to the He 1s2 ionization, the relative intensity of the

recoil peak is larger for 74 eV ejected energy as compared to the lower energy of 37 eV.

This effect is seen in the DWBA calculation and is exemplified by the Gamow factor

correction which discourages electrons going close to each other and thus suppresses the

binary peak relative to the recoil.
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Figure 3. (Color online) Top: Ne 2s2 TDCS
at E1 = 500 eV, θ1 = 6◦ and E2 = 37 (left)
and 74 eV (right). The linestyles and symbols
are the same as in Figure 2. Bottom: Ne 2s2

TDCS at E2 = 74 eV calculated with DWBA
- the (blue) short-dash line (- - -) , PWBA -
the (black) solid line ( ), CW - the (green)
long-dash line (– – –) and RPA - the (purple)
dotted line (· · ·).



DWBA-G calculations of electron impact ionization 13

To investigate this effect further, on the bottom panel of Figure 3, we present yet

three other calculations of the TDCS for E2 = 74 eV. One is the PWBA in which the

distorting effect of the target on the projectile as well as the exchange of the scattered

and ejected electrons are neglected. The PWBA calculation is normalized to the DWBA

by an additional scaling factor of 0.9. We see that the PWBA calculation gives almost

an identical binary-to-recoil ratio, as does the DWBA. The only significant difference

from DWBA is the absence of an additional peak centered at about ' 120◦. Also, both

the binary and the recoil peaks are strictly symmetric with respect to the ±q̂ directions

as expected in PWBA.

We see that, indeed, the binary-to-recoil ratio is determined by the slow ejected

electron movement in the ionic potential which is a superposition of the Coulomb

potential of the nucleus and the HF potential of the ionized electron core. To discern

the roles of these two components of the atomic potential, we perform yet another

PWBA calculation with Coulomb waves (CW). In this calculation, the ejected electron

is represented by the Coulomb waves calculated with the screened nucleus charge Z = 1.

The CW is again normalized to DWBA. We see that the recoil peak suffered a significant

loss in the CW calculation. This is so because the smooth long-range Coulomb potential

alone is a poor reflector and it is the short-range HF potential that is chiefly responsible

for the formation of the recoil peak. That is why the BBK-type calculations are very

poor when predicting the recoil peak intensity.

The RPA calculation in which the Born matrix element (13) is modified by the

inter-shell correlation between the 2s2 and 2p6 shells, is indicated in Figure 3 by a

purple dotted line. The RPA result is normalized to DWBA by scaling up by a factor

of 1.3. We see that the shape of TDCS in RPA is not very different from PWBA or

DWBA.

Now we turn to the question why the recoil peak intensity is increasing with the

ejected electron energy in the case of Ne 2s2 ionization. We follow the partial wave

analysis given by Vriens (1969) and present the Born matrix element (14) as the sum
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Figure 4. Ejected electron scattering phases δl in Equation (14) as functions of energy
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of the Legendre polynomials which can be written as

〈k2|M(q)|i〉 =
3∑

l=0

al Pl(cos θ2) (16)

= (a0 −
1

2
a2) + (a1 −

3

2
a3) cos θ2 +

3

2
a2 cos2 θ2 +

5

2
a3 cos3 θ2 .

For the s-shell ionization (li = 0) al ∝ eiδl l̂2
∫

dr PEl jl(qr) Pns . We truncate the partial

wave expansion (14) at lmax = 3 which is appropriate as lmax ' k2a where k2 = 2.3

and a ' 1 for the outer valence shell. A near zero minima around θ2 = π/2 (as is seen

in Figure 3) can occur only when a0 − 1
2
a2 ≈ 0. Under this condition, Equation (16)

reduces to

〈k2|M(q)|i〉 =
[
(a1 −

3

2
a3) +

3

2
a2 cos θ2 +

5

2
a3 cos2 θ2

]
cos θ2 (17)

Comparable intensities of the binary and recoil peaks (cos θ2 = ±1), as is the case for

the Ne 2s2 ionization, require that |a1 + 3
2
a2 + a3| ≈ |a1 − 3

2
a2 + a3| and either a2 is very

small (which implies that a0 is very small) or is shifted in phase with respect to a1 + a3

by a factor π/2.

In Figure 4 we plot the ejected electron scattering phases δl, l = 0 . . . 3 which

determines the phases of the coefficients al since the radial integral in their definition

is real. We notice a manifest difference between the scattering phases for He+ (left

panel) and Ne+ (right panel). In the case of He+, the phases δl, l = 1 . . . 3 are close
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together whereas the s-phase δ0 is far apart. This can be explained by the presence

of the occupied 1s state in the ionic core. For neutral atomic targets, the scattering

phase at zero energy is related to the number of the occupied target states Nl by the

Levinson’s theorem δl(k → 0) = Nlπ. For ionized targets, because of the long-range

Coulomb potential tail, the Levinson’s theorem does not hold. However, the phase shift

due to the short range potential, i.e. the difference of the total phase and the Coulomb

phase, is related to the quantum defect δl(k → 0) − σl(k → 0) = µl(∞)π . The latter

is determined by fitting the sequence of energy levels with a given orbital momentum

Enl = 0.5Zeff [n − µl(n)]−2 (Seaton 1983). Here the effective charge of the screened

nucleus Zeff ' 1. The Coulomb phase is given by the expression

σl(k) = arg Γ
(
1 + l − i

Zeff

k

)
, σl+1(k) = σl(k) − arctan

[
Zeff

k(l + 1)

]
. (18)

The presence of the bound target state with a given l perturbs the energy level sequence

and results in a large quantum defect. This is the case of the s-phase in He+. The

other l-phases are quite close and tend to converge at larger energies as prescribed by

Equation (18). Because of this phase behaviour, the coefficients a1, a2 and a3 are more

or less collinear and the recoil intensity is fairly small relative to the binary peak.

The situation in Ne+ is very different because of the bound 2p state which results in

a large quantum defect and the p-phase deviating strongly from the d- and f -phases. We

see from the right panel of Figure 4 that the phase difference between the p- and d-phases

reaches π/2 at an energy of about 100 eV which is a prerequisite of the orthogonality

of a1 + a3 and a2 (a3 is relatively small). Thus we have a large recoil-to-binary intensity

ratio which increases with energy from 37 eV to 74 eV in anticipation of the maximum

slightly above 100 eV.

In Figure 5 we show the TDCS for the Ne 2p6 shell. The measurement has been

taken at three ejected electron energies E2 = 37, 74 and 205 eV. In all cases, we see

a fairly large relative recoil peak intensity which, unlike in the Ne 2s2 case, decreases

monotonically with increasing E2. For a p-target state, the partial wave analysis of

Vriens (1969) becomes too simplistic because of two ejected electron partial waves l± 1

are contributing to the TDCS. That is why the binary-to-recoil ratio behavior in Ne
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Figure 5. (Color online) Ne 2p6 TDCS at
E1 = 500 eV, θ1 = 6◦ and E2 = 37 (top left)
74 eV (top right) and 205 eV (bottom left).
The linestyles and symbols are the same as in
Figure 2

2p6 is difficult to illustrate by a simple phase diagram. Nevertheless, larger recoil peak

intensity in heavier noble gases beyond He can universally be attributed to the reflection

from the short-range HF potential and modification of the scattering phases due to

occupation of p bound states. The d-state occupation will have to be factored out in

Kr and Xe which are not considered in the present manuscript.

The difference between the DWBA and renormalized DWBA-G calculations

becomes progressively larger with growing E2. It is very significant for E2 = 205 eV

making the calculated TDCS much closer to the experiment. The Gamow correction

enhances the recoil peak intensity and shifts the binary peak away from the direction of

the momentum transfer.
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4.3. Argon

In Figure 6 we show the TDCS for the Ar 3p6 shell at the same ejected electron energy set

of E2 = 37, 74 and 205 eV and the scattered electron angle of θ1 = 6◦. The experimental

data for the largest energy of 205 eV have been reported previously by Catoire et al

(2006) along with two other scattering angles of 3◦ and 9◦. At all three values of the

scattering angles, the recoil peak intensity was larger than the binary peak in manifest

disagreement with the DWB-RM calculation.

As we see from Figure 6, the DWBA predicts a fairly large recoil peak intensity for

E2 = 74 and, especially, for 205 eV. In the latter case, the Gamow correction blows up

the recoil peak which becomes significantly stronger than the binary peak, in agreement

with the experiment. Although not shown in the figure, a similar agreement between

the DWBA-G and experiment can be achieved for other scattering angles of 3◦ and 9◦.
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5. Conclusion

We performed a series of calculations and measurements of the fully resolved triply-

differential cross-sections of the valence shells of noble gas atoms: He 1s2, Ne 2s2,

2p6 and Ar 3p6. Various theoretical models were employed which treated the projectile-

target interaction to the lowest order while the account of the distorting target potential,

the post-collision inter-electron interaction and the inter-shell correlation was taken non-

perturbatively.

The DWBA-G model proved to be the best performer with an overall good

agreement with the experiment. Some minor deviations between the calculation and

measurement can still be seen. For instance, in the cases of He 1s2 at 205 eV, the

experimental binary peak is further displaced from the q̂ direction and the recoil

intensity is lower than theoretically predicted. Same stronger displacement is seen in the

case of Ne 2s2 at 205 eV. Here, however, the calculation underestimates the recoil peak

intensity. This means that the Gamow correction, although accounting for the bulk of

the PCI, does not account for it fully. A proper non-perturbative treatment within, e.g.

CCC or ECS, would probably remove this minor disagreement. We note, however, that

in the case of He at 205 eV ejected energy, the CCC calculation does not account fully

for the shift of the experimental binary peak from the q̂-direction.

Less sophisticated calculations with plane or Coulomb waves (PWBA and CW) do

not produce numerically accurate results. However, when compared with DWBA, they

are very indicative as to the physical mechanisms being responsible for various features

of the TDCS. In particular, we analyzed the binary-to-recoil intensity ratio in terms of

the partial wave phase shifts and explained an anomalously large recoil peak intensity

in Ne 2s2 in terms of the partial waves reflection from the short-range HF potential.

The inter-shell correlation was taken into account using the RPA model which

proved to be a very effective tool in photoionization of valence shells of noble gas

atoms. For the given kinematics, the effect of the inter-shell correlation was found to be

insignificant. It is expected that this effect could grow for lower ejected electron energies

near the ionization threshold. Also, it could be seen more clearly when normalized
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experimental TDCS become available.

The present model, although successful at fairly large incident energy in excess of

500 eV, is not expected to cover the whole range of (e,2e) kinematics. Inevitably, it

will break down for low incident energies when the Coulomb interaction between the

projectile and the target and between the two outgoing electrons become strong. This

was demonstrated in a recent DW-PCI calculation of (e,2e) on Kr 4s2 where E0 was

lowered from 197 eV to E0 = 35 eV to witness a gradual deterioration of the accuracy of

theoretical results (Haynes et al 2003). It is the full Coulomb inter-electron interaction,

not just its asymptotic part as in the BBK formalism, that should be treated non-

perturbatively to achieve numerically accurate results for the electron energies below

few ionization potentials.
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