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Abstract

We present a joint experimental and theoretical study for the fully differential cross section of

the photo double ionization (PDI) of helium with linearly polarized light at the excess energies

Eexc = 100 eV and 450 eV above the threshold. The fully differential cross section is obtained by

measuring the three-dimensional momentum vectors of one electron and the He2+ ion in coincidence

using the COLTRIMS method. We give an overview of the momentum distribution of the three-

body continuum 100 eV above the threshold. We show angular distributions for both electrons for

various energy sharings at Eexc = 100 eV and 450 eV. The experimental results are well reproduced

by a set of convergent close-coupling (CCC) calculations.
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I. INTRODUCTION

The emission of two electrons from a helium atom after absorption of a single photon

is a fundamental three-body process in atomic physics (for review articles, see [1] and [2]).

It is characterized by the 1Se symmetry of the initial state which leads, within the dipole

approximation [3], to the 1P o final state. There are also no resonant states in the three-body

continuum above the double ionization threshold of 79 eV.

The main studies of PDI are focused on understanding the mechanisms of the reac-

tion. This is best achieved by a complete dynamic characterization of the process that

displays the complete momenta of all particles in the final state. The final state is de-

fined by its angular momentum, parity and the nine momentum components of the two

photoelectrons and the residual ion. The energy and momentum conservation reduces

this number to five linearly independent components. Accordingly, the fivefold differen-

tial cross section (5DCS) d3σ/(dΩ1dΩ2 dE1) = d5σ/(dE1 sinΘ1dΘ1 sinΘ2dΘ2dΦ1dΦ2) =

d5σ/(dE1d cosΘ1d cosΘ2dΦ1dΦ2) describes the final state dynamics. Here Θ1, Θ2 and Φ1,

Φ2 are the polar and azimuthal emission angles with respect to the polarization axis of the

electrons e1 and e2, respectively and E1 is the energy of the electron e1.

In our experiment we measured the momentum vectors of one electron and the doubly

charged He2+ ion; thus we have determined six momentum components. The redundancy of

six, versus the required five, components, permits valuable cross checks of the data. Within

the dipole approximation the fivefold is reduced to a fourfold differential cross section (4DCS)

d4σ/(dE1d cosΘ1d cosΘ2dΦ12). This 4DCS contains all the information about the final state

and hence is a fully differential cross section for this process.

Before the first coincident PDI experiments became feasible, the ratio of the total double

to total single photo ionization cross sections was often measured. In the limit of large

photon energies, where the shake-off mechanism is believed to be dominant [4], information

about the electron correlation in the initial state could be gained from such experiments.

In their pioneering coincident PDI experiment Schwarzkopf et al. [5] measured the emission

angles and the energies of both electrons at Eexc = 20 eV with E1 =E2 = 10 eV (equal energy

sharing). Since then impressive experimental and theoretical progress has been made. Up

to now, the fivefold differential cross section of the PDI of helium has been investigated

for different energy sharings by many experimental groups. These studies can be loosely
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grouped in three energy regions: first, near the double ionization threshold, where the

electron dynamics can be understood by the Wannier theory (Dawber et al. [6], Dörner et

al. [7], Huetz and Mazeau [8]); secondly, in the middle energy region (Eexc = 2 eV - 100 eV)

where the double ionization is dominated by electron-electron scattering (4DCS are available

by Achler et al. [9], Bolognesi et al. [10], Bräuning et al. [11], Cejanovic et al. [12], Collins

et al. [13], Dawber et al. [6], Dawson et al. [14], Dörner et al. [7], Huetz et al. [15], Knapp et

al. [16], Lablanquie et al. [17], Schwarzkopf et al. [18], Turri et al. [19], Viefhaus et al. [20]

and Wightmann et al. [21]). And thirdly, for the high energy region where shake-off plays

a major role in the double ionization, only one measurement of the 4DCS at Eexc = 450 eV

has been reported so far (Knapp et al. [22]).

In the present and companion papers we report detailed studies of the PDI of He with

linearly and circularly polarized light at excess energies of 100 eV and 450 eV. Our goal was

to obtain the most consistent set of data across a wide photon energy range and to provide

stringent tests of theoretical descriptions of the double ionization process. In addition to

4DCS, we also analyze our data in terms of the PDI amplitudes which contain the most

intimate information on electron correlations.

The current paper begins our presentations by reporting the 4DCS for helium with lin-

early polarized light at the energies Eexc = 100 eV and 450 eV above the double ionization

threshold. We present the angular distributions of one electron, for various energy sharings,

while the other electron’s momentum is fixed at selected angles with respect to the polar-

ization axis. In our companion paper (part B) the 4DCS of PDI with circularly polarized

light at Eexc = 100 eV and 450 eV are reported. In that work we determined the circular

dichroism (CD), i.e. the difference between the 4DCS for left and right circularly polarized

light; this was done with Eexc = 100 eV and 450 eV and for various energy sharing partitions

between the two electrons. The third paper (part C) presents the symmetrized gerade and

ungerade amplitudes extracted from the He PDI measurements; these quantities are the

fundamental parameters for the description of the PDI process.

The present paper is organized as follows: In section II we give a brief description of

our experimental setup. Section III outlines the convergent close-coupling (CCC) theory

and in section IV we present our results for various energy sharings. Atomic units are used

throughout unless specified otherwise.
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II. EXPERIMENTAL SETUP

The experiment was performed at the beamline 4.0.2 [23] of the Advanced Light Source

at the Lawrence Berkeley National Laboratory with the COLTRIMS technique (see [24] for a

general review and [7, 25] for application to synchrotron radiation). The PDI is investigated

at two different photon energies Eγ = 179 eV and Eγ = 529 eV with linearly polarized

light. With the double ionization threshold at 79 eV, these photons impart excess energies

of 100 eV and 450 eV, respectively.

In brief, the photon beam is focussed into a supersonic helium gas jet. Electrons of energy

below 60 eV are directed and guided by a combination of electric and magnetic fields onto a

large area position sensitive channel plate detector [26]. From its time-of-flight and position

of impact the momentum vector of the electron is deduced [27]. The electric field guides the

ions with 4π collection solid angle for all momenta onto a second position sensitive detector,

which has a diameter of 80 mm. The ion charge state and momentum vector are again

obtained from the time-of-flight and the position of impact. The momentum vector of the

fast electron is calculated from the measured slow electron and and the recoiling ion using

momentum conservation.

Figure 1 shows a sketch of the COLTRIMS chamber consisting of a double stage source

chamber with two skimmers, a reaction chamber and a jet catcher where the helium jet is

dumped. The supersonic jet enters the reaction chamber in which the spectrometer and

the two position sensitive channel plate detectors (one at each end of the spectrometer) are

located. The target region is located at the intersection of the spectrometer axis and the

atomic beam axis. The jet terminates and is pumped away in the jet catcher above the

spectrometer.

The supersonic gas jet is created in the double stage source chamber. The helium gas

expands adiabatically into the first stage through a 30 µm diameter nozzle at a pressure

around 13 bar. The first stage is evacuated by a 1000 `s−1 turbomolecular pump. The jet

goes through the second stage into the reaction chamber. Skimmers of 0.3 mm and 1 mm

diameter are used for the first and second stage. This geometry yields a width of 1.3 mm

for the jet at the interaction point. The target density in the intersection region (about

0.5 mm3) is about 1×1011 per cm2. The use of a second stage provides differential pumping

to suppress the warm He gas in the reaction chamber. The jet is not pre cooled. It has a
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FIG. 1: COLTRIMS jet assembly and chamber: The supersonic jet is produced in the double stage

source chambers (bottom) and enters in the reaction chamber, goes through the spectrometer

and is dumped in the jet catcher (top). The reaction zone lies in the intersection between the

spectrometer axis and the jet (the photon beam would be out of the plane at the same intersection).

The spectrometer is subjected to an electric and magnetic fields. The magnetic field is parallel

to the spectrometer axis and is produced by a Helmholtz coil pair which is not shown. The

electric fields can be separated into an extraction field, an electrostatic lens on the recoiling ion

side, and field free drift regions on both the electron and recoiling ion sides. At each end of the

spectrometer there is a position sensitive channel plate detector (PSCD) for the electron and the

helium ions, respectively. Typical pressures are 3×10−4mbar the source first stage, 1×10−7mbar

at the reaction-chamber and 3.5×10−7mbar at the jet-catcher.
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speed ratio of about 30 resulting in a momentum uncertainty of less than 0.3 au parallel and

less than 0.17 au perpendicular to the jet direction.

The spectrometer system used to obtain the momenta of one electron and the recoiling

ion utilizes parallel electric and magnetic fields aligned along its axis (see Figure 1). The

total length is 831 mm and consists of two parts, one arm for the electrons (the distance from

the target region to electron detector is 192 mm, hereafter called electron spectrometer), and

another for the helium ions (the distance from the target region to recoiling ion detector is

639 mm, hereafter called recoiling ion spectrometer). The constant homogeneous magnetic

field is produced by a Helmholtz coil pair [27].

The electrostatic ion spectrometer consists of a homogeneous extracting field, followed

by an electrostatic lens and a quasi field-free drift region. (The drift tube is separated from

the recoiling ion detector by a woven mesh of 0.25 mm width.) This field distribution is

essential for a good momentum resolution. Without the lens recoiling ions with the same

momentum but different starting points within the overlap region of gas jet and photon beam

would result in different trajectories with different times-of-flight and positions of impact.

This would significantly degrade the recoiling ion momenta resolution. Figure 2 shows a

simulation of the the imaging characteristics of our spectrometer: all trajectories are from

doubly charged helium ions starting with 3 au momentum in z-direction (the z-direction is

parallel to the spectrometer axis). Even though they start from different positions at the

same time, they are focused to a single point on the detector, again at the same time. This

behaviour is reached by choosing a special field distribution in the following way: The target

zone lies in a constant homogeneous field of 7.61 V/cm. After 89 mm the recoiling ions pass

through an electrostatic lens. After the lens the recoiling ions enter a quasi field free drift

tube with the ion detector at its end. This field configuration yields a focus of the ions to a

single point in time and space on the channel plate detector.

The electron spectrometer had the same extraction field of 7.61 V/cm as the ion spec-

trometer (since they overlap, this is unavoidable unless pulsed fields are used). After 63 mm

of a constant homogeneous extraction field the electrons enter a 129 mm long field free drift

region. By choosing the drift length twice as long as the extraction length (Wiley-MacLaren

geometry [28]), electrons starting at different distances arrive at the same time (through

first order in small variations of the distance). Additionally, a magnetic field of 13 Gauss

is superimposed parallel to the electric field. This allows collection, with 4π solid angle
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FIG. 2: Simulation of the electric spectrometer with potential lines (thin dashed lines); Character-

istics of time and space focusing, distance between the time markers (filled squares) is 0.5 µs, ions

start with 3 au in horizontal direction from a reaction volume of 8 mm × 8 mm × 8 mm. They are

focussed to a point of 0.6 mm × 0.6 mm, the time difference at the end of the quasi drift tube is

less than 0.5 ns. The electric field in the target zone is 7.6 V/cm. The thick dashed lines illustrate

the 0.25 mm width mesh.

efficiency, and sufficient energy resolution, all electrons with energies up to 60 eV.

The time-of-flight of the electrons and the He2+ ions relative to the bunch marker (a

pulse provided by the ALS, and synchronized to the 32 ps long photon pulses from the

synchrotron) are used to calculate the momentum in off-line analysis.

The calculation of the momenta of the He2+ ions is straightforward. Because of their

heavy mass, the helium ions move much slower than the electrons and their interaction with

the magnetic field is small and can be corrected easily. To first order it is equivalent to a

slight rotation of the ion detector. Also, the difference in times-of-flight between the He2+

ions leaving the interaction region with a finite momentum THe2+(pz) and those with zero

axial momentum THe2+(pz = 0) is directly proportional to pz.

Momentum measurement for electrons is more complicated. Because of the low mass,

the electrons are guided on cyclotron trajectories. The momentum component parallel to

the electric field depends only on the electric field and can be determined from the resulting

time-of-flight. The other two momentum components perpendicular to the field are obtained

from the position of impact on the detector, the time-of-flight T and the magnetic field B

[27]:

pe⊥ =
qB

√

∆x2
e +∆y2

e

2 | sin(ωgyrT/2) |
(1)

where ∆xe = xe − x0e and ∆ye = ye − y0e; xe, ye represent the true position of impact and
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x0e, y0e are the position of impact corresponding to that of an electron with zero momentum

in x- and y-direction. B is the magnetic field, q is the electric charge and ωgyr is the gyration

frequency. The magnetic field B is obtained from the data itself. If the distance
√

∆x2
e +∆y2

e

versus the time-of-flight is plotted, one gets a structure shown in figure 3. The time between

nodes (where the distance is zero) is the cyclotron gyration period from which the magnetic

field can be easily calculated. But this wiggle structure has also a disadvantage. Whenever

electrons perform an integer number of complete turns they hit the detector at the projection

of their starting point (x0e,y0e), independent of their initial transverse momentum. For those

flight times the information of the electron transverse momentum is lost. Those events are

discarded in the data analysis. In our experiment this effect does not lead to blind regions

in the phase space. This is so because for linear polarized light with polarization parallel to

the spectrometer axis z and for circular polarized light there is a reflection symmetry with

respect to the xy plane. Therefore, the electric field is chosen in the way that the position of

the nodes are asymmetric around T0e. This has the advantage that the nodes can be filled

up in the following way: if there is a node at pze
= c1 with a corresponding z-momentum

for the He2+ ion pz
He2+

= c2 one can replace it by the mirrored momenta pze
= −c1 and

pz
He2+

= −c2.
Figure 3 shows the distance of the position of impact of the electron relative to (x0e, y0e)

versus the time-of-flight in corresponding channels. The distance between the two nodes is

about 26 ns. The position of the nodes relative to T0e are asymmetric to T0e. In every figure

showing the 4DCS the nodes have been filled up exploiting this mirror symmetry.

Measuring the full 3D momenta of one electron and the recoiling ion makes our data

set overcomplete. We have determined six momentum components of which only five are

linearly independent. After calculating the full momentum of one electron and the He2+ ion

the full three dimensional vector momentum of the complementary electron can be deduced.

To cross check the data we plot the energy of one electron e1 versus the energy of the

complementary one e2 (figure 4). All real coincidence events are located in the diagonal

given by E1 = Eγ − 79 eV−E2. The width of the diagonal line shows the overall resolution

of our spectrometer.

We normalized our data in two different ways. For the data at Eexc = 100 eV, one of the

electrons always fulfills the condition E1 ≤ 50 eV. The 4π detection for all electrons up to

50 eV and a constant efficiency of the electron detector independent of the electron energy
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FIG. 3: Distance R of the electron position (in units of 0.5 mm) of impact versus the electron

time-of-flight Te in ns, logarithmic scale. The magnetic field is 13 Gauss which can be deduced

from the time distance of two nodes equal to the time length of one turn. The gyration period

depends solely on the magnetic field and is independent of the electric field. The arrow marks the

time-of-flight of an electron which start with zero momentum (pz = 0 au).

allows coverage of the full final state phase space. Therefore we can normalize the 100 eV

data to the very precisely measured total double ionization cross sections by Samson et al.

[29, 30]. This normalization is straightforward: the absolute number of coincident counts

for E1 ≤ 50 eV is equivalent to the absolute double ionization cross section of 2.8 kbarn.

Because of our restricted electron detection above 60 eV we cannot use the same nor-

malization for the Eexc = 450 eV data. Here, we normalized the experimental data to the

CCC calculation. The number of all total coincidence counts with E1 ≤ 60 eV is equiva-

lent to the integration of the single differential ionization cross section from 0 eV to 60 eV
∫ 60eV

0eV
(dσ/dE1) dE1.
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FIG. 4: Energy distribution e1 versus e2 for 100 eV above the threshold. The sum of both electron

energies is 100 eV.

III. CCC CALCULATIONS

In the CCC formalism, we describe the final state with two electrons in the continuum

Ψ(k1,k2) by a close-coupling expansion on the basis of channel functions. Each channel

function is a product of a Z = 1 Coulomb wave of energy k2
1/2 and a positive energy

target pseudostate of energy k2
2/2. The latter are determined by diagonalization of the

target Hamiltonian utilising an orthogonal Laguerre basis. We increase the size of the basis

until convergence to a desired precision is obtained. Hence the method is named convergent

close-coupling (CCC). The helium atom ground state Ψ0 is described by a 20-term Hylleraas

expansion which recovers more than 99.98 % of the correlation energy. A highly accurate

description of the initial state is necessary to obtain essentially gauge-independent results.

We calculate the fully differential cross-section of the PDI on He as a squared dipole

matrix element between the correlated ground state and the CCC final state with the two

electrons in the continuum:
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d3σMp

dΩ1dΩ2dE1

= C |〈Ψ(k1,k2)| dMP
|Ψ0〉|2 (2)

Here the dipole operator dMP
depends on the polarization of light and the gauge of the

electromagnetic interaction. In the case of the linearly polarized light and the length gauge,

dMP =0 = z1 + z2. In this case the proportionality constant in (2) is C = 4π2Eγ/c. Alter-

natively, the dipole operator in the velocity gauge ∂/∂z1 + ∂/∂z2 or the acceleration gauge

2/z3
1 + 2/z3

2 can be chosen. In the case of the circularly polarized light, the combination

dMP =0 ± dMP =1 should be taken in Eq. (2) with the sign depending on helicity.

We use a partial wave expansion and introduce bipolar harmonics in Eq. (2):

〈Ψ(k1,k2)| dMP
|Ψ0〉 =

∑

JM

∑

l1l2

Y l1l2
JM(k̂1, k̂2)Dl1l2(E1E2) (−1)MP δMP +M, 0 (3)

where Y l1l2
JM(k̂1, k̂2) =

∑

m1m2
CJM
l1m2,l2m2

Yl1m1
(k̂1)Yl2m2

(k̂2) [31].

The reduced dipole matrix element is defined by the following projection:

Dl1l2(E1, E2) = 〈Ψll n2l2(k1)‖DMP
‖Ψ0〉 〈l2k2 ‖ l2n2〉 , (4)

where 〈l2k2 ‖ l2n2〉 is the radial overlap between the pseudostate of energy εn2l2 = E2 =

k2
2/2 and the true Z = 2 continuum radial wave function of same energy and angular

momentum. The matrix elements 〈Ψll n2l2(k1)‖DMP
‖Ψ0〉 are found by solving a coupled

set of integral Lippmann-Schwinger equations (see Ref. [32] for more details). Following

Ref. [33], the basis sizes are taken to be Nl2 = N0 − l2 with a constant (independent of

l2) Laguerre exponential fall-off parameter λ. This yields εn2l2 that are different for each

l2. In order to obtain the required partial amplitudes at the experimentally specified E2

energy, for each l2, we interpolate the amplitudes available at the discrete energies εn2l2 .

The process of interpolation takes into account the step-function behaviour of the CCC

amplitudes. Subsequently, a single CCC calculation yields results for all possible energy

sharings, and depends on only two parameters N0 and λ. For a given angular momenta

expansion, convergence is then tested by, say, keeping λ constant and increasing N0. At

100 eV, where energy sharing ranges from symmetric to asymmetric, we found sufficient
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convergence by taking N0 = 40 and λ = 3.8. Not all of the generate states were included in

the close-coupling expansion, only the open and the lowest three closed, a total of around

30− l2 states for each l2. At 450 eV, where only highly asymmetric energy sharing is being

considered, we included all states generated with N0 = 20 and λ = 2.4.

The bipolar harmonics entering Eq. (5) can be evaluated by using the following expression

[34] :

Y l1l2
1M (k̂1, k̂2) = −

1

4π

(

3

lmax

)1/2
[

(−1)l1P ′
l1
(cos θ12)(k̂1)M + (−1)l2P ′

l2
(cos θ12)(k̂2)M

]

, (5)

where cos θ12 = (k̂1 · k̂2). This allows us to write the dipole matrix element as

〈Ψ(k1,k2)| dMp=0 |Ψ0〉 = (k1z + k2z) ag + (k1z − k2z) au (6)

An analogous expression with MP = 1 contains k1x and k2x. Here we introduced the sym-

metric (gerade) and antisymmetric (ungerade) DPI amplitudes:

a g

u
=

√
3

4π

∞
∑

l=0

(−1)l√
l + 1

[

P ′
l+1(cos θ12)∓ P ′

l (cos θ12)
]

D±
ll+1(E1, E2), (7)

calculated via symmetric and antisymmetric combinations of the reduced dipole matrix

elements, respectively,

D±
l1l2

(E1, E2) =
1

2
{Dl1l2(E1, E2)±Dl1l2(E2, E1)} . (8)

IV. RESULTS

First, we will present an overview of the three particle kinematics in the final state

continuum for Eexc = 100 eV. For a closer inspection we will show thereafter the 4DCS for

Eexc = 100 eV and Eexc = 450 eV in the common polar and azimuthal angles for various
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FIG. 5: Momentum distribution of the second electron e2 with respect to the first electron e1 for

Eexc = 100 eV above the threshold. The two electrons are in a plane perpendicular to the light

propagation x: Θx1 = Θx2 = 90◦ ± 30◦, where Θx is the polar angle with respect to the light

propagation. The arrow indicates the direction of the first electron e1. The outer circle is the

maximum possible momentum. The inner circle indicates the locus of events with equal energy

sharing. Panel (a) is integrated over all orientations of the polarization axis, while (b) and (c) show

subsamples of all events shown in (a). The polarization vector in (b) and (c) is horizontal. (b)

electron e1 is parallel within Θ1 = ±30◦ (Θ refers to the polar angle in respect to the polarization

axis)to the polarization axis; (c) electron e1 is perpendicular to the polarization axis, Θ1 = 90◦±5◦

to the polarization axis. The star marks the location of the node at p1 = −p2 (selection rule C).

This node is independent of the polarization and is therefore present in all three panels.

energy sharings. Additionally, the angular distributions will be discussed in detail with

respect to the selection rules and explained in terms of the parametrization of the transition

matrix element suggested by Huetz et al. [35] and Malegat et al. [36] .

A. Overview

An overview of the three particle dynamics in the final state for Eexc = 100 eV is given in

figure 5. The density plot shows the momentum distribution for electron e2 for fixed direction

of electron e1 indicated by the arrow. Both electrons are chosen to be perpendicular to the

light propagation. The outer circle indicates the locus where electron e2 has all the excess

energy of 100 eV, the inner circle shows the locus where both electrons have 50 eV energy.
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This illustration makes use of the advantages of a COLTRIMS apparatus: on the one hand,

collecting the charged particles in the full solid angle, on the other hand, no preselection of

the energy sharings. In figure 5(a) integration over all orientations of the polarization vector

is performed. Figure 5(b) and (c) are subsets of figure 5(a). In figure 5(b) and (c) the angle

between e1 and the polarization vector is fixed and the polarization axis in both panels is

horizontal. In figure 5(b) the fixed electron e1 is parallel to the polarization axis; in figure

5(c) the fixed electron e1 is perpendicular to the polarization axis.

In figure 5 the structure of the observed momentum distribution is dominated by two

physical effects. Due to electron repulsion both electrons are mainly emitted to opposite

half spheres. The second major effect is the final state symmetry 1P o. Maulbetsch and

Briggs [37] have derived the geometries where the final state wave function has a node. Two

selection rules can be seen in figure 5 classified according to the nomenclature of Maulbetsch

and Briggs. All three panels show a node marked by the star at p1 = -p2. The initial ground

state of helium has a positive parity which turns into the negative parity of the final state

after absorption of the photon. This negative parity for p1 = -p2 requires that the wave

function is identically zero at this point (selection rule C). This node is independent of the

polarization and is therefore present in all three panels.

Selection rule A can be found in panel (c). The cross section vanishes if both electrons are

emitted 90◦ to the polarization vector. This selection rule is a consequence of the transition

from the 1Se state into a 1P o state. If both electrons are emitted 90◦ to the polarization

vector the final state with the total angular momentum L = 1 and its projection onto the

polarization axis M = 0 has a node. This selection rule holds for all energy sharings.

B. 4DCS 100 eV above threshold

For a closer inspection and a more thorough comparison with theory, the 4DCS are

presented in figures 6 to 11 for different energy sharings. We show the 4DCS on an absolute

scale and in the common polar and azimuthal angles for coplanar geometry, i.e. both

electrons and the polarization vector are in the plane of paper. The solid line in each panel

is the CCC calculation in the velocity gauge. Length and acceleration gauge results would

be barely distinguishable from those using the velocity guage and are not shown. Figures

from 6 to 11 show how the 4DCS depend on the energy sharing. For Eexc = 100 eV data
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FIG. 6: Fourfold differential cross section of the He PDI at Eγ = 179 eV photon energy on absolute

scale in barn/(eV · rad). In all panels the polarization axis is horizontal. The direction and the

energy of one of the two electrons is fixed as indicated by the number and the arrow. E1 is

always the energy of the fixed electron. The polar plots show the angular distribution of the

complementary electron, which is within ±5◦ (a,b,d,f,h,i) and ±10◦ (c,e,g) in the plane. The solid

line is a full CCC calculation in velocity gauge. The measurements are normalized to precisely

measured total cross section by Samson et al. [29], [30]. Note the change in scale between the panels.

(a) 97<E1 < 100 eV, −5◦ <Θ1 < 5◦, (b) 85<E1 < 95 eV, −5◦ <Θ1 < 5◦, (c) 75<E1 < 85 eV,

−5◦ < Θ1 < 5◦, (d) 65 < E1 < 75 eV, −5◦ < Θ1 < 5◦, (e) 45 < E1 < 55 eV, −5◦ < Θ1 < 5◦, (f)

25 < E1 < 35 eV, −5◦ < Θ1 < 5◦, (g) 25 < E1 < 35 eV, −5◦ < Θ1 < 5◦, (h) 5 < E1 < 15 eV,

−5◦<Θ1<5◦, (i) 0<E1<3 eV, −5◦<Θ1<5◦

in figures 6 to 8 we have chosen five different energy sharings, four unequal and one equal

energy sharing: 1.5 eV ↔ 98.5 eV; 10 eV ↔ 90 eV; 20 eV ↔ 80 eV; 30 eV ↔ 70 eV and

50 eV ↔ 50 eV. The angle between the fixed electron and the polarization vector is chosen

to be Θ1 = 0◦, 45◦ and 90◦.
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In figure 6 the 4DCS for the fixed electron parallel to the polarization vector is shown.

There is a strong dependence of the angular distribution on the energy sharing: The angular

distribution of the very slow electron with the fast electron being fixed shows only one

lobe, but different shapes (figure 6(a)-(c)): the angular distribution of the slow electron

looks like an ellipse (figure 6(a)), while the distribution for a slightly higher energy of the

complementary electron E2 is changed to the shape of a heart (figure 6(b)); (this distribution

is also called an apple by Schmidt et al.). With increasing energy two lobes are formed (figure

6(d) and (e)). At equal energy sharing there is a node in the angular distribution (figure

6(e)). This is due to selection rule C: The cross section vanishes if p1 = -p2. Secondly,

at equal energy sharing we find a node also for p1 = p2; the cross section is zero if both

electrons are emitted into the same direction due to the electron repulsion. For E2 ≥ 50 eV

a third lobe parallel to the polarization vector and on the opposite direction of the fixed

electron emerges (figure 6(f)). With increasing energy of the complementary electron this

third lobe grows relative to the other two lobes which are perpendicular to the polarization

axis. These two lobes perpendicular to the polarization axis become only one lobe with

more asymmetric energy sharings (figure 6(h) and (i)). So, finally, at an energy of 98.5 eV

we find an angular distribution which consists again of two lobes parallel to the polarization

axis, one much larger than the other (figure 6(i)). This angular distribution has the shape

of a fish. The CCC calculation yield excellent agreement with the experiment in shape and

in magnitude at all energy sharings.

At Θ1 = 45◦ (figure 7), the angular distribution looks significantly different from the

previous ones (figure 6). For the distribution of the slow electron we find a more or less

round structure which peaks around 200◦ to the polarization vector and 180◦ to the fixed

electron (figure 7(a)). With increasing energy E2 the lobe of the angular distribution gets

narrower (figure 7(b) and (c)). At equal energy sharing (figure 7(e)) there are two lobes, a

big (third and fourth quadrant) and a small one (parallel to the polarization vector). With

increasing E2 the small lobe in the second and third quadrants grows in relation to the other

one (figure 7(f)-(i)). At an energy of E1 = 10 eV for the fixed electron the two lobes have

nearly the same magnitude (figure 7(h)). Comparing the number of lobes in the angular

distribution for Θ1 = 0◦ and Θ1 = 45◦ we observe differences: figure 6(f) and (g) show

clearly three lobes, while in figure 7(f) and (g) just two lobes are visible.

At Θ1 = 90◦ between the fixed electron and the polarization vector (figure 8) the angular
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FIG. 7: Same as in figure 6 except the angle between the polarization axis and the fixed electron is

Θ1= (45± 3)◦, the complementary electron is within the plane defined by the polarization vector

and the fixed electron within ±15◦.

distributions in all panels look quite the same as we expect from selection rule A. This

selection rule and the node at the back to back emission of the electrons does not allow

much “freedom” for the angular distributions. In all panels there is a two lobe structure

observed. For the case of equal energy sharing there are two additional angular distributions

plotted (figure 8(e)). These lines correspond to the angular distribution of E1 = E2 = 10 eV

(dashed line) and E1 = E2 = 0.5 eV (dotted line); both angular distributions are from [7].

These two lines and our experimental data for E1 = E2 = 50 eV differ in the angular position

of the lobe maxima, their relative size and their width. The lobes of E1 = E2 = 0.5 eV

and E1 = E2 = 10 eV are narrower than the lobes of the 50 eV electron. Additionally,

the lobes are emitted more backward to the electron with fixed emission direction. This

behaviour as well as the angular distributions in general can be best explained by using

the parametrization of the transition matrix element suggested by Huetz et al. [35] and

Malegat et al. [36]. They have shown that the 5DCS can be separated within the dipole
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approximation into geometrical factors and dynamical parameters

d5σ

dE1d cosΘ1d cosΘ2dΦ1dΦ2

=| ag(cosΘ1 + cosΘ2) + au(cosΘ1 − cosΘ2) |2 . (9)

(see also Eq. (6)). Here Θ1 and Θ2 are the angles of emission of the two electrons with

respect to the polarization axis and Θ12 is the angle between the direction of both electrons.

The gerade (symmetric) and ungerade (antisymmetric) amplitudes ag and au are complex

functions of the the electron energies E1 and E2 and their relative angle Θ12. In Eq. (9)

(cosΘ1+cosΘ2) and (cosΘ1−cosΘ2) are the geometrical factors reflecting the 1P o symmetry

whereas ag and au are dynamical parameters.

For equal energy sharing the ungerade amplitude vanishes and Eq. (9) reduces to a simpler

form:

d5σ

dE1d cosΘ1d cosΘ2dΦ1dΦ2

∣

∣

∣

∣

∣

E1=E2

=| ag |2 (cosΘ1 + cosΘ2)
2. (10)

By measuring the 5DCS (9) the squared gerade amplitude | ag |2 can be obtained. Because

of this simplicity many groups have extracted | ag |2 for equal energy sharing [5–7, 19, 38].

In the case of equal energy sharing, experimentally extracted squared amplitude | ag |2,
also called the correlation factor, demonstrates a gaussian shape which is predicted by the

Wannier theory

| ag |2∝ exp[−4 ln 2(π −Θ12)
2/∆Θ2

12]. (11)

Here the gaussian width parameter ∆Θ12 determines the full width at half maximum

(FWHM) of the Θ12 distribution. The Gaussian width depends on the photon energy [35].

We fit the 4DCS for equal energy shown on panel (e) of figure 8 with the gaussian ansatz

(11) and obtained a FWHM of 121◦ ± 3◦. For comparison, on the same panel we draw

the 4DCS (10) with a gaussian width FWHM = 68◦ (Eexc = 1 eV [7]) and FWHM = 91◦

(Eexc = 20 eV [7]) seen as dotted and dashed lines. With a decreasing photon energy the

lobes become narrower and more backward emitted. This is a result of the electron repulsion

which plays an increasingly important role with decreasing excess energy.
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FIG. 8: Same as in figures 6 and 7 except the angle between the polarization axis and the fixed

electron is Θ1= (90±5)◦, the complementary electron is within the plane defined by the polarization

vector and the fixed electron within ±15◦. Dashed and dotted lines in (e) show the corresponding

distribution for Eexc = 20 eV and Eexc = 1 eV (see text).

To understand the angular distributions in the case of unequal energy sharing the un-

gerade amplitude has to be taken into account. Bolognesi et al. have shown that | au |2

for an energy of 40 eV above the threshold and an energy sharing of 5 eV ↔ 35 eV can be

described by a gaussian also [39]. If we treat | au |2 also for Eexc = 100 eV as being more

or less a gaussian and the phase between both amplitudes to be independent of Θ12 (for a

detailed study of | ag |, | au | and the relative phase, see part C), much can be learned by

describing the angular distribution in terms of the gerade and ungerade amplitudes:

In figure 8 where the fixed electron is perpendicular to the polarization axis all angular

distributions are similar because of two aspects. On the one hand, the shapes of the gerade

and ungerade amplitudes are nearly the same. On the other hand, + cos2 Θ2 and − cos2 Θ2

terms both show a dipole distribution, i.e. they represent the same selection rule A. Therefore

the small variations (angular positions of the lobe maxima, their relative sizes and their
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widths) are due the different FWHM of the gerade and ungerade amplitudes and the ratio

between the gerade and ungerade amplitudes for the different energy sharings.

To understand the angular distributions for unequal energy sharing and Θ1 6=90◦ a few

more facts are relevant: The ratio | ag |2/| au |2 drops with a decreasing E1/E2 (with E1

≤ E2), secondly, at the double ionization threshold, the ungerade amplitude is nearly zero.

With increasing photon energy | au | grows in relation to | ag |. The angular distributions

are an interplay between the gerade and the ungerade amplitudes which are weighted by

the geometrical factors. At selected geometries or equal energy sharing the influence of each

amplitude on the angular distributions is observable.

The angular distribution (ellipse) of the E2=1.5 eV electron (figure 6(a)) is mainly due to

the ungerade amplitude weighted by (1− cosΘ2)
2, which has its maximum at Θ2 = Θ12 =

180◦. Additionally, the ungerade amplitude is maximal at an angle Θ12 = 180◦ between

both electrons (see also part C). The gerade amplitude instead is weighted by (1+ cosΘ2)
2

and has therefore a maximum at Θ2 = Θ12 = 0◦; it is zero for Θ2 = Θ12 = 180◦. Hence, the

part of | ag | at Θ12 = 180◦ is zero. The 5DCS at Θ12 = 180◦ is defined by | au |:

5DCS(E1, E2,Θ1 = 0◦,Θ12 = 180◦) = 4 | au(E1, E2,Θ12 = 180◦) |2 . (12)

Therefore the angular distribution in figure 6(a) is due to mainly the ungerade amplitude.

The same argument can be applied for figure 6(i): The distribution of the 98.5 eV electron

has the shape of a fish. This structure can be divided into the main body of the fish (second

and third quadrant) and into the fish fins which are perpendicular to the polarization axis.

Its main body shape is mainly due to the ungerade amplitude. The fins however are a result

of the gerade amplitude weighted with (1 + cosΘ2)
2. The variations in the shapes of the

angular distribution in figure 6(a) and figure 6(i) result from the fact, that | au | changes its
sign with permutation of both electrons.

C. 4DCS 450 eV above threshold

After this overview of the 4DCS at Eexc=100 eV we now discuss the 4DCS at a much

higher energy of Eexc=450 eV. Figures 9 - 11 show the 4DCS dependence on the energy

sharing. We choose four different cases: 1.5 eV ↔ 448.5 eV; 10 eV ↔ 440 eV; 30 eV ↔
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FIG. 9: Fourfold differential cross section of the He PDI at 529 eV photon energy normalized to

CCC calculation in barn/(eV · rad). In all panels the polarization axis is horizontal. The direction

and the energy of one of the two electrons is fixed as indicated by the number and the arrow. E1

is always the energy of the fixed electron. The polar plots show the angular distribution of the

complementary electron, which is in the plane within ±20◦(a,b,c,d,e,f) and ±25◦(g,h). The solid

line is a full CCC calculation in velocity gauge. Panels (a), (b), (e) and (f) are from [22]. (a)

447<E1 < 500 eV, −25◦ <Θ1 < 25◦, (b) 0<E1 < 3 eV, −25◦ <Θ1 < 25◦, (c) 434<E1 < 446 eV,

−25◦<Θ1<25◦, (d) 4<E1<16 eV, −30◦<Θ1<30◦, (e) 410<E1<430 eV, −25◦<Θ1<25◦, (f)

20<E1 < 40 eV, −25◦<Θ1 < 25◦, (g) 390<E1 < 410 eV, −30◦<Θ1 < 30◦, (h) 40<E1 < 60 eV,

−25◦<Θ1<25◦

420 eV and 50 eV↔ 400 eV. The angle between the fixed electron and the polarization vector

is again chosen to be 0◦, 45◦ and 90◦. We discuss the shape of the angular distributions in

terms of the gerade and ungerade amplitudes.

First, the distribution of the fast electron will be discussed. At extreme asymmetric

energy sharing we find a somewhat distorted dipole distribution for the fast electron (figure

9(b) and (d)). This can be taken as evidence that the fast electron is the one which primarily
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absorbs the photon energy as well as its angular momentum [22]. At low and intermediate

photon energies an interpretation of the data in terms of a simple two-step mechanism where

an electron absorbs the photon and successively the second electron is ejected by a shake-off

[4], or knock out (TS1) [40, 41] mechanism, is complicated by the fact that it is unclear which

of the two detected electrons is the primary photoelectron. Figure 9(b) and (d) show that

at higher excess energy of 450 eV this is changed and it seems well justified to speak about a

primary and secondary electrons. At more symmetric energy sharing there are still two lobes

parallel to the polarization vector, but surprisingly this time the lobe parallel to the fixed

electron is much larger than the lobe antiparallel to the fixed electron (figure 9(f)). This

should be compared to figure 6(h) and (i) where the lobe antiparallel to the fixed electron

is much bigger than the one parallel to the fixed electron. The reason is the following: As

5DCS180◦ depends solely on | au |2 (equation 12), the 5DCS for parallel emission is obtained

by

5DCS(E1, E2,Θ1 = 0◦,Θ12 = 0◦) = 4 | ag(E1, E2,Θ12 = 0◦) |2 . (13)

At intermediate excess energies both | ag |2 and | au |2 show a gaussian shape. | au |2 at

Θ12 = 180◦ is always higher than | ag |2 at Θ12 = 0◦. Therefore, the magnitude for antiparallel

emission is higher than for parallel emission. The larger lobe for parallel emission simply

means, that | ag |2 at Θ12 = 0◦ is larger than | au |2 at Θ12 = 180◦ at this energy sharing

(see also the companion paper part C).

For the slow electron there is a nearly isotropic distribution at extreme asymmetric energy

sharing (figure 9(a)). At E1 = 440 eV the distribution for the slow electron shows only a

weakly structured ellipse (figure 9(c)). With more symmetric energy sharing, i.e. higher

energy for the slow electron, we find emission of the slow electron into a narrow cone at 90◦

to the fast electron (figure 9(e) and (g)). One might think that this two lobe structure - the

narrow cone of 90◦ of the slow electron to the fast one - is a result of the same physics as

in figures 6(d), (e) and (f). In these figures the two lobe structure arises from the selection

rule C, which is valid at equal energy sharing. In terms of the parametrization by Huetz

et al. [35] and Malegat et al. [36], the ungerade amplitude is exactly zero for equal energy

sharing and nearly zero for almost equal energy sharing. Hence, only the gerade amplitude

contributes to the angular distribution. Because the geometrical factor (1+cosΘ2)
2 is zero
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FIG. 10: Same as in figure 9 except the angle between the polarization axis and the fixed electron is

Θ1= (45± 10)◦, the complementary electron is within the plane defined by the polarization vector

and the fixed electron within ±25◦.

for back-to-back emission there is a two lobe structure.

In contrast, figure 9(e) and (g) show the angular distribution for rather extreme asym-

metric energy sharing. In this case, both amplitudes contribute to the angular distribution.

Hence, the two lobe structure in figure 9(e) and (g) is not comparable to the two lobe struc-

ture in figure 6(d), (e) or (f). If the two lobe structure does not arise from | ag |2 ·(1+cosΘ2)
2

the source of this pattern must be found in the shape of the amplitudes itself and therefore

in the dynamics of the electrons.

Knapp et al. [22] have argued that very low energy secondary electrons are mostly

emitted via the shake-off process [4] while higher energy transfer requires a hard binary

(e,2e) collision [40, 41] and leads to an angle of 90◦ between the electrons. The signatures

of both mechanisms can also be seen in figure 10.

In figure 10 the angle between the fixed electron and the polarization vector is Θ1 = 45◦.

The angular distribution for the fast electron shows a dipole structure. Again, we find a
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FIG. 11: Same as in figures 9 and 10 except the angle between the polarization axis and the

fixed electron is Θ1= (90 ± 5)◦, the complementary electron is within the plane defined by the

polarization vector and the fixed electron within ± 25◦.

more or less isotropic distribution with a slightly backward emission for the slow electron.

For higher energy of the slow electron (figure 10(e) and (g)) we find a two lobe structure for

the angular distribution. Again, the two cones are 90◦ to the fast electron.

In figure 11 the angle between the fixed electron and the polarization vector is Θ1 = 90◦.

Similarly, all angular distributions show a two lobe structure due to the geometrical factors;

for E2 = 30 eV and E2 = 50 eV due to geometrical factors and the dynamical parameters.

The different dynamical parameters are responsible for the different appearance of the lobes:

in figure 11(b) the lobes are wide and almost round, while the lobes in figure 11(e) to figure

11(h) have a far narrower structure.

In summary, we have presented here the experimental and theoretical 4DCS of the PDI

of helium with linearly polarized light yielding excess energies of 100 eV and 450 eV above

the threshold. The CCC calculations yield excellent agreement with the experiment in

shape and in absolute value at all energy sharings. For 100 eV above the threshold we have
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confirmed the selection rules derived by Maulbetsch and Briggs [37]. Comparing the angular

distribution for equal energy sharing with the one for Eexc = 20 eV and Eexc = 1 eV we

find that the electron repulsion for a sum energy of 100 eV is less prominent than for 20 eV

above the threshold. For 450 eV we see a dramatic change in the dynamics between both

electrons for different energy sharings: there is an isotropic distribution for the slow electron

with an energy of 1.5 eV; if the energy of the slow electron is slightly higher (E2 = 30 eV

and E2 = 50 eV) we see emission of the slow electron into a narrow cone of 90◦ to the fast

electron. This is not a result of selection rule C, but a result of the three-body Coulomb

dynamics. This indicates that the two different double ionization mechanisms are active at

different energy sharings.
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[5] O. Schwarzkopf, B. Krässig, J. Elmiger, and V. Schmidt. Phys. Rev. Lett., 70:3008, 1993.

25



[6] G Dawber, L Avaldi, A G McConkey, H Rojas, M A MacDonald, and G C King. J. Phys.,

28:L271, 1995.
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