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We study the transverse electron momentum distribution (TEMD) of the spin orbit wavepackets
launched in a pump-probe sequential double ionization from the valence shell of a noble gas atom.
Our calculations, based on an accurate numerical solution of the time-dependent Schrödinger equa-
tion (TDSE), reproduce a characteristic cusp of the TEMD which is attributed to the Coulomb
singularity. The evolution of the TEMD with the time delay between the pump and probe pulses
is shown to be similar to the prediction of the standard tunneling formula (TF), as was observed
experimentally for argon by Fechner et al. [Phys. Rev. Lett. 112, 213001 (20014)]. However,
TDSE calculations show a clear deviation from the TF and predict a much more complicated struc-
ture which cannot be reproduced by the target orbital momentum profile filtered by the tunneling
Gaussian. The accuracy of the TF can be improved if the target momentum profile is calculated
with the Coulomb waves instead of the plane waves.

PACS numbers: 32.80.Rm 32.80.Fb 42.50.Hz

I. INTRODUCTION

Photoelectron spectroscopy of strong field atomic ion-
ization proved to be a useful tool to study the timing
of the ionization process. In the multiphoton regime, the
time of the photoelectron release can be mapped onto the
photoelectron kinetic energy in attosecond streaking ex-
periments [1]. In the tunneling regime, the timing infor-
mation can be encoded in the photoelectron momentum
distribution in the form of the angular tilt with respect
to the vector potential direction of the circularly polar-
ized light at the moment of the wave packet release. This
experimental design is popularly known as the attoclock
[2]. Similarly, the orthogonally polarized two-color laser
fields can be used to obtain the sub-cycle timing of the
wave packet release from the momentum vector of emit-
ted electrons [3].

In addition to resolving strong field atomic ionization
in time, the photoelectron momentum distribution can be
used to interrogate atomic and molecular orbital struc-
ture [4]. For the longitudinal momentum distribution p‖
along the major axis of the linearly polarized light, the
acceleration of the photoelectron in the laser field leads
to a significant distortion of the initial momentum distri-
bution [5]. For long times after the laser pulse end, the
distribution in this direction is centered at p‖ = E0/ω,
where E0 is the peak laser electric field and ω is the car-
rier frequency [6]. So the information on the momentum
distribution in the target orbital is lost. This is not the
case for the transverse, or lateral, momentum p⊥ perpen-
dicular to the polarization plane. The electron motion in
this direction is not affected by the laser field and only
influenced by the Coulomb interaction with the parent
ion. If this interaction is neglected, the transverse elec-
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tron momentum distribution (TEMD) is expected to be a
direct image of the bound-state orbital in the momentum
space [6–8]:

W (p⊥) = |ψnlm(p⊥)|2 exp
(

−
√

2I

E0
p2
⊥

)

(1)

Here, the momentum profile of the target orbital
|ψnlm(p⊥)|2 is projected into the continuum by a Gaus-
sian shaped filter

F (p⊥) = exp

(

−
√

2I

E0
p2
⊥

)

≡ exp
(

−p2
⊥/σ

2
)

(2)

with an intensity-dependent width σ that arises from the
standard tunneling theory [5, 9]. In this Gaussian, I is
the ionization potential and E0 is the peak laser electric
field.

Prediction of the tunneling formula (TF) (1) has been
tested experimentally. In the experiments employing
laser light with linear polarization [10] as well as in the
heavy ion impact experiments [11, 12], the Coulomb sin-
gularity had a very strong effect which resulted in a sharp
cusp-like peak at zero momentum instead of a Gaus-
sian distribution predicted by the TF (1). The Gaus-
sian distribution (1) was observed and measured in the
experiment with circular polarization [6]. The Gaussian
width σ was shown to be within 15% from predictions of
the TF (1). Further improvement could be achieved by
using a quantitative tunneling formula (QTF) in which
the prefactor is not simply the initial-state momentum-
distribution but rather a squared transition amplitude
from an initial bound state to a plane-wave state with
the kinetic momentum k + A(t) [13].

Wörner and Corkum [8] suggested that the TF (1) can
be used to image and control multielectron dynamics by
laser-induced tunnel ionization. In the proposed exper-
iment, the pump laser pulse tunnel ionizes the valence
np6 shell of a noble gas atom. The singly charged ion
is prepared in a coherent superposition of its two lowest
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fine structure levels np5 P1/2, 3/2 . Because an atomic p-
orbital aligned along the laser field is ionized much more
easily than the one with the perpendicular orientation,
it is the m = 0 hole that is created in the first ionization
step. The initially created hole is projected onto a pair
of closely spaced spin-orbit P1/2 and P3/2 doublet. Con-
sequently, the hole population oscillates in time between
the m = 0 and |m| = 1 states [8]

Pm=0(τ) = 5/9 + 4/9 × cos(2πτ/T )
P|m|=1(τ) = 4/9 × [1 − cos(2πτ/T )]

(3)

Here 2π/T = ∆E is the spin-orbit energy splitting of the
P1/2, 3/2 doublet. This dynamic initial electronic state
is subject to further tunneling ionization by the second
laser pulse which double ionizes the target atom. In re-
sult, the double ionization yield oscillates with the same
characteristic period T when studied as a function of the
time delay τ between the pump and probe pulses. Simi-
lar oscillations is experienced by the TEMD because the
momentum profiles of the target orbitals with m = 0 and
|m| = 1 are very different having a peak and a node at
p⊥ = 0, respectively. In this way, the strong field tunnel
ionization can be used to interrogate both the dynam-
ics and electronic structure of the singly charged target
state.

Perhaps aware of the Coulomb singularity and the cusp
in the TEMD, Wörner and Corkum [8] proposed their
Gedanken experiment to be performed with the circular

polarization. Such an experiment was realized by Fechner
et al. [14] on the Ar atom but they used the linear polar-
ization in their measurements. As expected, instead of
the smooth Gaussian TEMD, they observed the cusp-like
momentum profiles both for the neutral Ar and the singly
ionized Ar+. However, when the differential TEMD sig-
nal was recorded at a given time delay τ relative to the
time averaged TEMD, the cusp at p⊥ = 0 was completely
removed and the predictions of the TF (1) were perfectly
reproduced. Thus, by taking the time differential signal,
the Coulomb singularity could be eliminated and the sig-
nature of the momentum profile of the target orbital of
the singly charge ion could be restored.

In the present work, we perform accurate calculations
based on a numerical solution of the time-dependent
Schrödinger equation (TDSE) which goes beyond the
simple tunneling models and various strong field approxi-
mations. Our TDSE calculations with linear polarization
reproduce a characteristic cusp of the TEMD. The calcu-
lated time differential TEMD is qualitatively similar to
predictions of the standard tunneling theory evaluated
from the TF (1) and the hole population (3). However,
numerical calculations return a much more complicated
structure which cannot be reproduced by the simple tun-
neling theory and related to the target electronic struc-
ture. To elucidate the origin of the cusp in the TEMD,
we modify the TF (1) by calculating the target momen-
tum profile with the Coulomb waves instead of the plane
waves. Such a modification did reproduce the cusp. We
also performed an analogous TDSE calculation with the

circular polarization which returned a cusp-free TEMD.
Reduction of the cusp with elliptically polarized laser
light, as the degree of ellipticity grows, was demonstrated
in our previous work on the hydrogen atom [15]

The paper is organized as follows. In Sec. II we
describe our numerical techniques which we use for the
TDSE calculations II A and the TF calculations II B. Re-
sults of our TF and TDSE calculations are described in
Sec. III A and III B, respectively. The atomic units a.u.
are used throughout unless otherwise specified.

II. THEORY

A. TDSE formalism

We solve the TDSE for a target atom in the single
active electron (SAE) approximation:

i
∂Ψ(r)

∂t
=
(

Ĥatom + Ĥint(t)
)

Ψ(r) . (4)

The SAE potential is derived by localization of the
Hartree-Fock (HF) potential using the numerical recipe
described in [16]. This recipe uses a set of continuous HF
orbitals calculated by the computer code [17]. As a test,
we compare the energies of the 3p state of the Ar+ ion in
the HF and localized potentials which differ by not more
than 5%. We find it adequate for the purposes of the
present work.

The electromagnetic interaction operator Ĥint(t) in
Eq. (4) is cast in the velocity form:

Ĥint(t) = A(t) · p̂ , A(t) = −
∫ t

0

E(η) dη. (5)

We consider below the cases of linearly and circularly
polarized driving pulses. We use coordinate system with
z-axis taken as the quantization axis. In this coordinate
system the electric field of the pulse is given by the ex-
pressions:

E(t) = E0f(t) cosωt ẑ

E(t) =
E0√

2
f(t) (cosωt x̂ + sinωt ŷ)

(6)

for the linear (top) and circular (bottom) polarizations.
Here x̂, ŷ, and ẑ are unit vectors pointing along the
coordinate axes. The pulse envelope is chosen as f(t) =
sin2(πt/T1) , where T1 is the total pulse duration. In
the following, we report calculations with T1 = 6 optical
cycles for the linearly polarized driving pulse, and T1 = 4
optical cycles for the circularly polarized one (here optical
cycle is 2π/ω). The base frequency ω = 0.057 a.u., which
corresponds to the wavelength λ = 790 nm. In Eq. (6)
E0 = 0.12 a.u., which corresponds to the field intensity of
5×1014 W/cm2 for both linearly and circularly polarized
pulses.
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To solve the TDSE, we employ the strategy tested in
the previous works [18, 19]. The solution of the TDSE is
represented as a partial waves series:

Ψ(r, t) =

Lmax
∑

l=0

l
∑

µ=−l

flµ(r, t)Ylµ(θ, φ). (7)

The radial part of the TDSE is discretized on the grid
with the stepsize δr = 0.05 a.u. in a box of the size
Rmax = 400 a.u. for the circularly polarized driving
pulse, and Rmax = 600 for the linearly polarized one.
The number of partial waves in Eq. (7) was limited to
Lmax = 50. A series of routine checks [18, 19] was per-
formed to ensure that the calculations were converged
with respect to variations of the parameters δr, Rmax

and Lmax.
Substitution of the expansion (7) into the TDSE gives

us a system of coupled equations for the radial functions
flµ(r, t), describing evolution of the system in time. To
solve this system, we use the matrix iteration method
developed in [20]. The ionization amplitudes a(p) are
obtained by projecting solution of the TDSE at the end
of the laser pulse on the set of the ingoing scattering
states the target atom.

ψ(−)
p

(r) =
∑

lµ

ile−iδlY ∗
lµ(np)Ylµ(nr)Rkl(r) . (8)

Here np = p/p, and nr = r/r are unit vectors in the
direction of p and r, respectively.

The transverse electron momentum distribution, de-
scribing probability to detect a photoelectron with a
given momentum component p⊥ perpendicular to the po-
larization plane, is obtained as

W (p⊥) =

∫

|a(p)|2 dpx dpy , (9)

for the circularly polarized driving pulse, and:

W (p⊥) =

∫

|a(p)|2 dpy dpz , (10)

for the linearly polarized one.

B. Tunneling formula evaluation

1. Target momentum profiles

The TEMD is evaluated using the following procedure.
First, the momentum space wave function of the target
orbital is calculated

ψnlm(p) =

∫

d3r exp(−ipr)ψnlm(r) . (11)

The atomic orbital is written as a product of the radial
and angular parts ψnlm = Ylm(r̂)Pnl(r)/r . By using the

partial wave expansion for exp(−ipr) and the orthogo-
nality of the spherical harmonics, we obtain

|ψnlm(p)|2 ∝

∣

∣

∣

∣

∣

∣

Ylm(p̂)

∞
∫

0

rdr jl(pr)Pnl(r)

∣

∣

∣

∣

∣

∣

2

≡ |Ylm(p̂)|2ρnl(p) (12)

Here the spherically integrated momentum density

ρnl(p) ∝

∣

∣

∣

∣

∣

∣

∞
∫

0

rdr jl(pr)Pnl(r)

∣

∣

∣

∣

∣

∣

2

(13)

is expressed as the squared radial integral with the spher-
ical Bessel function jl(pr). By using explicit expressions
for the spherical harmonics

|Y10(p̂)|2 =
3

4π

p2
‖

p2
, |Y1±1(p̂)|2 =

3

8π

p2
⊥

p2
, p2 = p2

⊥+p2
‖

we perform the partial integration to obtain the following
momentum profiles:

|ψnp,m=0(p⊥)|2 =
3

4π

∞
∫

0

dp‖
p2
‖

p2
ρnp(p) (14)

|ψnp,m=±1(p⊥)|2 =
3

8π
p2
⊥

∞
∫

0

dp‖
1

p2
ρnp(p) → 0 as p⊥ → 0

These profiles are plugged into Eq. (1) to obtain the m-
specific TEMD:

Wm(p⊥) = |ψnp m(p⊥)|2 exp

(

−
√

2Inp

E
p2
⊥

)

(15)

The target momentum profiles (15) behave differently for
small transverse momenta p⊥ → 0. The m = 0 profile
stays finite whereas |m = 1| one is vanishing. Combined
with a rapidly decaying Gaussian factor, this behavior
explains why |W0(p⊥)| ≫ |W1(p⊥)|.

To elucidate the role of the Coulomb field of the singly
or doubly charged parent ion left behind by the photo-
electron, we also perform calculations of the momentum
profiles (15) using the spherically integrated momentum
density in which the spherical Bessel function l(x) is sub-
stituted by the regular Coulomb function x−1Fl(η, x).
The Sommerfeld parameter η = −Za/p is calculated
with the asymptotic charge seen by the receding pho-
toelectron: Za = 1 for Ar+ and Za = 2 for Ar2+. In
this way, we substitute the plane waves in (11) with the
corresponding Coulomb wave. In case of the zero asymp-
totic charge, the Coulomb function becomes the spherical
Bessel function x−1Fl(η = 0, x) = jl(x)

and the Coulomb wave becomes the plane wave. The
TEMD calculated with the Coulomb function is marked
with the c-index W c

m(p⊥) to differentiate it from the ordi-
nary TEMDWm(p⊥) calculated with the Bessel function.
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FIG. 1: (Color online) Top panel: The TEMD Wm(p⊥) of
the Ar 3p m = 0 (solid red line) and m = 1 (dotted blue
line) states calculated with the HF orbitals (right) and the
hydrogenic orbitals [14] (left). Wm=1(p⊥) is multiplied by a
factor of 10 for better visibility. Middle panel: same for the
Ar+ ion. The green dashed lines on the right show the TEMD
calculated with the orbitals found in the localized potential.
Bottom panel: Gaussian filter functions for the field intensity
of 5 × 1014 W/cm2 for the neutral Ar atom (solid red line)
and the Ar+ ion (dotted blue line) in the present calculation
(right) and from Ref. [14] (left).

III. RESULTS

A. Tunneling formula calculations

The TEMD Wm(p⊥) of the 3p orbital for the two pro-
jections m = 0 and |m| = 1 are presented in Figure 1 for
the neutral Ar atom (top panel) and the singly ionized
Ar+ ion (middle panel). The m = 1 TEMD is multi-
plied by a factor of 10 to be visible on the same scale.
In the same figure, we make a comparison with the anal-
ogous calculation of Fechner et al. [14] who employed
hydrogenic orbitals with a set of effective charges. Both
calculations are shown as mirror images on the opposite
halves of the transverse momentum scale. On the bottom
panel of the figure, we show the Gaussian filters (2) in
both calculations evaluated with the same field intensity
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FIG. 2: (Color online) Right: the TEMD Wm(p⊥) of the Ar+

ion for the 3p states with m = 0 (solid red line) and m = 1
(dotted blue line). The calculation by Fechner et al. [14] is
shown with the colored dots. Right: the TEMD W c

m
(p⊥)

calculated with the Coulomb functions instead of the Bessel
functions.

of 5 × 1014 W/cm2. The presently calculated Gaussians
appear to be slightly wider, most probably because of the
difference in ionization potentials with Ref. [14].

In Figure 2 we display an analogous set of TEMD
W c

m(p⊥) calculated with the Coulomb functions instead
of the Bessel functions. The transformation of the TEMD
is radical. For m = 0, a smooth Gaussian peak at p⊥ = 0
is replaced by a sharp cusp. For m = 1, the geometrical
node at p⊥ = 0 remains in place but it follows by steep
rise of the TEMD which turns into a sharp fall. This
behavior is the consequence of the Coulomb singularity.
In a special case of p → 0 and r → 0 when η = Z/p < 0
and is large [21],

Fl(η, pr) =

√

π

2|η|
(2pr|η|)l+1

(2l + 1)!
∝ p−1/2

which is singular for all l. This singularity is smoothed
somewhat a factorial (2l + 1)! for large l. This inverse
square root singularity is imprinted in W c

m=0(p⊥ → 0)
and only partially cured by the geometrical node in
W c

|m|=1(p⊥ → 0).

1. Time differential TEMD

The electron occupation numbers in the Ar+ ion are
related to the hole occupation numbers (3) as:

Dm=0(τ) = 2 − Pm=0(τ) = 13/9 − 4/9 cos(2πτ/T )
D|m|=1(τ) = 4 − P|m|=1(τ) = 32/9 + 4/9 cos(2πτ/T )

(16)
These occupation numbers can be used to calculate

the time-specific TEMD summed over all the target elec-
trons:

W (p⊥, τ) =
∑

|m|=0,1

Wm(p⊥)Dm(τ) (17)
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The time-averaged TEMD is evaluated as

W (p⊥) =

∫ T

0

W (p⊥, τ)dτ (18)

Both the time-specific and time averaged TEMD are nor-
malized

W (p⊥, τ) = A−1W (p⊥, τ) , A =

∫ ∞

0

W (p⊥, τ)p⊥dp⊥

W (p⊥) = A−1W (p⊥) , A =

∫ ∞

0

W (p⊥)p⊥dp⊥

and the time-differential TEMD is evaluated as

∆W (p⊥, τ) =
[

W (p⊥, τ) −W (p⊥)
]

p⊥ , (19)

where

W (p⊥) =
13W0(p⊥) + 32W1(p⊥)

13|W0| + 32|W1|
(20)

W (p⊥, τ =
nT

2
) =

17W0(p⊥) + 28W1(p⊥)

17|W0| + 28|W1|

W (p⊥, τ = nT ) =
W0(p⊥) + 4W1(p⊥)

|W0| + 4|W1|

Here |Wm| =
∫∞

0 Wm(p⊥)p⊥dp⊥

The time-differential TEMD is shown in Figure 3 for
the time delays equal to an integer τ = nT (top) and a
half integer τ = nT/2 (bottom) number of periods of the
spin-orbit oscillations together with the analogous set of
data from Fechner et al. [14]. The present Bessel function
calculations both with the HF and localized orbitals are
very similar to hydrogenic orbital calculation in Ref. [14].
The Coulomb function calculation with the HF orbital is
qualitatively similar but visually different. Even though
the Coulomb singularity is not seen directly in the time
differential TEMD, it makes it contracted in the trans-
verse momentum scale and the crossing point is moved
closer to the origin.

B. TDSE calculations

Solution of the TDSE (4) is found by time propaga-
tion of the initial state of the target. To describe the
dynamic initial state of the Ar+ ion with the electron
population given by Eq. (16) we employ the density ma-
trix formalism. A completely incoherent density matrix
representing the initial ensemble of the Ar+ ions is given
by the following expression:

ρ̂1 =
1

2π

∫ 2π

0

|Ψφ〉〈Ψφ| dφ . (21)

Here |Ψφ〉 is a coherent superposition of the normalized
3p states with the m = 0 and m = 1 projections

|Ψφ〉 =
√

pm=0(τ)Ψm=0 + eiφ
√

p|m|=1(τ)Ψ|m|=1 , (22)
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FIG. 3: The time differential TEMD ∆W (p⊥, τ ) for the Ar+

ion calculated at the time delays equal to an integer τ = nT
(top) and half integer τ = nT/2 (bottom) periods of the spin-
orbit oscillation. The Bessel function calculations with the
HF (red solid lines) and localized (green dashed lines) orbitals
are compared with calculations of Fechner et al. [14] with
hydrogenic orbitals (blue dotted lines). The dotted puprle line
shows the Coulomb function calculation with the HF orbital.

The normalization coefficients are related to the occupa-
tion numbers (16) as pm(τ) = Dm(τ)/5 . An arbitrary
phase φ in Eq. (22) is averaged over in Eq. (21). Us-
ing Eq. (22) to evaluate the integral in Eq. (21) density
matrix ρ̂1 can be more conveniently represented as:

ρ̂1 =
∑

|m|=0,1

pm|Ψm〉〈Ψm| (23)

TDSE calculations with the density matrix (21) are thus
equivalent to two independent calculations from the ini-
tial 3p states of the Ar+ ion with m = 0 and m = 1
projections. Using the procedure described by Eq. (9)
(linear polarization) or Eq. (10) (circular polarization)
we obtain the TEMD Wm=0(p⊥) and W|m|=1(p⊥). The
time-specific TEMD corresponding to a particular value
of delay τ is obtained as an incoherent sum

W (p⊥, τ) =
∑

|m|=0,1

pm(τ)Wm(p⊥) (24)

The phase averaging in Eq. (21) is based on the assump-
tion that all the relative phases φ are equally probable.
As an additional test, we performed a separate set of cal-
culations with the density matrix favoring one particular
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value of the relative phase φ:

ρ̂2 = |Ψ0〉〈Ψ0|, (25)

where |Ψ0〉 is the state (22) with φ = 0. The density
matrix (25) describes a pure state which is a coherent
superposition of the 3pm states of the Ar+ with m = 0
and |m| = 1. We shall see below that results of the
calculations using the incoherent density matrix (21) and
the coherent matrix (25) are quite similar. This indicates
that our results are not very sensitive to the fine details
of the preparation of the ensemble of Ar+ ions in the
experiment.

All the TDSE calculations shown below were per-
formed for the values of the time delay between the pump
and probe pulses τ ranging from 0 to 0.9T with an in-
crement of 0.1T , T = 2π/∆E being the period of the
spin-orbit oscillations. Except for the data shown in Fig-
ure 5 which were calculated both with the density ma-
trices (21) and (25), the incoherent density matrix (21)
was used.

1. Linear polarization

In Figure 4 we present the results of our TDSE cal-
culation for the time-averaged TEMD of the Ar+ ion in
comparison with experimental data [14]. Similar to the
experiment, the calculated results are binned into the in-
tervals of the transverse momentum with the width of
∆p⊥ = 0.02 a.u. Both the calculation and the exper-
iment demonstrate a cusp-like peak at p⊥ = 0. Away
from this peak, the TEMD is falling rather quickly. A
similar monotonous fall away from the cusp is seen in the
TF calculation with the Coulomb function and the HF
orbital also shown in the figure. When superimposed on
the binned experimental data, a close resemblance can
be seen. In the TDSE calculation the fall away from
the cusp is initially very steep but then flattens with
a shoulder-like structure. This structure is seen more
clearly for the time-differential TEMD shown in Figure
5 for the time delays equal to integer τ = nT (top) and
half integer τ = nT/2 (bottom) periods of the spin-orbit
oscillation. Here we make a comparison of the TDSE cal-
culations with an incoherent and the coherent dynamic
initial state. The difference between the two calculations
is rather small and can only be seen in fine details.

Fechner et al. [14] concluded that their time-differential
TEMD reproduces the TF with hydrogenic orbitals. This
is indeed seen in Figure 6 where we make a comparison
of the experimental data with the TF and TDSE calcu-
lations. The TDSE calculation is visibly different from
the TF with the the localized orbitals. For an integer
number of oscillations (top panel), the TDSE calculation
is rather close to the TF calculated with the Coulomb
function and the HF orbital. For a half-integer number
of oscillations (bottom panel), this similarity is lost. Un-
fortunately, the experimental error bars are too large to
discriminate between different calculations. On the top
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FIG. 4: The time-averaged TEMD of the Ar+ ion. Right:
TDSE calculation. Left: experiment by Fechner et al. [14]
and the TF calculation with the Coulomb function and the
HF orbital (blue solid line).
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FIG. 5: Top panel: the time differential TEMD ∆W (p⊥, τ )
for the Ar+ ion calculated at the time delays equal to an inte-
ger number of periods of the spin-orbit oscillation. Incoherent
density matrix (21) (red solid line), coherent density matrix
(25) (green dash). Bottom panel: same for time delays equal
to a half integer number of periods of the spin-orbit oscilla-
tion.

panel, however, the TF with the hydrogenic orbitals is
the closest to the experiment.

2. Circular polarization

The circular polarization computations are much more
demanding in comparison to the linear polarization case
because of a slower convergence of the expansion (7).
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FIG. 6: The time differential TEMD ∆W (p⊥, τ ) for the Ar+

ion calculated at various time delays equal to an integer τ =
nT (top panel) and a half integer τ = nT/2 (bottom panel)
periods of the spin-orbit oscillation. TDSE calculations (red
solid line) are compared with the TF calculations with the
hydrogenic orbital (blue solid lines), the TF calculations with
the Coulomb waves and the HF orbitals (green lines) and
experiment of Fechner et al. [14] (error bars)

Physically, absorption of a photon from the circularly
polarized light increases the magnetic quantum number
of the target by one unit. It is required at least 20 pho-
tons to ionize the Ar+ ion by the laser light of 800 nm.
This means that the number of partial waves to be re-
tained in the expansion (7) should be at least that large.
In fact, a good numerical convergence is achieved at a
considerably larger number of 50 partial waves. The re-
ward for this rather demanding calculation is substantial,
however. The TEMD for the case of circular polariza-
tion exhibits much nicer properties. Most importantly,
there is no cusp in the TEMD, in agreement with the ex-
perimental observation [6]. Another difference between
linear and circular polarization cases, is that ionization
probabilities from m = 0 and m = 1 cases may have com-
parable magnitudes [19] while for the linear polarization
case ionization from the m = 0 state is by far dominant.
This can be understood from the following properties of
the spherical harmonics [22]

Yl,|m|=l ∝ (p⊥/p)
l , Yl,|m|=l−1 ∝ (p⊥/p)

l−1 , p2 = p2
⊥+p2

‖

The linear polarization case permits a small l = 1 which
enters the TF (1) and clearly favors the m = 0 projection
over the |m| = 1 projection. In the circular polarization
case, l should be very large and the difference between
the m = 0 and |m| = 1 projections is not so dramatic as
both have a node as p⊥ → 0.
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FIG. 7: The time-averaged TEMD of the Ar+ ion for cir-
cularly polarized driving pulse. Binned TDSE calculation is
shown with boxes. The TF calculation with the localized 3p
orbital of the Ar+ ion is shown on the right by the blue dot-
ted line. The Gaussian fit exp(−p2

⊥/σ2) is shown by the black
solid line on the left.

The time-averaged TEMD from the TDSE calculation
is shown in Figure 7. The TEMD is Gaussian as pre-
dicted by the TF (1). The Gaussian width parameter
σ = 0.2 a.u. This can be compared with the analogous
parameter σ = 0.25 a.u. for the neutral Ar atom at the
field intensity of 5 × 1014 W/cm2 reported by Arissian
et al. [6].

The time-differential TEMD is shown in Figure 8 for
the time delay equal to an integer (top) and a half-integer
(bottom) number of the spin-orbit oscillations. We note
that the phase of the oscillations of the TEMD is opposite

as compared to the prediction of the TF (1) and the linear
polarization case shown in Figure 5 and Figure 6. We
also note that the TEMD is smooth and shows no fine
structure visible in the case of linear polarization.

IV. CONCLUSION

We performed a study of the the transverse electron
momentum distribution (TEMD) of the coherent super-
position of spin orbit wavepackets launched in a sequen-
tial pump-probe double ionization from the valence shell
of a noble gas atom. In agreement with the experimen-
tal results [10] our TDSE calculation for a linearly po-
larized driving pulse shows a characteristic cusp of the
TEMD which is attributed to the Coulomb singularity.
The evolution of the TEMD with the time delay between
the pump and probe pulses is shown to be similar to
the prediction of the standard tunneling theory based
on the SFA, as was observed experimentally for argon
by Fechner et al. [14]. The agreement between the sim-
ple tunneling formula (TF) and the TDSE calculations
is, however, qualitative at best. This largest disagree-
ment is pronounced in a Gaussian TEMD predicted by
the TF which is missing altogether the cusp structure
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FIG. 8: Color online. The time differential TEMD ∆W (p⊥, τ )
for the Ar+ ion calculated at time delays equal to integer
τ = nT (top) and half integer τ = nT/2 (bottom) periods
of the spin-orbit oscillation. Solid (red) line: TDSE calcu-
lation, dashed (green) boxes: TDSE calculation binned into
∆p⊥ = 0.05 a.u. intervals of transverse momentum for better
comparison with experiment.

in the TEMD at p⊥ → 0. The actual TEMD is more
complicated than a simple Gaussian, and it cannot be
reproduced by the target orbital momentum profile fil-
tered by the tunneling theory Gaussian. The TF can be
improved somewhat if the Coulomb functions are used
instead of the spherical Bessel functions when the mo-
mentum profile of the target orbital is calculated. Thus
modified TF does produce the cusp.

For a circularly polarized driving pulse, the time-
averaged TEMD is cusp-free and can be described well
by a simple TF (1). However, the time-differential TDSE
is very different from the TF predictions, the phase of the
oscillations being opposite to this predictions for the lin-
ear polarization case. This is so because absorption of
many photons from circularly polarized light can only be
accommodated by large orbital momenta which are not
incorporated in the TF.
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