Angular correlation in the two-electron continuum
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Following absorption of a single photon, angles of simultaneous emission of two electrons from
a He(n'S) atom become more correlated with increasing n. We find that the strength of this
correlation is due to the two-electron continuum of the electron-impact ionization of the He™ (ns)
ion. The strength is determined by the width of the momentum profile of the ionic ns state, and
thus, somewhat counter-intuitively, depends inversely with the strength of the electron correlation
in the He initial state. This explains the increasing (over He) angular correlation strength found in
double photoionization of targets such as Be, Ne and Ho.

Correlated many-body dynamics in quantum systems
is a topic of particular interest with implications span-
ning physics, chemistry and biology alike. A short list
of most intriguing issues include mechanisms of high-T
superconductivity [1], wave packet dynamics and femto-
chemistry [2], and electron-impact induced DNA strand
break [3]. Fundamental processes like double photoion-
ization (DPI), especially in the He atom, play a central,
benchmarking role in this context. Understanding the
role of electron correlations in this seemingly simple pro-
cess, involving two electrons, provides insights to electron
correlations in more complex breakup processes in many-
electron systems.

Since the pioneering work of Wannier dated back more
than 50 years ago [4], it has been established that the
two-electron break-up is a tightly correlated process with
the back-to-back emission being the only possible route
to double ionization at the threshold. At a small ex-
cess energy E above the threshold, the electron pair ac-
quires some dynamical freedom and can deviate from the
back-to-back emission 612 = 7 within a Gaussian distri-
bution exp [—2In2(m — 612)?/A6%,] with a finite angu-
lar correlation width A6, o« E* [5, 6]. This result
is based on the solution of the two-electron Schrodinger
equation in the so-called Coulomb zone where the po-
tential energy dominates over the kinetic energy and
the two-electron escape follows closely the Wannier ridge
r1 ~ ro and 015 ~ w. At a sufficiently large separation
R = (r} +r3)'/2, in the “far zone”, the kinetic energy
becomes dominant and the Coulomb force is not able to
return the electrons back to the nucleus. The angular
correlation width in the far zone remains unchanged un-
til the electrons reach the detectors and it is this correla-
tion width that determines the experimentally measured
fully-differential cross-section. At small separations R,
the Coulomb zone borders with the “interaction zone”.
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In this zone, details of the interaction of the two-electron
system with the external field become important. These
details, however, are completely ignored in the Wannier
theory since they do not affect the threshold law.

In the Wannier picture, we can view the Coulomb zone
as a “two-electron collimator”. The two electrons enter it
from the side of the interaction zone with a wide spread
of mutual angles 612 but leave it into the far zone with
the mutual angles tightly focused around 612 = 7. As the
energy of the electron pair decreases, the outer boundary
of the Coulomb zone stretches to larger distances and its
“collimating efficiency” increases resulting in decreasing
angular correlation width Af;5 EY/%. The Wannier
theory makes this prediction completely ignoring many-
electron processes in the interaction region. Although
these processes do not change the functional E'/* de-
pendence, they can strongly modify the pre-exponential
constant of proportionality.

In this Letter we analyze the processes in the interac-
tion region from the point of view of their effect on the
strength (size of Af;5) of the angular correlation in DPI.
Without too much loss of generality, we consider the He
atom in a range of initial n'S states for n < 3. For
n = 1 we have the extreme of a highly correlated initial
state. For n = 3 we have a rather diffuse initial state.
We expect that any systematic, as a function of n, be-
havior here will translate well to more complex targets.
In particular, we are motivated by trying to understand
the narrowing of the DPI angular correlation width in Be
[7, 8], Ne [9] and H, [10, 11].

Near the threshold, the DPI proceeds primarily via
one electron absorbing the photon and then ionizing the
residual ion via collisional impact. The DPI process is
most probable if the photon is absorbed by an “inner”
electron which then ejects an “outer” one. In this con-
figuration, the recoil momentum is most readily accom-
modated by the nucleus [12]. At a small excess energy,
the “outer” electron has sufficient time to adjust itself to
a slow departure of the inner electron and thus remains
in the ns ionic Thus, in the case of the He(n'S) target
the DPI process, after photon absorption, proceeds via



electron-impact ionization of the corresponding He™ (ns)
ion. We may also calculate Af;2 explicitly for the e-
He't(ns) system. If there is a strong similarity with the
Ab12 of the DPI then we can exclude the electron-electron
correlations in the He initial n' S state from contributing
to the Aé;5 of the DPI.

We perform numerical calculations of the angular cor-
relation width in the two-electron continuum using the
convergent close-coupling (CCC) method. The DPI cal-
culations have been described earlier [13, 14]. The only
difference introduced here is the use of the box-space ba-
sis states [15] which allowed us to approach the double
ionization threshold to within 0.4 eV.

The derivation of the angular correlation width for the
electron-impact ionization is similar to DPI. We write the
amplitude of the electron impact ionization of the target
state ¢ in the form of a partial wave expansion [16]:
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Here, the projectile of momentum k is directed along the
quantization z-axis and the total spin of the scattering
system is S. The T-matrix entering Eq. (1) is obtained
by the projection of the true continuum state ks onto the
same-energy pseudostate:
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Here (k1¢,||T7S||psko) is the bare T-matrix stripped of
all phase factors and angular momentum projections.

We shall restrict ourselves to the dipole singlet ampli-
tude which is the only amplitude relevant to DPI. In this
case for an s target state [; = 0,lp = 1, J = 1 and Eq. (1)
can be further simplified:
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where [y = [y £1. The (e,2e) cross-section is given by the
squared amplitude (3):
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After we introduce symmetric and antisymmetric combi-
nations of the T—matrices:
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the angular momentum summation in (3) can be reduced
to the sum over a single variable. This allows us to
parametrize the cross-section (3) in the form:
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where the symmetric and antisymmetric amplitudes are
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Here we used expressions for the bipolar harmonics yhb
due to Manakov et al. [17]. The mutual electron angle
is defined by cosf1s = k; - ko. We note that Eq. (7) is
identical to Eq. (13) of Ref. [14] except for the T-matrix
elements which are substituted by the dipole matrix ele-
ments in the DPI case.
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FIG. 1: Gaussian width parameters for DPI of He(n'S) and
(e,2e) of Het(ns) for n < 3 plotted versus excess energy over
the corresponding double ionization threshold. Circles, dia-
monds, and triangles correspond to widths for the n=1, 2,
and 3 initial states, respectively. Filled symbols are for DPI
on He and open symbols are for (e,2e) on He™.

We concentrate on the special case of equal energy
sharing when ¢~ vanishes. Close to double ionization
threshold, the symmetric amplitude can be fitted with
the Gaussian ansatz:
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where the Gaussian width parameter A#;2 is the measure
of strength of the angular correlation.

In Figure 1, we plot the Gaussian width parameters for
DPI of the He atom in the n' S initial states, where n < 3,
as functions of the excess energy over the corresponding
double ionization threshold. In the same figure, we over-
plot the Gaussian width parameters for the electron im-
pact ionization of the Het ion in the corresponding ns
state.

We observe that there is a systematic reduction in the
widths as n increases. The angular correlation widths of
the two processes follow each other closely and for n = 2
and 3 merge near the threshold. This indicates that the
angular correlation width in DPI is indeed dominated
by the corresponding (e,2e) process. We fit the energy



dependent angular correlation width of the latter process
by the Wannier threshold law

A0y (E) = Cp, x EY* (9)

where (), is the angular correlation width at 1 eV excess
energy and F is measured in eV. The energy-independent
pre-exponential factors C, are found to be 78°, 49°, and
38° for the n =1, 2, and 3 states of He™, respectively.

We now demonstrate that the factor C,, is strongly
related to the width of the momentum profile (squared
momentum-space wave function |R,s(q)|*) of the target
ion state being ionized. Indeed, it is well established in
the (e,2e) reaction that the width of the angular distri-
bution of the ejected electron is determined by the mo-
mentum profile of the target orbital [18, 19]. We plot
these profiles in Figure 2. For better visibility, we nor-
malize all the profiles to that of the ground state 1s or-
bital of Het ion. We see that the range of the possible
momenta available in the bound state is rapidly decreas-
ing from 1s to 3s. Therefore, the total momentum of
the two electrons after an ionizing collision, which deter-
mines the range of mutual angles in the interaction zone,
will have the largest spread following ionization of the
1s ground state. We illustrate this dependence in Figure
3, where we plot the energy-independent pre-exponential
factor C,, in Eq. (9) versus the width of the momentum
profile at half maximum Agq of the corresponding H* ion
state ns extracted from Figure 2. We see a very strong
correlation which can be approximated by a power law
Acia x Agl4.
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FIG. 2: Momentum profiles (squared momentum space wave
functions) |Rns(q)|? of the lowest ns states of the He™ ion.
The momentum profiles are normalized to |Ris|? at its max-
imum.

From these findings we conclude that the strength of
the angular correlation in DPI of He(n'S) comes primar-
ily from the momentum distribution of the corresponding
He't(ns) state. More specifically, the angular correla-
tion width in DPI is a result of interplay of two distinct
processes. It is initially set up in the interaction region
during an ionizing collision of the photoelectron with the
positively charged ion. This ionizing collision creates an
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FIG. 3: Energy-independent width constants C, in Eq. (9)
plotted versus the width of the corresponding momentum pro-
file extracted from Figure 2.

electron pair with the spread of mutual angles determined
by the momentum profile of the target electron bound
in the ion. Then the electron pair travels through the
Coulomb zone which greatly reduces the spread of the
mutual angles focusing them around 180°. As a result,
the electron pair emerges in the far zone with the angu-
lar correlation width which depends on the size of the
Coulomb zone (energy dependence E/* in Eq. (9)) and
the momentum profile of the bound ion state (energy-
independent pre-exponential factor Cy,).

According to this scenario, at the same excess energy
above the double ionization threshold, the He atom in
the ground state will have the largest angular correlation
width of DPI due to the largest width of the momentum
profile of the 1s state of the bare Z = 2 Coulomb cen-
tre. Hence we have the curious result that the strength
of the angular correlation in the continuum varies in-
versely with this strength in the electron-electron corre-
lation in the initial bound state. All other neutral atomic
and molecular targets, after single ionization, will have
lesser bound states either due to screening by other tar-
get electrons in atoms or a delocalized Coulomb centre
in molecules. Therefore, these atomic and molecular tar-
gets will have smaller correlation widths of the DPI than
say for He initially in the ground state.
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