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We conduct a systematic study of the dipole phase and the photoelectron group delay (Wigner
time delay) in inner shell photoionization of noble gas atoms from Ne to Xe. Our study encompasses
the tender X-ray spectral range and extends to 1 keV photoelectron energy. We employ both the
relativistic and non-relativistic versions of the random phase approximation with exchange. We
identify the long range Coulomb and short range Hartree-Fock contributions to the dipole phase
which governs the Wigner time delay variation from the threshold to the whole range of photoelectron
energies.

PACS numbers: 32.80.Aa 32.80.Fb 32.80.RM 32.80.Zb 42.50.Hz

I. INTRODUCTION

The availability of time synchronized XUV pump and
IR probe laser pulses has allowed for the accurate de-
termination of the phase of the dipole photoionization
amplitude (matrix element). In the attosecond streaking
technique, an isolated XUV pump pulse is superimposed
with a phase-locked IR probe to convert the relative
XUV/IR phase into the kinetic energy of the photoelec-
tron [1]. This conversion is used to obtain the timing of
the photoelectron wave packet release [2]. The latter can
be interpreted in terms of the photoelectron group delay
(also known as the Wigner time delay or the Wigner-
Eisenbud-Smith time delay [3–5]). The alternative RAB-
BITT technique employs an attosecond pulse train as a
pump superimposed with a spectrally narrow IR probe
to Reconstruct the Attosecond Beatings caused By In-
terference of Two-photon Transitions [6]. The phase of
these beatings encodes the dipole photoionization ampli-
tude phase which again can be converted to the Wigner
time delay [7, 8]. Yet another alternative method to re-
construct the photoionization phase is the high-harmonic
generation (HHG) technique. Because photorecombina-
tion is the inverse process to photoionization, their phases
are identical. The photorecombination phase is encoded
in the spectral phase of the harmonic comb and can be
retrieved using the RABBITT technique [9] or harmonic
spectroscopy based on two-color driving pulses [10].

So far, these phase retrieval techniques have been ex-
ploited in the XUV spectral range not significantly ex-
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ceeding the photon energy of 100 eV. Recent experi-
ments with mid-IR driving pulses allowed the extension
of the harmonic emission to much higher photon energies
[11, 12]. This extension allows the study of photoemis-
sion processes in inner atomic shells and the retrieval
of the phase and timing information. At the same time,
accurate modeling of the HHG process in this spectral re-
quires knowledge of the photo-recombination amplitude
phase which has been unavailable in the literature so far
[13].

A parallel development, which allows potentially the
study of photoionization phase over an extended spec-
tral range, is the streaking of a free-electron laser (FEL)
radiation with a THz probe [14, 15]. The same idea of the
THz streak camera allows for a high-precision measure-
ment of the arrival time of an FEL pulse [16–18]. The
photoionization time delay is also needed for understand-
ing the energy spectra of the photoelectrons created by
the FEL pulses [19]. These spectra do not exactly mimic
the spectrum of the photon pulse, rahter their spectrum
is a convolution of the photon pulse spectrum and the
emission spectrum corresponding to the ionization time.
Depending on the ionization time and the temporal struc-
ture of the FEL pulse, the spectrum of the electrons can
be dominated by one of these components.

To address these needs, we conduct a systematic study
of the dipole photoionization phase and the Wigner time
delay in inner shells of the noble gas atoms from Ne to
Xe. This study encompasses the tender x-ray spectral
range and extends to 1 keV photoelectron energy. This
includes K,L shells of Ne, K,L,M shells of Ar and L,M
shells of Kr and Xe (see Table I for respective binding
energies). The present study partially overlaps with, and
is complementary to, our previous work [20] where time
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delay in valence shell photoionization of noble gases was
investigated.

TABLE I: Electron binding energies, in electron volts, as col-
lated in the X-ray data booklet [21]

K LI LII LIII MI MII MIII MIV MV

1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2

Ne 870.2 48.5 21.7 21.6

Ar 3,206 326.3 250.6. 248.4 29.3 15.9 15.7

Kr 14,326 1,921 1,731 1,678 292.8 222.2 214.4 95.0 93.8

Xe 34,561 5,453 5,107 4,786 1,149 1,002 940.6 689.0 676.4

Our methodology (Sec. II) is similar to the previous
works [20, 22] and employs both non-relativistic and rela-
tivistic versions of the random phase approximation with
exchange (RPAE and RRPA, respectively). As test of ac-
curacy, we compare our calculated subshell photoioniza-
tion cross-sections with the literature values collated by
Berkowitz [23] for Ne, Ar and Kr and calculated by Band
et al. [24] for Xe (Sec. III A). Satisfied with these tests,
we proceed with the photoionization amplitude phase
calculation (Sec. III B). We compare the phase results
from correlated RPAE calculations with those from the
single-electron Hartree-Fock (HF) approximation. Thus
we can identify clearly the effect of many-electron cor-
relation. Then we convert the phase into the Wigner
time delay calculated in the direction of the polarization
of the XUV radiation (Sec. III C). We do not evaluate
the corrections induced by the coupling of the long-range
Coulomb ionic potential and the streaking field (CLC
corrections). These corrections are of universal nature
and can be found in the literature [25, 26]. Finally, we
elucidate the role of relativistic effects by making com-
parison of the time delay results from the RPAE and
RRPA calculations (Sec. III D)

II. THEORETICAL METHOD AND

COMPUTATION DETAILS

For the non-relativistic RPAE, we follow closely the
photoionization formalism as outlined in our previous
work [20]; the relativistic RRPA development is essen-
tially the same, but based on the Dirac equation rather
than the Schrödinger equation. Here we reproduce only
few essential details to benefit the reader. We evaluate
the one-photon dipole matrix element 〈ψ(−)|ẑ|φi〉 from
a bound state φi(r) = Ylimi

(r̂)Rnili(r) to an incoming
scattering state with the given photoelectron momentum
k:

ψ
(−)
k (r) =

(2π)3/2

k1/2

∑

lm

ile−iδl(E)Y ∗

lm(k̂)Ylm(r̂)Rkl(r) . (1)

FIG. 1: Diagramatic representation of the photoionization
amplitude 〈kl|D̂|nili〉 in the RPAE. Here, the time axis is
directed from the left to right, the lines with arrows to the
left (right) correspond to holes (electrons) in a filled atomic
shell, a dotted line represents an incoming photon, a dashed
line represents the Coulomb interaction between charged par-
ticles, and a shaded circle marks the effective operator D̂ for
the photon-atom interaction which accounts for electron cor-
relation in the atom.

We conduct the spherical integration to arrive to the fol-
lowing expression:

〈ψ(−)
k |ẑ|φi〉 =

(2π)3/2

k1/2

∑

l=li±1

m=mi

eiδl(E)i−lYlm(k̂) (2)

×
(

l 1 li
m 0 mi

)

〈kl‖ D̂ ‖nili〉

Here 〈kl‖ D̂ ‖nili〉 is the reduced dipole matrix element,
stripped of all the angular momentum projections. The
partial photoionization cross section for the transition
from an occupied state nili to the photoelectron contin-
uum state kl is calculated as

σnili→kl(ω) =
4

3
π2αa2

0ω
∣

∣

∣
〈El ‖ D̂ ‖nili〉

∣

∣

∣

2

, (3)

α being the fine structure constant and a0 the Bohr ra-
dius Atomic units e = m = ~ = 1 are used in this expres-
sion and throughout the paper.

In the independent electron Hartree-Fock (HF) ap-
proximation, the reduced dipole matrix element is eval-
uated as a radial integral,

〈kl‖ D̂ ‖nili〉 = l̂l̂i

(

l 1 li
0 0 0

)

∫

r2dr Rkl(r) r Rnili(r) ,

(4)

where the hat symbol l̂ =
√

2l+ 1 is used. The basis
of occupied atomic states ‖nili〉 is defined by the self-
consistent HF method and calculated using the computer
code [27]. The continuum electron orbitals 〈kl‖ are de-
fined within the frozen-core HF approximation and eval-
uated using the computer code [28].

In the random phase approximation with exchange
(RPAE), the reduced dipole matrix element is found by
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FIG. 2: (Color online) Shell photoionization cross-sections of Ne, Ar, Kr and Xe from non-relativistic RPAE calculations are
shown with lines. Similarly colored dots represent the literature values collated by Berkowitz [23] for Ne, Ar and Kr and
calculated by Band et al. [24] for Xe

summing an infinite sequence of Coulomb interactions
between the photoelectron and the hole in the ionized
shell. This leads to a system of integral equations which
can be represented graphically by the diagrams of Fig.
1.

There, diagram (a) represents the sum of all Coulomb
interactions, diagram (b) depicts the HF term given by
Eq. (4) and diagrams (c)–(f) represent RPAE corrections.
Diagrams (c) and (d) are known as time direct (foerward)
and (e) and (f) as time reverse (backward) . Diagrams
(d) and (f) account for the exchange interaction in the
atom, thus being called the exchange diagrams. As is

seen from Fig. 1, a virtual excitation in the shell j to the
ionized electron state k′ may affect the final ionization
channel from the shell i. This way RPAE accounts for
the effect of inter-shell i↔ j correlation.

The photoelectron group delay, which is the energy
derivative of the phase of the complex photoionization
amplitude, is evaluated as

τ =
d

dE
arg f(E) ≡ Im

[

f ′(E)/f(E)
]

. (5)

Here f(E) is given by Eq. (2) with E = k2/2 and k̂ ‖ z.

III. RESULTS AND DISCUSSION

A. Shell photoionization cross-sections

The partial (shell) photoionization cross-sections from
RPAE calculations are displayed in Fig. 2 for Ne and Ar
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(top) and Kr and Xe (bottom). The present calculated
results are compared with experimental values collated
by Berkowitz [23] for Ne, Ar and Kr, and calculated by
Band et al. [24] for Xe. Agreement with the literature
data is good for inner shells but some deviation is visi-
ble for the valence shells. This deviation may be due to
stronger inter-shell correlations than is accounted for by
the RPAE. But, the inner shells are tightly bound by the
nucleus and their electron states are well described by
the independent electron HF approximation. Note fur-
rther, that our RRPA results are essentially identical to
the RPAE results on the scale shown in Fig. 2.

B. Phase analysis

The phases of the dipole photoionization amplitude
arg f(E), as calculated in the RPAE, are displayed in
Fig. 3 for Ne and Ar (top) and Kr and Xe (bottom).
To demonstrate the effect of correlation, primarily in the
form of interchannel coupling, the RPAE phases are com-
pared with the HF results. Note that the are the total
phases of the dipole amplitudes including the Coulomb
phases. At the HF level, the reduced matrix element,
Eq.(4) is real and thus the phase of the complex dipole
matrix element, Eq. (2), is defined by the scattering
phases δli±1(E). According to the Fano’s propensity
rule [29], the dipole transition with the increased momen-
tum l = li + 1 is usually dominant. In such a situation,
arg f(E) ≃ δli+1(E). It is this phase that is labeled as
HF in the legend of Fig. 3.

The scattering potential acting upon the photoelectron
is the sum of the Coulomb field of the nucleus and the
HF potential of the frozen electron core of the residual
ion. So the photoelectron scattering phase δl(E) con-
tains both the long-range Coulomb and the short-range
Hartree-Fock components. The Coulomb phase is given
by the expression σl(E) = argΓ(1 + l + iη) where the

Sommerfeld parameter η = −z/
√

2E is determined by
the final state ionic charge; for photoionization of neutral
atoms, z ≡ 1. The Coulomb phase at small photoelectron
energy diverges [30]:

σl(E) ≃ η
[

ln
√

(l + 1)2 + η2 − 1
]

→ η ln |η| . (6)

The phase shift due to the short range potential, i.e. the

difference of the total phase and the Coulomb phase, is
related to the asymptotic quantum defect µ according to
the Levinson-Seaton theorem δL(E → 0)−σL(E → 0) =
µ∞π [31] where E is the photoelectron energy.

The asymptotic quantum defects µ∞ are obtained for
the various nilinl Rydberg series using

Enilinl = − Z2
eff

(n− µ∞)2
, Zeff = 1 , n→ ∞

where Enilinl is the energy of the state nil
−1
i nl (in Ry-

dbergs) with respect to the nil
−1
i threshold of the ion;

the results are shown in Table II. When analyzing these
results, one should bear in mind that for a neutral tar-
get, the scattering phase at zero energy is related to the
number of the bound target states of angulat momentum
l, Nl, by Levinson’s theorem, δl(k → 0) = Nlπ. Looking
at the table, we see indeed that for lighter atoms gener-
ally µ ∼ Nl. For instance, in the ionic core of Ne+, there
is one occupied 2p orbital and no nd orbitals. Hence
the short-range phase tends to one unit of π for 1s and
2s shell photoionization and to zero for 2p photoioniza-
tion. As the number of occupied shells grows from Ne
to Xe, same increase in the µ parameters can be seen in
the table. In the meantime, in Kr and Xe the number
of occupied d shells is mismatched by one unit from the
quantum defect. This reinforces the idea that Levinson’s
theorem applies only very approximately to positive ions.

In the same Table II, we show the results of the log-
arithmic fit to the RPAE phase at large photoelectron
energies

arg f(E) ∝ a− 1

c
lnE(eV) (7)

The a parameter in this fit corresponds to the phase at
the photoelectron energy E = 1 eV and a/π may be
compared with quantum defect parameter µ. This com-
parison made in Table II shows a close correspondence
between the two parameters µ and a/π for the various np
series, and some of the nd series; these are the channels
where the short- range HF phase is monotone decreasing
from threshold Kennedy and Manson [32]. In the other
nd cahannels, along with the nf channel, there are sig-
nificant shape resonances in the threshold region so the
extrapolation fails.

Comparison of the RPAE and HF phases in Fig. 3
shows that for the inner shells, especially in heavier
atoms, these two calculations produce very similar re-

sults. This means that the role of the correlation is lim-
ited for the inner shell photoionization processes. In-
deed, the inner shell electrons are tightly bound by the
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FIG. 3: (Color online) Phases of the photoionization amplitude in various shells of Ne, Ar, Kr and Xe from non-relativistic
RPAE calculations are shown with dots. Similarly colored solid lines represent the HF scattering phase in the corresponding
dominant photoionization channel. The dotted lines are used to visualize the asymptotics of the short range phase in the zero
kinetic energy limit.

TABLE II: Quantum defect parameters from the discrete binding energy fit Enilinl = −Z2

eff/(n − µ)2 with Zeff = 1 compared

with the logarithmic phase interpolation to the 1 eV photoelectron kinetic energy for various Rydberg series. The hole state
nl is underlined in the table captions.

Neon

nilinl 1snp 2snp 2pnd

Nl 1 1 0

µ 1.07 0.85 0.011

a/π 0.99 0.88 0.11

Argon

1snp 2snp 3snp 2pnd

2 2 2 0

1.97 1.86 1.67 0.53

2.13 2.22 2.23 0.78

Krypton

2snp 3snp 2pnd 3pnd 3dnf

3 3 1 1 0

2.84 2.76 1.58 1.51 0.004

3.45 3.37 1.91 2.18 0.48

Xenon

2snp 3snp 2pnd 3pnd 3dnf

4 4 2 2 0

3.77 3.72 2.90 2.90 0.006

4.53 4.50 3.19 3.32 1.04

Coulomb center and their interaction with the neighbour-
ing subshells is generally relatively weak. In Ne, even
the innermost 1s phase shows noticeable deviation of the
RPAE and HF phases near threshold. This deviation is
of the same size as in the valence 2s shell. In Ar, all the
HF and RPAE phases are rather close except for the 3s
shell which demonstrates a very strong deviation due to
profound correlation with the outer 3p shell. This result
is already acknowledged in our previous work [20]. In
Kr, the inner 2s, 2p and 3s phases are well described by

the HF model while the intermediate 3p and 3d electrons
show noticeable deviation of the HF and RPAE results.
In Xe, all the phases shown are HF-like because we only
studied the innermost shells.

Note that, in all cases shown, the phases exhibit a
monotone increase from threshold at the lower ener-
gies, owing to the dominance of the Coulomb phase near
threshold. At the higher energuies, as mentioned above,
the Coulomb phase rapidly approaches zero, so the be-
havior of the total phase is dominated by the phase gener-
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FIG. 4: (Color online) Photoelectron group delays (Wigner time delays) in various shells of Ne, Ar, Kr and Xe from non-
relativistic RPAE calculations are shown with dots. Similarly colored solid lines represent the analogous HF results summed
over all the photoionization channels.

ated by the short-range potential. For the ns→ ǫp chan-
nels this phase in monotone decreasing, and this leads to
the situation seen in Fig. 3 where the total phases in the
ns → ǫp channels increase rapidly from threhold, reach
a maximum, and then decrease monotonically towards
zero, with increasing energy. The np → ǫd channels,
on the other hand, do not all behave in the same man-
ner. For Ne and Ar, the short range d-wave phase never

reaches an appreciable value, so the turnover of the total
phase occurs at a rather large value of the energy, larger
than is displayed in Fig. 3. For Kr and Xe, on the other
hand, there are shape resonances in the np→ ǫd channels
[32, 33] so the short range phase do reach appreciable val-
ues; as a result, the behavior of the total phases are just
like the ns→ ǫp channels. And for the 3d→ ǫf channels,
the turnovers again are well beyond the plotted values.

C. Time delay

Photoelectron group delays (Wigner time delays) in
various shells of Ne and Ar (top) and Kr and Xe (bot-
tom) are shown in Fig. 4. The typical behavior of the
group delay can be understood from the phase analy-
sis of the previous section. The Coulomb singularity,
Eq. (6), drives the phase to large negative values as
the photoelectron energy decreases near the threshold.
Hence the Wigner time delay becomes very large and
positive τW ∝ 1/E3/2 ln(1/E). We note that the same
energy dependence is carried by the CLC corrections

τCLC ∝ 1/E3/2 ln(aE + b) [25, 34, 35] but these correc-
tions are negative. This results in a large and negative
net atomic time delay τa = τW + τCLC when the time
delay measurement is taken very close to the threshold.
However, the Wigner component τW cannot be entirely
neglected when anlyzing the near-threshold time delay
measirement results as in [15].

At modest photoelectron energies, the phase bends
over as it becomes influenced by the short-range HF
component. Somewhere near this point, the time delay
changes its sign and becomes negative. The exception
is the np-shells in Ne and Ar and the nd-shells in Kr



7

and Xe where the photoelectrons in the dominant li + 1
photoionization channel do not have bound states with
matching orbital character in the ionized core. At large
photoelectron energies, the time delay gradually goes to
zero because the long range Coulomb contribution to the
phase becomes vanishingly small and the short range HF
contribution approaches zero extremely slowly, so slowly
that its derivative also becomes vanishingly small.

The deviation of the HF and RPAE phases is exempli-
fied in the time delay plots. It is most clearly visible in
the valence shells of Ne and Ar, along with the 3d sub-
shell of Kr. In all cases, however, the HF and RPAE time
delays are qualitatively similar. To summarize, the low
(kinetic) energy time delay is dominated by the Coulomb
phase. The high energy region seems to be dominated
by the short range HF phase; correlation in the form of
interchannel coupling become relatively unimportant at
high energy (except possibly near inner-shell thresholds).
Thus, correlation plays no role in the qualitative behav-
ior of the time delay vs. energy, but it can affect the
quantitative behavior.
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FIG. 5: (Color online) Time delay in photoionization of the
1s, 2s and 2p shells of Ne. Non-relativistic RPAE results (red
filled circles) are compared with RRPAE results (bluee solid
lines) for 1s → ǫp, 2s → ǫp and 2p → ǫd ionization channels.
The HF calculation for the 2p → ǫd is shown by the (green)
open circles.
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FIG. 6: (Color online) Time delay in photoionization of the
2s and 2p shells of Kr. Non-relativistic RPAE results (red
filled circles) are compared with RRPAE results (bluee solid
lines) for 2s → ǫp and 2p → ǫd ionization channels. The
HF calculation for the 2p → ǫd is shown by the (green) open
circles.

D. Comparison of RPAE and RRPAE calculations

To elucidate the role of relativistic effects in time delay
calculations, we make a comparison of the RPAE and
RRPAE results. This comparison for Ne, Kr and Xe is
showin in Fig. 5, Fig. 6 and Fig. 7, respectively.

Non surprisingly, for such a light atom as Ne, there is
no visible deviation between the RPAE and RRPA re-
sults in the 1s and 2s ionization . This deviation can be
detected in the 2p shell ionization. This is largely because
the RPAE calculation includes the sum of the two pho-
toionization channels 2p → ǫd and 2p → ǫs whereas the
RRPA result includes only the stronger 2p → ǫd chan-
nel. To match this calculation, we make a comparison
with the analogous HF result and agreement is much im-
proved.

A similar comparison for Kr and Xe is made in Fig. 6
and Fig. 7, respectively. Even though, these atoms are
significantly heavier than Ne, relativistic effects do not
show up in the time delay of the 2s shell and both the
RPAE and RRPA results practically coincide. The dif-
ference between the two calculations for the 2p shell can
again be attributed to the partial summation of the pho-
toionization channels. When only one 2p → ǫd channel
is included into the HF calculation, it becomes very close
to the analogous RRPA result.
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FIG. 7: (Color online) Time delay in photoionization of the
2s and 2p shells of Xe. Non-relativistic RPAE results (red
filled circles) are compared with RRPAE results (bluee solid
lines) for 2s → ǫp and 2p → ǫd ionization channels. The
HF calculation for the 2p → ǫd is shown by the (green) open
circles.

IV. CONCLUSION

We conduct a systematic study of the dipole phase
and the photoelectron group delay (Wigner time delay)
in inner shell photoionization of noble gas atoms from Ne
to Xe. Our study encompasses the tender X-ray spectral
range and extends to 1 keV photoelectron energy. We
employ both the relativistic and non-relativistic versions
of the random phase approximation with exchange. We
identify the long range Coulomb and short range Hartree-
Fock contributions to the dipole phase which governs the
Wigner time delay variation from the threshold to the
whole range of photoelectron energies. The inter-shell
correlations (interchannel coupling) are found significant
in all shells of Ne, the 3s subshell of Ar and 3d-subshell
of Kr. Relativistic effects do not significantly change the
time delay results.

We hope that our numerical results will serve as a use-
ful benchmark in time resolved studies of atomic ioniza-
tion. Because the correlations do not play detrminative
role in the photoionization of inner atomic shells, rel-
atively simple Hartree-Fock or Dirac-Fock calculations
may be sufficient for time delay evaluation that can be
performed for a wide range of atoms both with closed
and open shells. Because the inner shells are not strongly
influenced by the chemical environment, similar time de-
lays will be observed in corresponding inner shells of
molecules and solids. Thus, it is expected that the phe-
nomenology found for the photionization time delay and

the phase of the dipole amplitudes of noble gas atoms
will be generally applicable to the qualitative behavior
of inner shells other atoms, both open- and closed-shell,
molecules and solids as well.
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