Different escape modes in two-photon double ionization of helium
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The quadrupole channel of two-photon double ionization of He exhibits two distinctly different

modes of correlated motion of the photoelectron pair.

The kinematics of the mode associated

with the center-of-mass motion favors large total momenta maximized at parallel emission where
the inter-electron repulsion is strong. In contrast, the mode associated with the relative motion
favors large relative momenta maximized at anti-parallel emission where the inter-electron repulsion
is relatively weak. This difference in the inter-electron repulsion allows for much wider angular
correlation width in the relative motion mode as compared to the center-of-mass mode.

The process of correlated motion of multiple ionization
fragments has been at the forefront of atomic collision
physics during the past decade. Recent progress in exper-
imental techniques made it possible to detect simultane-
ously a large number of charged reaction fragments with
fully determined kinematics [1]. The long range Coulomb
interaction between these fragments makes a full theo-
retical description of such a process a highly challenging
task. In the meantime, the simplest multiple fragmenta-
tion reaction, the single-photon double ionization (SPDI)
of helium is now well understood with accurate theoret-
ical predictions being confirmed experimentally under a
wide range of kinematical conditions [2-4]. All the infor-
mation about the correlated motion of the photoelectrons
is described in SPDI by a pair of symmetrized amplitudes
f* (612, E1, E>) which depend on the relative interelec-
tron angle and energy [5, 6]. The dipole matrix element
of SPDI is expressed via these amplitudes as

D=A, -é= [f+ (ko +hoo) + f~ (k1 — ko) -€. (1)

Here é is the polarization vector of light, k; = k; [ ki,
i = 1,2 are the unit vectors directed along the pho-
toelectron momenta k;. Under the equal energy shar-
ing condition, the anti-symmetric amplitude vanishes
f~(E1 = E2) = 0 and all the information about the
SPDI process is contained in one symmetric amplitude
fT. Following predictions of the Wannier-type theories
[7, 8], the SDPI amplitude can be written using the Gaus-
sian ansatz:

(7T — 012)2

|[FfT]> < exp |[-4In2 A,

(2)

where the width parameter Af;5 indicates the strength
of angular correlation in the two-electron continuum. Al-
though the analytical theories [7, 8] validate Eq. (2) only
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near the double ionization threshold, numerical models
[9] and direct measurements [10, 11] support its validity
in a far wider photon energy range.

Two-photon double ionization (TPDI) of He is a much
more complex fragmentation process with two competing
decay channels into the S and D two-electron continua.
In analogy with Eq. (1), the TPDI matrix element can
be written as

M+Q=A-{é€R¢é}g+ A -{é€® €} (3)

where the second rank tensor As represents the
quadrupole TPDI amplitude and allows for the follow-
ing parametrization [12]:

Ay = gt [{icl ® icl}z + {1252 ® iﬂz}z] (4)
+ 9 [{’251 ® ’211}2 - {’232 ® 7;!2}2]
+ gg{iﬁl ® ’;2}2 + go{[’;'q X icz] ® [IAcl X ’;:2]}2

The monopole amplitude is represented by a scalar Ag =
gm- Using the tensorial product properties [13], equa-
tions (3) and (4) can be simplified to the following form

14]:

o>

M+Q = fi(ks-&€)?+ faks - &) (5)
+ fs(’z:l €)(kz-€)+ fo(é-é)

where the set of amplitudes in Eq. (5) is expressed via
the amplitudes introduced in Eq. (4) as

fi=g"+9 —g, =gt -9 — g0 (6)
2 T 2
fs = gs+2zg0 , fo=—§g+—§gs+§(1—w2)go+gm

Here we use a shortcut z = cos0a.

In this Communication, we demonstrate that complex-
ity of the TPDI leads to a new phenomenon of two dis-
tinct correlated escape modes: one is associated with the
center-of-mass motion of the photoelectron pair whereas
another is related to their relative motion. The kine-
matical factor associated with the center-of-mass motion



favors a large total momentum of the pair p = k1 + ko
which is gained at the parallel escape. In contrast, the
kinematics of the relative motion mode favors a large rel-
ative momentum k = k; — ko which is maximized at the
anti-parallel escape. The dynamical correlation factor
which is governed by the inter-electron repulsion peaks
strongly at the anti-parallel emission in both modes.
However, the width of this factor is much wider in the
relative motion mode as compared to the center-of-mass
mode. This can be explained by lesser inter-electron re-
pulsion in the former mode as compared to the latter.

In the following, we restrict ourselves with only the
quadrupole amplitude and concentrate on the kinematics
where the quadrupole channel is either the sole contribu-
tor to the TPDI or strongly dominant over the monopole
channel. For simplicity, we consider the equal-energy-
sharing kinematics E; = E,. We rewrite Eq. (4) with
respect to the Jacobian momenta as

Ay = g1 {k®k}2+9,{P®P}2+grp{[kxB]®[k x P} (7)

where

1 1 1
ge = 7297 = 95) » 9p= 7297 +95) , gk = 790 (8)
and p = p/p and k= k/k. Using similar notations,
the dipole amplitude of SPDI (1) under the equal en-
ergy sharing condition is parametrized as D « f, (§- é),
It = fp, f~ = 0. We note that D is linear with re-
spect to p and does not contain k under the equal energy
condition. In contrast, @ is quadratic with respect to k
and p and contains both vectors even when E; = Es.
The amplitude g; which enters Eq. (7) with the tenso-
rial product {k ® k}» can be associated with the relative
motion of the photoelectron pair described by the vector
k. Similarly, the amplitudes g, can be associated with
the center-of-mass motion and the amplitude gy which is
entering Eq. (7) with the vector product k x p can be
associated with the mixed motion mode.

To calculate amplitudes (8), we employed here the
same dynamical model as was outlined in our previous
work [12]. In this model, the electron-photon interac-
tion was treated in the lowest-order perturbation theory
using the closure approximation whereas the electron-
electron interaction was included in full using the conver-
gent close-coupling (CCC) method. The model proved to
be capable of describing the angular correlation pattern
in the two-electron continuum in good agreement with
non-perturbative, with respect to the electromagnetic in-
teraction, calculations [15, 16].

We calculated amplitudes (8) in a range of excess en-
ergies F; + Es from 1 eV to 20 eV above the double
ionization threshold. We employed a fairly large CCC
basis set composed typically of 25 — [ box-space target
states [17] with 0 < < 6. Convergence of the calculation
with respect to the basis size was thoroughly tested.

In the whole excess energy range, the amplitude go
was found insignificant as compared with g; and g,. The
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FIG. 1: The TPDI amplitudes in the quadrupole channel g
(top) and gp (bottom) fitted with the Gaussian ansatz (2).
The excess energy of 4 €V is shared equally between the pho-
toelectrons E; = E» = 2 eV. The arrows indicate the Gaus-
sian width parameter Afis.

latter amplitudes were fitted with the Gaussian ansatz
(2). A typical quality of the fit can be judged from Figure
1 where the amplitudes g; and g, are exhibited for £y =
Ey = 2 eV. The corresponding width parameters A8,
are plotted in Figure 2, as a function of energy, along
with the width parameter of the dipole amplitude f,.
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FIG. 2: The Gaussian width parameters Af12 of the ampli-
tudes g (red filled circles), gp (blue open circles) and f, (light
blue squares) as functions of the excess energy F; + F2. Ex-
traction of the width parameters is illustrated in Figure 1 for
E1 = E2 =2 eV.

Across the energy range studied here, we observe a
systematically larger Gaussian width of the relative mo-



tion amplitude g as compared with the center-of-mass
motion amplitudes g, and f,, the latter two having a
very similar width. We interpret this stark difference in
terms of the strength of the electron-electron repulsion.
This strength is much larger in the center-of-mass motion
whose kinematics favors large p and hence the parallel
emission as opposed to the relative motion mode in which
both the kinematic and dynamical correlation factors fa-
vor large k associated with the anti-parallel emission. We
note that the mixed mode amplitude is typically an or-
der of magnitude smaller than the pure mode amplitudes
gr and g, thus supporting our notion of distinct escape
modes.

Parametrization (5) can also be rewritten with respect
to the Jacobian momenta:

M+Q = fp(p-€)*+ fr(k-é)

+ fip(D-€)(k-&)+ fo(e-6)  (9)
where
fo = J i+ bt £) fe= (4 B f)
fip = Hlfi—F2) =0 for By =P, (10)

However, all the amplitudes fi, f, and fo have generally
the same Gaussian width which is in between the relative
motion width and the center-of-mass width indicated in
Figure 2. Thus, parametrization (5) and (9), which ap-
pears to be more concise and practical, does not reveal a
clear mode separation.

For illustrations, we consider two kinematics where
these properties of the quadrupole amplitude can be
studied experimentally. First, we consider TPDI with
linearly polarized light é = € where € indicates the direc-
tion of the major axis of the polarization ellipse. Taking
this direction as the quantization axis z and detecting
both electrons in the polarization plane (the so-called
coplanar kinematics), we can write the quadrupole am-
plitude as

Q g [(cos 6; — cos6y)? — %(1 — :c)] (11)

2 1
+ gp[(cos 61 + cos62)* — g(l + :r)] + ggkp(:zc2 -1

= fr(cosy — cosbs)? + f,(cosby + cosba)? + fo

From these equations, it is seen that the amplitudes g,
and g, contribute quite differently to the correspond-
ing matrix elements. Both amplitudes peak strongly
near 01> = 180°. However, the kinematic factor corre-
sponding to g, have a node at this angle whereas the
kinematic factor accompanying g, has a peak. As a re-
sult, the term proportional to g; dominates strongly the
quadrupole amplitude. This dominance is illustrated on
the top panel of Figure 3 where the triply-differential
cross-section (TDCS) do/dE;dQ1dQs of the TPDI of
He at 1 = FE>; = 2 eV and the coplanar kinemat-
ics is plotted as a function of the variable escape an-

gle 0> and fixed escape angle #; = 0°. Three calcu-
lations are displayed in the figure. The first TDCS is
generated from the sum of the monopole and quadrupole
amplitudes do/dFE1dQ1dQs < |M + Q|*> (dotted line).
The second is obtained from the quadrupole amplitude
alone do/dE;ddQs o« |Q|? (solid line). In the third
calculation, a restricted quadrupole amplitude is used
do/dE1dQ;dQs o |Q(gr)|? in which the only g; contri-
bution is retained (filled circles).

To make a shape comparison, the first TDCS is scaled
to the second by applying a scaling factor of 0.73. No
further scaling is applied between the second and third
TDCS. We see that, indeed, the main features of the
TDCS are originated from the quadrupole amplitude
alone and the role of the monopole amplitude is insignif-
icant in this geometry. By comparing the second and
third TDCS, we elucidate the dominance of the g; term
which persists at all fixed angles 6;. It is particularly
strong at a fixed escape angle 8; = 0 when nearly all the
contribution to the quadrupole amplitude comes from the
gr term.

For the second illustration,Awe take the case Aof circu-
larly polarized light é = (¢ +i()/+/2 where { = k x é and
k indicates the direcj;ion of the photon wave vector. We
direct z axis along k and again detect electrons in the
polarization plane. The quadrupole amplitude for this
complanar geometry becomes

1 . 121 ) a2
Q = 59k [e”’l - e"”] + 59 [e’¢1 + e’¢2] (12)

1 . .12 1 . 12

§fk [ez¢1 _ ez¢z] + §fp [ez¢1 + ez¢vz] + fO

The corresponding TDCS for the same equal energy shar-
ing 1 = E; = 2 eV is shown on the bottom panel
of Figure 3. We see again a strong dominance of the
g term as the corresponding kinematic factor peaks at
¢1 — ¢2 = 180° where g; has peak as well. On the con-
trary, the kinematic factor accompanying g, has a node
at ¢1 — 2 = 180°. We note that the monopole amplitude
is zero for TPDI with 100% circularly polarized light at
any geometry since it cannot accommodate two units of
angular momentum projection.

We have to note that it is the parametrization of the
quadrupole amplitude with respect to the Jacobian mo-
menta (7) and (8) that gives such a clear separation of
the center-of-mass and relative motion modes. Our ear-
lier attempt in Ref. [12] to apply the Gaussian ansatz (2)
showed no such a clear systematic behavior of the angu-
lar correlation width with respect of the excess energy as
exhibited in Figure 2.

Comparing two different parametrizations of TPDI in-
troduced in our earlier work [12] and, later, in Ref. [14],
one may notice a fewer number of independent ampli-
tudes (4 instead of 5) in the latter. However, the present
parametrization has advantage at certain kinematics. For
instance, only two amplitudes are needed instead of three
in the case of circularly polarized light (see Eq. (12)).
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FIG. 3: Triply-differential cross-section do /dFE1d21d22 of the
TPDI of He at F1 = E2 = 2 eV. Top: linear polarization and
coplanar geometry ¢1 = ¢2 = 0, one electron is fixed along
the polarization axis of light #; = 0, the TDCS is plotted
as a function of the variable escape angle of another electron
02. The thin black dotted line corresponds to the sum of
the monopole and quadrupole amplitudes o< |[M + Q|*>. The
red solid line corresponds to the quadrupole amplitude alone
o | M|? whereas the blue thick dotted line exhibits the contri-
bution of the &< |M(gx)|? term only. The black dotted curve
is scaled to the red solid curve at its maximum by a factor of
0.73 Bottom: circular polarization and perpendicular geom-
etry 8; = 02 = 90, one electron is fixed along the direction
of the photon propagation ¢ = 0, the TDCS is plotted as a
function of the variable escape angle of another electron ¢s.

In conclusion, we demonstrated the presense of two
distinct photoelectron escape modes in the quadrupole
channel of two-photon double ionization of He. One of

the modes corresponds to the center-of-mass motion of
the photoelectron pair. The kinematics of this mode en-
hances the total momentum of the pair and therefore fa-
vors the parallel emission. The inter-electron repulsion is
strong in this mode and the angular correlation width is
relatively small. In the other, relative motion, mode the
kinematic factor enhances the relative momentum of the
pair and therefore favors the anti-parallel emission. The
inter-electron repulsion is much weaker in this mode and
the angular correlation width is much larger. Both modes
are fully symmetric and present under the equal energy
sharing condition. In contrast, the single-photon double
ionization has only one fully symmetric mode which is
associated with the center-of-mass motion. This mode,
in terms of the angular correlation width, is very similar
to the center-of-mass motion mode in two-photon double
ionization. The presense of two modes is a reflection of
the quadratic tensorial structure of the quadrupole pho-
toionization amplitude as compared to the linear struc-
ture of the dipole photoionization amplitude.

The outlined effect can be observed experimentally.
For TPDI with linearly polarized light, the quadrupole
amplitude dominates the cross-section at the co-planar
kinematics when one of the photoelectrons is aligned
with the direction of the polarization axis of light. The
quadrupole amplitude is the sole contributor to the TPDI
with the circularly polarized light. In both cases, nearly
all the TPDI yield is associated with the relative motion
of the photoelectrons. Although the contribution of the
center-of-mass mode is generally small, it can still be de-
tected by observing the recoil ion which absorbs the total
momentum of the photoelectron pair.

The area of excess energies below 1 eV above the
threshold has not been investigated in the present study
due to prohibitively slow convergence with respect to
the photoelectron angular momenta. Figure 2 indicates
that different modes tend to converge near the threshold.
More study is needed to resolve this issue.
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