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Abstract. We present convergent close-coupling (CCC) calculations of the angular
anisotropy parameters (2,0s; and the recoil ion momentum distribution do/dp in
two-photon double ionization (TPDI) of helium. In a stark contrast to single-
photon double ionization (SPDI) where the 82 parameter varies widely changing the
angular distribution from isotropic to nearly dipole for slow and fast photoelectrons,
respectively, the § parameters for TPDI show very little change. The angular
distribution of the recoil ion is fairly isotropic in TPDI as opposed to strong alignment
with polarization of light in SPDI.
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There has been a considerable amount of research done recently on two-photon
double ionization (TPDI) of He. This work was strongly driven by rapid advancement
in experimental techniques. The Free electron LASer at Hamburg (FLASH) started
delivering vacuum ultraviolet photons at intensities sufficient for observing various multi-
photon phenomena. Two-photon single ionization of He at w = 13 eV was investigated
by Laarmann et al (2005). Wabnitz et al (2005) studied multiple ionization of Ar
and Xe atoms at the same photon energy. Moshammer et al (2007) reported few-
photon multiple ionization of Ne and Ar at w = 38.8 eV. Very recently, the same group
obtained the first differential data on the sum-momentum distribution of TPDI of He
at w = 45 eV (Moshammer 2007). Using an alternative high harmonic generation
technique, Nabekawa et al (2005) observed the production of doubly charged He ions
by two-photon absorption using w = 42 eV radiation. Very recently, Benis et al
(2006) observed two-photon double ionization of Ar and Kr atoms by a superposition
of harmonics.

On the theoretical side, a wide range of methods was applied to the TPDI problem
during the past decade. There have been several reported calculations of the total
integrated cross-section of TPDI of He at various photon energies (Pindzola and
Robicheaux 1998, Nikolopoulos and Lambropoulos 2001, Parker et al 2001, Mercouris
et al 2001, Colgan and Pindzola 2002, Feng and van der Hart 2003, Piraux et al 2003, Hu
et al 2005). Although numerical values of the cross-sections varied depending on the
theoretical model and assumed characteristics of the laser field, there appeared some
consensus between several calculations (see Hu et al (2005) for detail). This consensus,
however, was challenged recently as can be seen from the latest reports (Foumouo et al
2006, Ivanov and Kheifets 2006, Nikolopoulos and Lambropoulos 2007).

In contrast, the data on angular correlation pattern in two-electron continuum are
more conciliatory. There is at least some agreement between the fully resolved triply
differential cross-sections (TDCS) produced by non-perturbative (Colgan and Pindzola
2002, Hu et al 2005) and perturbative (Kheifets and Ivanov 2006, Istomin et al 2006)
calculations. Less detailed double differential cross-section (DDCS), integrated over the
escape angle of one of the photoelectrons, was not explored so far. The only report of
DDCS by Barna et al (2006) is concerned with the sequential regime of TPDI which
shows much less sensitivity to many-electron correlations.

In the meantime, DDCS is much more appealing for experimental studies because
of a larger volume of phase space being probed and significantly improved statistics. It
can bring a wealth of information as was demonstrated by Knapp et al (2002) who were
able to isolate various mechanisms of single-photon double ionization (SPDI) of He.
Similar angular distributions differential with respect to the sum or difference momenta
of the photoelectron pair can also be readily obtained (Dérner et al 1996, Brauning et al
1997a, Knapp 2002). They proved to be useful in pinpointing propensity rules which
govern the two-electron escape in the Jacobian coordinates (Walter et al 2000).

In this Rapid Communication, we bridge the gap between the total integrated and
fully differential cross-sections of TPDI of He and present the calculations of the DDCS
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in conventional and Jacobian coordinates. The latter calculation allows us to obtain
the recoil ion momentum distribution which can be compared directly with a recent
FLASH experiment (Moshammer 2007). We use essentially the same dynamical model
as was applied in our previous works on TPDI of He (Kheifets and Ivanov 2006, Kheifets
et al 2007). In this model, the atom-field interaction is restricted to the lowest second-
order perturbation theory which is further simplified by the closure approximation.
In the meantime, the electron-electron integration is treated non-perturbatively and
included in full. Although the closure approximation restricts the ability of this model
to provide accurate absolute cross-sections, the angular correlation pattern obtained
in such a calculation is remarkably similar to non-perturbative time-dependent close-
coupling calculations (Colgan and Pindzola 2002, Hu et al 2005). We thus believe that
this model should be adequate for DDCS calculations.

We start our derivation from the TPDI TDCS differential with respect to the
photoelectron angles and energy:
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Here the index M refers to the polarization state of light, M = 0 and 2 correspond to
linear and circular polarization, respectively. In the latter case, only the quadrupole
channel L = 2 contributes to TDCS. The radial matrix elements Dj; (E1, E») are
obtained in the simplified second-order perturbation theory as described in earlier work
(Kheifets and Ivanov 2006). By integrating Equation (1) over d€2;, we get DDCS which
can be presented in the form
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where the 8 coeflicients are given by the following expression:
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Here we introduced the hat symbol L = (2L + 1)'/? and dropped the explicit energy

dependence of the matrix elements Df; (Ei, E,) for brevity. In deriving Equation (2)
and (3), we coupled the angular momenta of the photoelectron pair L, L' into J using
the graphical angular momentum projection summation technique (Varshalovich 1988).
Equation (3) coincides with an analogous expression for S-parameters of two-photon
single ionization (Liu et al 1992, Gribakin et al 1999) in which the role of /; is assumed
by the angular momentum of the bound target electron. In the following, we divide
the B-parameters by the single-differential, with respect of energy E», cross-section such
that Bp = 1 and write the DDCS as
d*o do 1

0.0E, = B, 2r |1+ B2P(cos2) + BuPa(cos 6r)] (4)
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In comparison, the DDCS of SPDI contains only the £, term which is given by the same
Equation (3) with L = L' = 1.

To derive DDCS in the Jacobian coordinates, we use the method proposed by
Pont and Shakeshaft (1996) for SPDI. We start from the TPDI amplitude in the form
suggested by Istomin et al (2006):

F(ky k) = fi(ki - e + fo(ks - €)° + fo(ki-€)(ky - €) + fo(e-€)  (5)

Here k; = k; /ki,i = 1,2 are the unit vectors directed along the photoelectron momenta.
The amplitudes f;,7 = 0,1,2, s depend on the essential dynamic variables F;, F5 and
cosfiy = kq - ko/(k1ks). We rewrite Equation (5) relative to the Jacobian momenta
p=ki+ks k=Fk —ks:

F(p,k) = fo(p-€)’ + fu(k-€)* + fip(k - €)(p-€) + fo(e - €) (6)
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Here we used a weak asymmetry approximation f; & fs = f thus negelcting the energy

where

,

sharing dependence of the amplitudes.
Directing the (linear) polarization axis along z and noting that p - e = pcos 6, and
k - e = k cos 6 we write squared amplitude (6) as

|F(p, k)|? = p*|f,|? cos® 6, + k| f1.|? cos? B, + p*k?| frp|* cos® B, cos® O + | fol?
+ 2p°k*Re{ f, i} cos® 6, cos® O + 2pk Re{ fipfo } cos 6, cos by,
+ 2p3kRe{fpf,jp} cos® 6, cos b + 2pk3Re{fkf,:p} cos , cos® b
+ 2p°Re{f,fs} cos® 0, + 2k> Re{ fi.fo } cos® Oy, (7)
Next step is to expand the amplitude factors into the Legendre polynomial series with

respect to the cosine of the mutual angle cos 0, = (k- p)/kp as prescribed by Pont and
Shakeshaft (1996). Using this expansion and the Legendre polynomials integral

47
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we can perform the spherical integration
1
yo /dﬂk\F(p, k)|> = Ag + AaPs(cos 8,) + Ay Py(cos b)) (8)

where the coefficients Ay, A and A, are expressed via the coeflicients in the Legendre
polynomials expansion of quadratic |f;|*,i = p,k, kp,0 and bi-linear Re{f; f;} forms.
The same technique can be applied directly to Equation (5) thus giving an alternative
method of obtaining the S-coefficients in Equation (4). We used it as a check of the
accuracy of our computations.
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Figure 1. Angular anisotropy [ parameters for two-photon (left and center)
and single-photon (right) double ionization of He at the excess energy of 20 eV.
Experimental data for SPDI are from Brduning et al (1997b). The TPDI calculations
are performed for linear and circular polarization of light.

The DDCS is the spherical integral (8) multiplied by an extra kinematical factor
kp (Pont and Shakeshaft 1996):
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We note that do/dE, = 0 for p = 0 even though A, # 0 as the antiparallel escape
resulting in p = 0 is not forbidden in TPDI as opposed to SPDI.

Now we turn to results of our calculations. On the left panel of Figure 1 we show the
B parameters in Equation (4) for TPDI of He with linearly polarized light at the excess
energy of 20 eV above the double ionization threshold which corresponds to the photon
energy w = 49.5 eV. For comparison, on the right panel of the same figure, we show the
B-parameter for SPDI at the same excess energy (the photon energy w = 99 eV). The
experimental data for SPDI are from Brauning et al (1997b).

In the CCC method, the electrons are explicitly distinguishable. The label 1 is
attached to the slow electron which is described as a positive energy pseudostate whereas
the label 2 corresponds to the fast electron which is considered as a Coulomb wave.
Thus the expressions (3) and (4) define the angular distribution of the fast photoelectron
E> > E/2 where E is the excess energy above the double ionization threshold. To obtain
the angular distribution of the slow photoelectron, we rely on the exchange symmetry
of the matrix elements DlLll2(E1, Ey) = DlL?ll(Ez, Ey). Since the slow and fast electrons
are described differently, numerical values of the direct and exchange matrix elements
might be somewhat different. This is reflected in a small gap of 3 parameter at E/2.

By comparing the left and right panels of Figure 1, we observe a significant
qualitative difference between the S parameters for TPDI and SPDI. In the two-photon
case, both 8 and (4 are large and positive. In contrast, in the single-photon case, the (3,
parameter varies widely from nearly zero for a very slow photoelectron to large positive
values for a fast photoelectron. This tendency to large (3 is exemplified at larger excess
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energies. For instance, at 100 eV excess energy, B2 =~ 1.4 for the 99 eV photoelectron
which demonstrates a strongly dipolar angular distribution (Knapp 2002). At larger
still excess energy of 450 eV, B &~ 2 at the top end of the excess energy scale which
corresponds to the complete alignment of the fast photoelectron with the polarization
axis of light (Knapp et al 2002). This energy dependence of 3, can be interpreted as
a gradual cross-over between two different regimes of SPDI. Nearly zero §, parameter
of a slow photoelectron corresponds to a fully isotropic angular distribution which is a
footprint of the shake-off mechanism. On the contrary, a large positive 3, parameter for
a fast photoelectron corresponds to a direct knock out when the whole of the photon
energy and angular momentum is absorbed by the fast photoelectron.

This can be seen from the explicit expression of the 3> parameter for SPDI which
can be obtained from Equation (3) by setting L = L' = 1. When the shake-off is
the main mechanism of the SPDI, the slow electron emerges predominantly in the s
state. One therefore can truncate the sum in (3) by a single term Iy = I, = 0 which
leads immediately to 82 = 0. To find the B> parameter for a fast photoelectron, one
can employ the exchange symmetry D, ;,(E1, E3) = Dy, (Es, E1) to establish the only
surviving term corresponding to l; =0, l; =1 and 8 = 2.

In TPDI, because the target atom interacts with the field twice, the shake-off
electron can be ejected in a p wave after firstly being promoted from the ground 1s
state to an excited np state. In this scenario, the main contribution to the angular
distribution of the slow electron comes from the /[y = [, = 1 term which leads to 5, =1
and B4 = 0. This is indeed close to the calculated value of 3 and explains much smaller
values of 3,. By way of the exchange symmetry, one can argue that the same angular
terms would be dominant for the fast electron which explains a rather weak energy
dependence of S parameters. A non-zero value of 3, indicates that the slow electron can
also emerge in a d state as a result of two repeated knock out processes. Most likely,
as in the case of SPDI, a clear separation of the shake-off and knock-out ionization
mechanisms would occur at much higher photon energies. However, at this energies, the
sequential regime of TPDI would become dominant.

The case of circular polarization which is illustrated in the central panel of Figure 1
can be analized similarly. In this case, a slow shake-off electron emerging in a p-state
should have 8, = —1 which is close our calculation. Although 84 # 0, it remains small.
As in the case of linear polarization, both 3 parameters show little variation with energy.

Now we turn our discussion to the angular distribution of the recoil ion momentum
K which is defined by the angular asymmetry parameters for the sum momentum
p = k1 + ks = —K. On the left panel of Figure 2 we plot the angular asymmetry 3
parameters and the energy distribution do/dE, corresponding to the sum momentum
p for the TPDI of He at the excess energy of 20 eV. For comparison, on the right
panel of Figure 2, we plot the analogous parameters for the SPDI at the same excess
energy. Again, as in Figure 1, there is a qualitative difference between the TPDI and
SPDI cases. In the two-photon case, the § parameters change from nearly zero to large
positive values as p varies from 0 to pmax. This is to be compared with the large and
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Figure 2. Angular anisotropy  parameters and energy distribution do/dE, of the
recoil ion for single-photon (right) and two-photon (left) double ionization of He at the
excess energy of 20 eV.

positive , parameter which varies very little in SPDI. The energy distribution do/dE,
is zero both for p = 0 and p = pyax (K = 0) due to the kinematic factor kp. However, the
function p~'do/dE, is large at p = 0 and decays monotonously towards ppmay in TPDI
but has a broad maximum at about =~ pp,,/2 in SPDI.

This qualitatively different behavior of § parameters can be explained in the
following way. Inspection of Equation (7) shows that the terms containing various
powers of cosf, and thus contributing to A; and A4 coeflicients of (8) are all vanishing
when p — 0. In the meantime, Ay remains finite as f; is non-vanishing in this limit.
This results in zero values of 8 and (; and a finite value of p~'do/dE, at p = 0.
In comparison, the SPDI amplitude has the form F(p,k) = f,(p-e) + fi(k - €)
where f,r = 0.5(f1/k1 £ fo/k2) . When p — 0, fi goes to zero as well and both the
coefficients Ay and A, become small. This results in a finite 85 and vanishing p 'do /dE,
at p = 0. We note that this analysis reflects the tensorial structure of the SPDI and
TPDI amplitudes and thus remains valid for any atom other than He.

This different behavior of double ionization amplitudes in single- and two-photon
case has a profound implication when the recoil ion momentum distribution is
measured experimentally. In a typical cold target recoil ion momentum spectroscopy
(COLTRIMS) experiment, the following quantity is recorded (Knapp 2002):

do v p 1 do
dpadp. Py dE,dQ,

—Apy

Here the 3D momentum is projected on the polarization plane by way of integration over
the momentum component p, in the direction of the photon propagation. The limits of
integration Ap, are chosen depending on the signal count rate. For SPDI, thus observed
momentum distribution will peak at ~ pna,/2 where (s is large and positive resulting in
a broad dipole structure aligned along the polarization axis of light as is indeed the case
for various excess energies ranging from 1 to 100 eV (Dérner et al 1996, Brauning et al
1997a, Knapp 2002). On the contrary, in the TPDI case, the intensity of the momentum
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distribution is largest near the origin where the S parameters are close to zero. Hence,
there will be very little anisotropy seen in the recoil ion momentum distribution except
for large momenta where the experimental signal is fairly weak. A recent COLTRIMS
study of TPDI of Ne at photon energy of 38.8 eV confirmed this prediction (Moshammer
et al 2007). Unpublished preliminary results on He at 45 eV photon energy seem to also
fit into this pattern (Moshammer 2007).

The authors wish to thank Robert Moshammer for providing unpublished
experimental results. The authors acknowledge support of the Australian Research
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