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Spin effects in double photoionization of lithium
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We apply the non-perturbative convergent close-coupling (CCC) and time-dependent close cou-
pling (TDCC) formalisms to calculate fully differential energy and angular resolved cross-sections
of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which
dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet
amplitudes. The angular width of these amplitudes serves as a measure of the strength of the an-
gular correlation between the two ejected electrons. This width is interpreted in terms of the spin
of the photoelectron pair.
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I. INTRODUCTION

The lithium atom is the simplest many-electron target
beyond helium which can be studied by means of single-
photon two-electron ionization. Such a double photoion-
ization (DPI) process is driven entirely by many-electron
correlations and thus offers a sensitive probe of correlated
electronic structure.

Up to now, DPI studies of Li have been limited to the
total integrated cross-section (TICS) which was deter-
mined over a wide range of photon energies. Experimen-
tally, the ratio of double-to-single photoionization cross-
section was measured and then normalized to known sin-
gle photoionization cross-section [1, 2]. Theoretically,
various non-perturbative computational schemes were
applied such as time-dependent close coupling (TDCC),
R-matrix with pseudostates (RMPS) and convergent
close-coupling (CCC) methods. The TDCC calculation
above the double K-shell ionization threshold [3] com-
pared favourably with experimental data [4]. Below this
threshold, both the TDCC and RMPS theories [5] as
well as the CCC theory [6] produced very similar DPI
cross-sections. However, the peak cross-section value was
about 15% higher than the corresponding experimental
maximum. This difference can be attributed to normal-
ization of the experimental data to a somewhat lower
single photoionization cross-section obtained in an older
calculation [7].

Apart from numerical values, some qualitative features
of DPI of Li can be inferred from experiment and theory.
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For instance, by scaling the double-to-single photoion-
ization cross-sections ratio in Li with that of He, Wehlitz
et al [8] were able to demonstrate the dominance of the
intermediate triplet state 1s2s 3S of the Li+ as the pre-
cursor of DPI of Li [8]. A similar conclusion was reached
in an explicitly spin resolved CCC calculation [6].

More insight into the DPI process can be gained from
analyzing the fully differential cross-section which is re-
solved with respect to the photoelectrons escape angles
Ω1, Ω2 and energies E1, E2. This quantity is known as
the triply differential cross-sections (TDCS), where one
of the photoelectron energies can be deduced from the
energy conservation E1 + E2 = ω − I++

P . Here ω is the

photon energy and I++
P = 81.0 eV is the first double

ionization potential of Li [9]. In the present paper, we
perform CCC and TDCC calculations of TDCS of 91 eV
photons incident on the ground state of Li, and report
our data for the case E1 = E2 = 5 eV.

In addition to numerical results, we offer a general
parametrization of the TDCS which requires a set of fully
symmetric/antisymmetric amplitudes in the singlet and
triplet channels, four amplitudes in total. The case of
equal energy sharing E1 = E2 is particularly instruc-
tive as only a pair of symmetric amplitudes in the sin-
glet and triplet channel is needed to describe dynamics
of the DPI process. As the kinematic factors in these
channels are different, one can selectively turn them on
and off by choosing a certain combination of the photo-
electron escape angles. Here we consider the coplanar
geometry in which both photoelectron momenta k1, k2

and direction of the polarization vector e belong to the
same plane. In this case, the two configurations k1 ⊥ e

and k1 ‖ e correspond to the overwhelming dominance of
the singlet and triplet channels, respectively, with both
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channels contributing partially in between.
Dynamics of the DPI process embedded in the singlet

and triplet amplitudes, favors antiparallel escape in order
to minimize the Coulomb repulsion between the two pho-
toelectrons. Correspondingly, both amplitudes peak at
the back-to-back emission and the mutual photoelectron
angle θ12 = 180◦. The width of the amplitudes around
this maximum indicates the strength of the angular cor-
relation between the two ejected electrons. This strength
turns out to be larger in the singlet channel as compared
to the triplet channel. We interpret this phenomenon
in terms of the exchange symmetry of the two-electron
continuum wave function.

II. FORMALISM

A. CCC method

Application of the CCC method to DPI of Li is de-
scribed in detail in our earlier publication [6]. In brief,
the ionization amplitude is written as the matrix element
of the dipole operator between the multi-configuration
initial state 〈0, 1, 2|i〉 and the final multi-channel state.
The latter is expanded over the set of channel states each
of which is a product of the Li+ ion target state 〈0, 1|α〉
and a distorted wave 〈2|k〉. The target elecrtons are la-
beled 0, 1 and the continuum electron is tagged 2. The
label α ≡ NLS comprises the integer N which numbers
the set of target states with the given orbital momen-
tum L and spin S. The expansion coefficients of the final
multi-channel state are the corresponding elements of the
half-on-shell T -matrix which is found by solving a set of
integral Lippmann-Schwinger equations. The negative
energy target states Eα < 0 are attributed to single pho-
toionization whereas the positive energy states Eα > 0
contribute to DPI.

The angular and radial variables are separable in the
CCC formalism. The T -matrix integrated dipole matrix
element, which is stripped of its angular dependence, is
written as

Dαl(k) = dαl(k) (1)

+
∑

βl′

∑

∫

k′

〈αlk ‖T ‖ βl′k′〉 dβl′(k
′)

E − k′2/2 − Eβ + iδ
.

Here k, l denote the linear and angular momenta of the
contunous electron state and E = k2/2 + Eα is the total
energy of the scattering system which consists of the pho-
toelectron and the Li+ ion. The bare dipole matrix ele-
ments dαl(k) are expressed via radial integrals containing
the ground and final state orbitals and the dipole opera-
tor either in the length

∑3
j=1 rj or velocity ω−1

∑3
j=1 ∇j

gauges.
The reduced dipole matrix element Eq. (1) is used to

construct the DPI matrix element which corresponds to
ejection of the photoelectron pair with the linear mo-

menta k1, k2, and the angular momenta l1, l2:

DS l1l2(k1, k2) = (−i)l1+l2 ei[σl1
(Z=2)+σl2

(Z=1)] .

× Dαl2(k2) 〈l1k1, 1s ‖ α〉 (2)

Here 〈l1k1, 1s ‖ α〉 is the radial projection of the positive
energy target state α of the matching energy Eα = k2

1/2
to the final ionized state. The latter state is composed of
the photoelectron l1k1 and the bound electron frozen to
the 1s state. Such a freezing of the target electron cor-
responds to restriction of the final double ionized chan-
nel to the Li2+ ion in its ground state. The two pho-
toelectrons are treated on a different footing. The slow
or“inner” photoelectron l1k1 is moving in the field of the
double charged ion whereas the faster “outer” photoelec-
tron l2k2 experiences the nuclear charge screened by the
inner photoelectron. This explains the expressions for
the Coulomb phases σl in Eq. (2).

This notion of inner and outer electrons makes sense
only when E1 < E2. The equal energy sharing case E1 =
E2 requires special treatment. The spin S in Eq. (2) is
related to the positive energy target state 〈0, 1|α〉, α ≡
NLS but not the photoelectron pair 1, 2. Indeed, the spin
part of the final state wave function has the form [10]

χSSM(0, 1, 2) =
∑

M µ

CSM

SM, 1

2
µ χSM(0, 1)χ 1

2
µ(2) , (3)

where the total spin of the collision system S = 1/2. Fol-
lowing the development of equal-energy sharing e-He ion-
ization Stelbovics et al. [10], the spins can be re-coupled
to an alternative state

χSSM(1, 2, 0) =
∑

S′=0,1

χS′SM(0, 1, 2) γSS′ , (4)

which corresponds to the total spin S of the photoelec-
tron pair. The recoupling coefficients γSS′ are expressed
via 6j-symbols. The spin transformation (4) leads to an
alternative set of DPI matrix elements

D̃S l1l2(k1, k2) =
∑

S′=0,1

[

(−1)S′

DS′ l1l2(k1, k2) (5)

+ DS′ l2l1(k1, k2)γSS′

]

which posses an explicit exchange symmetry

D̃S l1l2(k1, k2) = (−1)S D̃S l2l1(k1, k2) (6)

as the index S now refers to the spin of the photoelectron
pair.

The matrix elements (2) for E1 < E2 or the alternative
set (5) for E1 = E2

FS l1l2(k1, k2) =

{

DS l1l2(k1, k2) k1 6= k2

D̃S l1l2(k1, k2) k1 = k2
(7)

are then fed to the following expression for the TDCS
which takes the form of the partial wave expansion:

d3σ

dΩ1dΩ2 dE2
= C

∑

S=0,1

(8)
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∑

l1l2

e · Y l1l2
1 (n1, n2) FS l1l2(k1, k2)

∣

∣

∣

∣

∣

2

,

where C = 8π2ω/(3c) is the photoionization constant and
c ≃ 137 is the speed of light in atomic units. The unit
vectors ni = ki/ki, i = 1, 2 are directed along the photo-
electron momenta. The bipolar harmonics are tensors of
rank 1 expressed by following tensorial product [11]:

Y l1l2
1 (n1, n2) = Yl1(n1) ⊗ Yl2(n2) . (9)

The computational implementation has required con-
siderable extension of the present CCC code. The cal-
culations involve the calculation of the T - and d-matrix
elements in Eq. (2). The former arise upon solution of
electron scattering on the He-like Li+. The CCC formal-
ism for doing so has been given by Fursa and Bray [12].
Convergence needs to be established as a function of the
Laguerre basis parameters λl and Nl for l ≤ lmax. As
previously, to reduce the number of free parameters we
set λl = λ and Nl = N0 − l leaving only three parame-
ters to choose, λ, N0 and lmax. Presently, we took λ = 2,
N0 = 40 and lmax = 7. With these choices we have a good
coverage of the Li+ discrete and (open, below 10 eV) con-
tinuum. The resulting equations to be solved required
solutions of a set of linear equations with matrices in
excess of 80,000 by 80,000. For efficient numerical im-
plementation we have created a hybrid OPENMP/MPI
implementation of the code that uses ScaLAPACK for
solving the linear equations. Using 24 cores the calcula-
tions take around 30 minutes.

B. TDCC method

A description of the TDCC approach to DPI of Li
was recently presented [5]. In the two-electron formu-
lation, two calculations are made, one for the two pho-
toelectrons coupling to a singlet state, and one for both
photoelectrons coupling to a triplet state. After propa-
gation of the Schrödinger equation, one can obtain the
final momentum-space amplitudes using

PLS
l1l2(k1, k2, T ) =

∫ ∞

0

dr1

∫ ∞

0

dr2 (10)

Pk1l1(r1)Pk2l2(r2)P
LS
l1l2(r1, r2, T )

where the box-normalized radial distorted-waves Pkl are
solutions of the one-electron radial Schrödinger equation
[5]. The final time solutions PLS

l1l2
(r1, r2, T ) are obtained

by propagating the Schrödinger equation for the corre-
lated two-electron radial wavefunction with the total or-
bital momentum L and spin S to sufficiently long times
t = T .

TDCS may then be calculated from these amplitudes
using the expression [13]

d3σ

dE2dΩ1dΩ2
= 2

1

k1k2

ω

I

∂

∂t

∫ ∞

0

dk1

∫ ∞

0

dk2 (11)

δ

[

β − tan−1

(

k2

k1

)]

∑

S=0,1

wS

∣

∣

∣

∑

l1,l2

(−i)l1+l2ei(σl1
+σl2

)

PLS
l1l2(k1, k2, t) e · Y l1l2

L (n1, n2)
∣

∣

∣

2

,

where β is the hyperspherical angle between k1 and k2,
I is the radiation field intensity and integration over all
solid angles and ejected energy gives the total integral
cross section. This expression includes the appropriate
spin statistical factors [5] wS , where w0 = 1/4 and w1 =
3/4. The factor of two results from the initial occupation
number of the 1s orbital.

In the TDCC calculations presented here a (r1, r2) ra-
dial lattice with (960)2 points with a uniform mesh spac-
ing of ∆r = 0.10 a.u. was used. To fully converge the
triple differential cross section calculations, 9 terms were
used for the initial 1,3S states and 18 coupled channels
were used for the final 1,3P states.

The TDCC calculation also uses MPI parallelization to
efficiently distribute the calculation over available proces-
sors of a parallel machine [14]. The time taken for such
calculations depend on the mesh spacing, number of mesh
points, and number of angular momenta included in the
calculation. The calculations reported here took a few
hours on a Linux cluster using 64 processors.

C. Symmetrized DPI amplitudes

The angular momentum summation in the partial wave
expansions (8) or (11) can be reduced to the sum over
a single angular momentum variable. In the following,
we will work out this reduction with the CCC expression
(8):

d3σ

dΩ1dΩ2 dE2
= C

∑

S=0,1

∣

∣

∣

∣

∣

∞
∑

l=0

Y ll+1
1M (n1, n2)FS ll+1(k1, k2)

+Y l+1l
1M (n1, n2)FS l+1l(k1, k2)

∣

∣

∣

∣

∣

2

. (12)

We introduce the symmetric and antisymmetric combi-
nations of the matrix elements

F±

S l1l2
(k1, k2) =

1

2

{

FS l1l2(k1, k2) ± (−1)S FS l2l1(k1, k2)
}

,

(13)
The bipolar harmonics (9) satisfy the following exchange
symmetry relation

Y l1l2
1 (n1, n2) = Y l2l1

1 (n2, n1) . (14)

Using Eqs. (13) and (14), the sum in Eq. (12) can be
further reduced to

d3σ

dΩ1dΩ2 dE2
= C

∑

S=0,1

∣

∣

∣

∣

∣

∞
∑

l=0

(15)

F+
S ll+1(k1, k2)

[

e · Y ll+1
1 (n1, n2) + (−1)S

e · Y ll+1
1 (n2, n1)

]
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+ F−

S ll+1(k1, k2)
[

e · Y ll+1
1 (n1, n2) − (−1)S

e · Y ll+1
1 (n2, n1)

]

∣

∣

∣

∣

∣

2

Then we employ the following expression for the bipolar
spherical harmonic [15]:

Y ll+1
1 (n1, n2) =

(−1)l

4π

(

3

l + 1

)1/2

(16)

{

n2P
′
l+1(x) − n1P

′
l (x)

}

,

where x = cos θ12 = n1 · n2. This immediately takes us
to the final expression for the TDCS

d3σ

dΩ1dΩ2 dE2
=

∑

S=0,1

∣

∣

∣
(e · n1 + e · n2) Mg

S(k1, k2, θ12)

+(e · n1 − e · n2) Mu
S(k1, k2, θ12)

∣

∣

∣

2

, (17)

where the symmetric gerade (g) and antisymmetric
ungerade (u) DPI amplitudes are

Mg/u
S (k1, k2, θ12) =

√
3C

4π

∞
∑

l=0

(−1)l

√
l + 1

[

P ′
l+1(x)

∓ (−1)SP ′
l (x)

]

F±

S ll+1(k1, k2) . (18)

Owing to the symmetry properties of the matrix elements
(6) and definition (13), the amplitudes satisfy the follow-
ing exchange relations:

Mg
S(k1, k2, θ12) = Mg

S(k2, k1, θ12) (19)

Mu
S(k1, k2, θ12) = −Mu

S(k2, k1, θ12)

Eq. (17) can be simplified further in the special case of the
equal energy sharing. In this case Mu

S(k1 = k2, θ12) = 0
and therefore

d3σ

dΩ1dΩ2 dE2
=

∣

∣

∣
(e · n1 + e · n2) Mg

S=0(k1 =k2, θ12)
∣

∣

∣

2

+
∣

∣

∣
(e · n1 − e · n2) Mg

S=1(k1 =k2, θ12)
∣

∣

∣

2

. (20)

Thus a pair of symmetric amplitudes is needed to de-
scribe the angular distribution of photoelectrons in DPI
of Li at equal energy sharing. This is in contrast to DPI
of He where the equal energy case requires only one fully
symmetric gerade amplitude [16]. Similarly, description
of DPI of Li without explicit account for the spin would
also require just one fully symmetric amplitude for the
equal energy sharing case [15].

III. RESULTS

A. Fully resolved TDCS

In Fig. 1 we present the fully resolved TDCS of Li at
the excess energy of 10 eV shared equally between the

photoelectrons E1 = E2 = 5 eV. The coplanar geometry
is chosen in which the photoelectrons escape in the polar-
ization plane φ1 = φ2 = 0 and the vector e of the 100%
linearly polarized light is directed along the z axis (hori-
zontal direction in the figure). In this case e ·ni = cos θi.
The escape angle of one of the photoelectrons is fixed to
θ1 = 0◦, 30◦, 60◦ and 90◦ while the angle of the second
photoelectron θ2 varies over the full 360◦ range.
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FIG. 1: (Color online) TDCS of DPI of Li at E1 = E2 = 5 eV
and various fixed escape angles θ1 = 0◦, 30◦, 60◦ and 90◦

(indicated by the arrow). The CCC calculation is shown by
the red solid line whereas the TDCS calculation is displayed
with the blue dotted line.

The CCC calculation is performed in the velocity gauge
as the length gauge is somewhat less reliable due to a
limited accuracy of the multi-configuration ground state.
Gauge convergence issues are discussed in the previous
publication [6]. The TDCC calculation is fully gauge
convergent. Even though some differences can be seen
between the two calculations, qualitative predictions of
both theories are similar. At smaller fixed angles θ1 = 0◦

and 30◦ relative to the polarization axis, the two photo-
electrons escape predominantly back-to-back. Whereas
at larger angles θ1 = 60◦ and 90◦, a kinematic node de-
velops at the back-to-back emission and two alternative
maxima of the TDCS are formed at the relative photo-
electron angles θ12 close to 150◦ and 210◦.

This evolution of the TDCS can be conveniently an-
alyzed using Eq. (20). The moduli of the symmetric
amplitudes

∣

∣Mg
S=0

∣

∣ and
∣

∣Mg
S=1

∣

∣ are plotted on the left
and right panels of Fig. 2, respectively. Relative phases
of the amplitudes are irrelevant to our analysis as the
amplitudes are summed incoherently in Eq. (20). The
CCC amplitudes are calculated directly using Eq. (18).
In the TDCC formalism, the DPI amplitudes are not
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evaluated explicitly. Instead, we found them by fitting
the TDCS of Fig. 1 with Eq. (20). As is seen from Fig.
2, the singlet amplitude in both models is much larger
than its triplet counterpart

∣

∣Mg
S=0

∣

∣ ≫
∣

∣Mg
S=1

∣

∣ except
for the “tails” of the triplet amplitude near parallel emis-
sion θ12 ≃ 0. We believe that these tails are unphysical
numerical artifacts originating from the Legendre poly-
nomial derivatives P ′

l (x) in Eq. (18) which grow rapidly
with l at x ≃ 1. This growth has to be offset by the rapid
fall of the dipole matrix elements F±

S ll+1 which is much
harder to achieve for a smaller triplet amplitude. For-
tunately, these “tails” have no effect on the TDCS since
the triplet amplitude in Eq. (20) is accompanied by the
kinematic factor cos θ1 − cos θ2 which has a node at the
parallel emission θ1 = θ2.
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FIG. 2: (Color online) The moduli of the symmetrized DPI

amplitudes of Li in the singlet
∣

∣M
g

S=0

∣

∣ (left) and triplet
∣

∣M
g

S=1

∣

∣ (right) channels at the equal energy sharings of
E1 = E2 = 5 eV. The CCC amplitudes are shown with red
solid lines whereas the TDCC amplitudes are drawn with blue
dotted lines.

As is seen from Fig. 2, both the CCC and TDCC
calculations produce very similar singlet amplitudes but
the triplet amplitudes are somewhat different in the two
methods. This explains quite a noticeable difference of
the CCC and TDCC cross-sections at small fixed ejection
angles ( top two panesl of Fig. 1) where the contribution
of the triplet amplitude is dominant.

The contribution of the singlet and triplet terms in
Eq. (20) is quite different. At small fixed electron angles
θ1 ≃ 0, the mutual angle θ12 ≃ θ2 and the TDCS becomes

d3σ(θ1 = 0)

dΩ1dΩ2 dE2
=

∣

∣

∣
(1 + cos θ2)Mg

S=0(θ2)
∣

∣

∣

2

(21)

+
∣

∣

∣
(1 − cos θ2)Mg

S=1(θ2)
∣

∣

∣

2

.

We see that the kinematic factor accompanying the sin-
glet amplitude is vanishing at θ2 = π where

∣

∣Mg
S=0(θ2)

∣

∣

has the maximum whereas the kinematic and the dy-
namic (amplitude) factors are in concert for the triplet
term. Thus, despite being smaller, the triplet amplitude
makes the dominant contribution to the TDCS at small
fixed ejection angles.

The partial contributions of the singlet (S) and triplet
(T) terms are plotted separately in Fig. 3 along with
the whole of TDCS which is the sum of the two terms.

Here we plot only CCC results because the TDCC results
are very similar. We see that the TDCS at θ1 = 0 is
almost entirely made of the triplet term contribution. As
the fixed ejection angle θ1 grows, the singlet contribution
becomes larger until its contribution becomes strongly
dominant at θ1 = 90◦. Indeed, at this angle

d3σ(θ1 = 90◦)

dΩ1dΩ2 dE2
=

(∣

∣

∣
Mg

S=0(θ2 − 90◦)
∣

∣

∣

2

(22)

+
∣

∣

∣
Mg

S=1(θ2 − 90◦)
∣

∣

∣

2)

cos2 θ2 .

and a far bigger singlet amplitude takes completely over.
We see that the interplay of the amplitudes and their

associated kinematic factors makes relative contribution
of the singlet and triplet channels strongly dependent
on the kinematics of the two-electron escape. This is
in contrast to the total integrated cross-section in which
the singlet spin state of the two-electron pair makes the
dominant contribution. Wehlitz et al [8] reached this con-
clusion by drawing an analogy to the metastable He 1s2s
atom for which the singlet 1S state has a DPI probability
three times higher than the 3S state [17]. In the TDCS
of Li, this analogy to metastable He is completely lost as
the pattern of the two-electron escape varies between the
one typical for the 1s2s 1S and another characteristic to
the 1s2s 3S state [18].
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FIG. 3: (Color online) TDCS of DPI of Li at E1 = E2 = 5 eV
and various fixed escape angles θ1 = 0◦, 30◦, 60◦ and 90◦

(indicated by the arrow). The CCC calculation is plotted
with the sum of the singlet and triplet channels (S+T, red
solid line), the singlet channel only (S, green dashed line) and
triplet channel only (T, blue dotted line).

We can also see that the lobes of the TDCS becomes
progressively narrower as the fixed ejected angle θ1 grows.
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This happens because the singlet amplitude has a much
smaller angular spread around its peak at θ12 = 180◦ in
comparison with the triplet amplitude which is clearly
seen in Fig. 2. This spread characterizes the strength
of the angular correlation of the two photoelectrons in
the singlet and triplet channels. The smaller spread in-
dicates stronger angular correlation which dictates the
photoelectrons to escape in the back-to-back direction
to minimize their Coulomb repulsion. Obviously, the
strength of the angular correlation is much larger in the
singlet channel as compared to the triplet channel. One
may think of this in terms of the exchange symmetry
of two-electron continuous wave function. In the singlet
channel, this function favours close encounter of the two
photoelectrons r1 = r2 and it is their angular correlation
that keeps them apart. In the meantime, in the triplet
channel, the two-electron wave function has a node at
r1 = r2 and the angular correlation may be more liberal
as the photoelectrons are kept apart by the force of radial
correlation as well.

A somewhat similar disparity in angular correlation
width was observed in the quadrupole channel of two-
photon DPI of He [19]. This channel exhibits two dis-
tinctly different modes of correlated motion of the pho-
toelectron pair. The kinematics of the mode associated
with the center-of-mass motion favors large total mo-
menta maximized at parallel emission where the inter-
electron repulsion is strong. In contrast, the mode as-
sociated with the relative motion favors large relative
momenta maximized at antiparallel emission where the
inter-electron repulsion is relatively weak.

IV. CONCLUSION

In the present paper, we perform CCC and TDCC
calculations of the fully-resolved triply differential cross-
section (TDCS) of DPI of Li. Both numerical methods
have been tested in obtaining the total integrated cross-
sections (TICS) of the same process for which they pro-
duced very similar results across a wide range of photon
energies [20, 21]. In comparison to TICS, TDCS is much
more sensitive to any approximations made in a calcu-
lation, and is also the most difficult quantity to obtain
numerical convergence. Thus, it presents a very stringent
test to the theory.

Despite some noticeable differences, we regard the level
of agreement between the two present calculations as
satisfactory, considering the completely independent ap-
proaches taken to treat the DPI process. For example,
the CCC approach is time-independent and treats the
two photoelectrons on a different footing, but includes
the full Hartree-Fock exchange with the non-ionized elec-
tron. The TDCC approach is time-dependent, and treats
both ionized electrons equally, but treats the interaction
with the non-ionized electron through direct and local

exchange terms. It is expected that all of these approxi-
mations are valid for the process considered here, but it
is not so surprising that they could result in small differ-
ences in the TDCS for specific energy sharings and ge-
ometries. We also note that in comparisons of the equiv-
alent electron-impact process [22], namely the electron-
impact ionization of helium, good agreement is also found
between the TDCC and CCC approaches, although the
agreement is still not exact.

In addition to numerical calculations, we perform some
analytical studies of the TDCS. We show that, under the
equal energy sharing condition, the TDCS in lithium can
be conveniently parametrized by a pair of symmetrized
DPI amplitudes in the singlet and triplet channels. The
partial contribution of these amplitudes varies with the
fixed escape angle relative to the polarization axis of
light. The angular spread of the amplitudes relative to
the back-to-back emission indicates the strength of the
angular correlation in the two-electron continuum. This
strength depends noticeably on the spin of the photoelec-
tron pair.

The observed spin effects are strong in comparison
with the weak spin polarization effects which are due
to spin-orbit interaction in DPI of heavier atoms [23].
One way to experimentally distinguish the singlet and
triplet two-electron continuum states would be to pre-
pare spin-polarized initial state of the Li atom which can
be achieved by high-field state selection in a sextupole
magnet [24]. Then the spin polarization of the Li2+ ion
should be analyzed after the DPI process. The spin pro-
jection flip would unmistakengly indicate the triplet spin
state of the photoelectron pair. Recently developed mini-
Mott spin analyzers [25, 26] can also make it possible to
determine the photoelectron spin projections directly.

The present report is aimed to provoke further dis-
cussion of the mechanisms and pathways of DPI of Li as
well as to stimulate more experimental studies of energy/
momentum resolved differential cross-sections. Some of
the data resolved with respect to the sum momentum of
the photoelectron pair are already reported in the liter-
ature [27].
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