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Abstract
A recently developed single-center model of double photoionization (DPI) of the Hy molecule
[Phys. Rev. A 71, 022704 (2005)] has been extended to represent the DPI process at unequal
energy sharing. The model is applied to describe the shape of the fully-differential cross-section
of a randomly oriented hydrogen molecule in the isotopic form of Ds at the kinematics of recent

experiments.

*Electronic address: A.Kheifets@anu.edu.au; URL: http://rsphysse.anu.edu.au/ ask107
tElectronic address: I.Bray@murdoch.edu.au; URL: http://atom.murdoch.edu.au



I. INTRODUCTION

Significant progress has been achieved very recently in the theoretical description of dou-
ble photoionization (DPI) of the Hy molecule. Various ab initio non-perturbative methods
have been applied to describe this process such as time-dependent close-coupling (TDCC)
[1], convergent close-coupling (CCC) [2] and exterior complex scaling (ECS) with B-splines
[3]. The TDCC and ECS methods were used to evaluate the integrated DPI cross-section
in a fairly good agreement with experiment [4, 5] but far below the earlier calculations of
Le Rouzo [6, 7]. The fully differential cross-sections which are much more computationally
demanding are yet to be evaluated by these methods. Within the ECS formalism, this will
require much larger angular momenta to be taken into account [3].

The CCC model for Hy combines a multiconfiguration expansion of the molecular ground
state with the CCC description of the two-electron continuum which is only correct in the
asymptotic region of large distances. Such a model may not correctly predict the magnitude
of the DPI cross-sections owing to substantial gauge dependence as was the case with the
BBK asymptotic theory [8]. The strength of the CCC model is in its ability to account
for the angular correlation in the two-electron continuum and to reproduce correctly the
shape of the fully-differential cross-sections (FDCS). This was demonstrated in the kine-
matics of recent DPI experiments on the randomly oriented and fixed in space hydrogen
molecule in the isotopic form of Dy [9-11]. So far, the CCC theory was tested under the
equal energy sharing condition. This is a somewhat special case since the antisymmetric
ionization amplitude vanishes at these kinematics. The DPI data for H, have been reported
for unequal energy sharing as well where 25 eV excess energy was shared between a slow
“reference” electron detected in coincidence with a fast variable angle electron [12, 13]. The
data complementary to this kinematics were reported by Weber [14] who measured angu-
lar distributions of the slow electron in coincidence with a fast reference electron. In this
paper, we expand the CCC model to deal with such kinematics and present results of our
calculations in comparison with the experimental data of Seccombe et al. [13] and Weber
[14]. To test the accuracy and convergence of the CCC method, we utilized two different

sets of basis functions. One basis was built from the Laguerre functions as described by



Kheifets [2]. The second calculation was performed using a recently implemented box-state
basis [15]. Excellent agreement between the two sets of calculations would assure the quality

of the CCC final state.

II. FORMALISM

The single-center CCC model of Hy DPI was described in detail by Kheifets [2]. In brief,
we use a multiconfiguration expansion of the molecular ground state
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built on the symmetrized pairs of the normalized Slater orbitals:

Suim(r,C) = (20)" 2 [(20)!] V21 e Vin(r) (2)

In Eq. (1), the normalization factor Ny = 272 (14 Pyy) for nl # n'l' and Nyypp =
1 otherwise, P; denotes the spatial exchange operator, Cy;, are configuration mixing
coefficients given by Hayes [16] for equilibrium interatomic distance of R = 1.4 a.u.

We build the CCC final state from the two-electron channel states each of which is

composed of a target bound state f and a continuum state k:
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Here (kf|T|jk') is a half-on-shell T-matrix which is found by solving a set of coupled

Lippmann-Schwinger equations [17]. We write a dipole matrix element between the ground

state and the two-electron continuum state as
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where the bipolar harmonics Y542 (k1, k2) = Simy CPM 1o Yiums (1) Yigm, (R2), and Mp is
the angular momentum projection of the photon. The reduced matrix element is defined by

the following projection:

Dui,(B1, Ea) = (i np1, (k1) | D(Mp)|[ o) (laka || lanz) (5)



where (lsks || lans) is the radial overlap between the pseudostate of energy €,,;, = E» and
the true continuum radial wave function of same energy and angular momentum. We note
that in our terminology Fs is always the energy of the slow or “inner” electron moving in the
field of the Z = 2 nucleus. The complete set of pseudostates is generated by diagonalizing
the target Hamiltonian either on the Laguerre or box-state basis [18].

The matrix elements for the parallel and perpendicular polarization of light in the molec-

ular frame can be written as:
(U(ky, k)| 21+ 22 [Wo) = (ki + k2z) g5 + (ki — kaz) 95 (6)
(U(ky, k)| z1 + 29 |¥o) = (kip + k2z) 91 + (k1z — koz) 95

Expression (6) corresponds to the length gauge of the electromagnetic interaction. Similar

expressions can be written for the velocity and acceleration gauges. The symmetric and

antisymmetric DPI amplitudes are defined as

2/11 e Z ,—l 1 [13l+1(cos 612) F P/(cos 012)] D 1 (Ey, Bs), (7)

where indices ¥ and II correspond to the parallel (Mp = 0) and perpendicular (Mp =
+1) polarization of light, respectively. Here we introduced symmetric and antisymmetric

combinations of the radial matrix elements as
1
Di,(Ey, Ey) = 5 {Dy1,(Er, E2) + Dy, (Es, Er)} (8)

The Mp dependence is present, but not shown for brevity, in matrix elements (5) and (8).

In the laboratory frame, for the light polarized along the 2z axis, we can write
(U(ky, k)| 21 + 25 |¥y) = cos®Og [(klz + kaz)gs + (k1. — kzz)gi] (9)
+ sin’ O [(klz + k22 )gri + [(klz - kzz)gﬁ]
+ cos fg sin GR[(klz + kaz) (95 — 91) + (k1w — ko) (95 — gﬁ)]

Here 6 is the angle of the molecular axis relative to the polarization axis of light taken as
the z-axis in the laboratory frame. After taking the spherical average over all the molecular

orientations, we arrive to Eq. (8) of Seccombe et al. [13]:
FDCS 3|cg\2 + l|cn\2 + S Re CiCn (10)
15 15 15
1 2 2 *
+75119al* + 9[> + 2 Re 92,95 cos(6y — 62) .
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where we introduce auxiliary variables for brevity of notations:

Cy = (k1o + koz)gs + (k1z — k22)g5
Crn = (k1. + k22)g1f + (k1. — ka22)9n
Jo = 0% —9h+95 —9n , 98=9% —9n — 95 + 9
In the case of He, gg = gn and FDCS o< |(ky; + ko,)g" + (ki — k2,)g | As it was noted in

the introduction, the present model exhibits a strong gauge dependence. In the following,

we present the velocity gauge results as most reliable.

III. RESULTS

A. DPI amplitudes

The moduli of the amplitudes gzzt,n and their relative phases as functions of the interelec-
tron angle 6,5 are plotted in Figure 1 together with their counterparts for atomic He. The
energy of the slow electron is fixed at F4 = 2 eV. Although not plotted in Figure 1, similar

angular dependences are displayed at other energy partitions.
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FIG. 1: Moduli of the symmetric (left) and antisymmetric (centre) amplitudes and their relative
phases (right) for DPI of He and Hj at E; = 2 V. For Hy, the amplitudes corresponding to parallel
(Mp = 0) and perpendicular (Mp = 1) polarizations of light relative to the molecular axis are

shown by red/solid and black/dotted lines. The He amplitudes and their relative phase is shown
by green/dashed lines

To make a quantitative characterization of the amplitudes, we notice that the symmetric



amplitudes display a clear Gaussian shape and can be fitted with the Gaussian ansatz
N (m — 615)?

‘gzﬂ‘ = A exp [—2111 27A9%2 ] (11)
Asymmetric amplitudes show considerable “wings” at small mutual angles. We consider
these “wings” as artifacts and fit only the central portion of the amplitude at 90 < 6,5, < 180°
with a Gaussian centered at 6,5 = 180°. Thus produced, the magnitude A and width A#,
parameters are shown in Figure 2. The width parameters vary insignificantly with energy
partition ratio E;/F,. For the symmetric amplitude, Af1S" < AfLT < AfRT as was
previously reported [2]. No similar trend was observed for antisymmetric amplitudes with
ABT ~ ABTL ~ ABTY . As the energy partition E;/E, changes, the symmetric magnitude
parameters for parallel (X) and perpendicular (IT) orientations vary slightly with a typical
ratio Aff /A% ~ 1.2. Such a small asymmetry is consistent with a relatively small fraction
of the J = 2 component in the molecular ground state [2]. The antisymmetric magnitude
parameters decrease rapidly towards more even energy-sharing with approximately the same
asymmetry between the parallel and perpendicular orientations. Relative phase between the
symmetric and antisymmetric amplitudes shown in Figure 1 is insensitive to the target at
90 < 615 < 180°, but is quite different for He and H, at small interelectron angles in the

“wing” region of the antisymmetric amplitudes.
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FIG. 2: The left and central panels show the Gaussian width parameters for the symmetric and
antisymmetric amplitudes respectively. The right panels show the amplitudes ratio A~/A™ in Ha
and He. In molecular hydrogen, parameters of the parallel ¥ and perpendicular II amplitudes are

shown separately



B. Fully-differential cross-sections
1. Slow reference electron

The fully differential cross-sections in the form of the angular distribution of the fast
electron are shown in Figure 3 for He (left - polar and central - Cartesian plots) and Hp
(right panel). Direction of the slow reference electron is chosen along the polarization axis
of light #; = 0 and shown by the arrow on the left panels. The He FDCS have a “fish”
shape typical for highly asymmetric energy sharings [19]. The evolution of the FDCS with
energy partition ratio can be explained by an interplay of the symmetric and antisymmetric
amplitudes [20]. The forward lobe corresponding to the back-to-back emission originates
solely from the antisymmetric amplitude. With the energy of the slow electron E; growing,
this amplitude gradually decreases in magnitude and the FDCS becomes dominated by the
side lobes originated from the symmetric amplitude. Agreement with experiment for He
is generally good but some features of the FDCS cannot be reproduced completely. For
instance, the side lobes are too big for £; = 2 and 5 eV. Similar disagreement can be seen in
Fig. 7 of Selles et al. [20]. It is interesting that in their earlier paper [13] the same authors
reported a nearly perfect agreement with the experiment, but later retracted their results
as not fully converged with respect to the size of the interaction region Ry. As we use two
completely different sets of target states, with the box states being extended to R, exceeding
100 atomic units, we are confident that our results are fully converged. For Ey = 7 eV, we
have the central lobe somewhat below the experiment whereas both calculations [13] and
[20] reproduce it very well.

Now we turn to analyzing the H, data. As compared to He, the experimental Hy FDCS
have more diffuse shape with a three-lobe structure which is much less prominent. Sec-
combe et al. [13] suggested that this might be either due to averaging over all molecular
orientations or due to the intrinsic differences between the two targets. In our model, the
effect of averaging is represented by the terms containing g, gg which are very small due
to insignificant anisotropy of the molecular ground state. For E; < 5 eV, the side lobes are

still present in the calculated FDCS, but with a lesser intensity in Hy as compared to He.



For larger E; = 7 eV, the side lobes dominate the FDCS both for He and Hs.

The difference between the two targets can only be attributed to the Gaussian width of
the symmetric amplitude since other amplitude parameters are quite similar in Hy and He.
Angular position of the side lobes is a result of an interplay between the kinematic term
cos 01 + cos B, which peaks at 6; = 0 and the Gaussian term exp [—21In2(m — 0;2)%/A63)]
which peaks at #; = w. The product of the kinematic and the Gaussian terms peaks
somewhere between these two extremes at an angle depending on the Gaussian width. If
the width parameter decreases, this peak moves closer to the central lobe and decreases in
magnitude which can be visually interpreted as “diffusion” of the three-lobe structure. At
more even energy sharings, when the central lobe is suppressed, the difference of the FDCS
in He and H, is not so dramatic.

This effect is exemplified in Figure 4 where we plot the ratios of the FDCS in Hy and He
shown previously in Figure 3. Both the calculation and the experimental data of Seccombe
et al. [13] are normalized in such a way that the ratio is set to unity at #; = 180°. Here we
see a clear peak which indicates the angular position of the side lobes in Hy. Qualitatively,
the calculation resembles the experiment except for E; = 7 €V, where the calculated ratio
is much more uniform as compared to the experiment. This, however, might be a result of
normalization of the experimental data to a stray point which does not represent the whole

set adequately.

2. Fast reference electron

In a recent paper [20], the same experimental group of Reddish and co-workers presented
the He FDCS at a complementary geometry where the fast electron is fixed and the angular
distribution of the slow electron is detected. These data served as a test bench for the
hyperspherical R-matrix calculations of Selles et al. [20]. Unfortunately, no Hy FDCS were
reported at these kinematics. However, here we are are aided by Weber [14] who reported
the FDCS for the slow variable angle electron at E; + Ey = 24.5 eV. To improve statistics
of the experiment, the slow electrons with 10% or less of the total excess energy were

binned together. Unlike in the experiments of Reddish and co-workers, several fixed angular



positions of the fast reference electron were recorded with 6; = 0, 30°, 60° and 90°.

The He FDCS for complementary geometry and various energy sharings are shown in
Figure 5 as polar (left) and Cartesian (right) plots. These FDCS are constructed from the
same symmetric and antisymmetric amplitudes as the FDCS shown in Figure 3. However,
due to the swap of the reference and variable angle electrons, the interference of the terms
containing the symmetric and antisymmetric amplitudes is now constructive with both terms
contributing to the same peak with very little internal structure. Physically, this reflects the
fact that the slow electron is ejected mainly via the shake-off mechanism and demonstrates
little anisotropy. This is in contrast to the fast electron which is ejected due to the absorption
of the photon and shows a strong anisotropy relative to the polarization axis of light. These
effects are much more pronounced at a higher photon energy [21]. As the energy partition
becomes more even (E, = 7 V), almost all the contribution to the FDCS comes from the
symmetric amplitude and the angular distribution of the fast and slow variable electrons
become very similar except for the back-to-back emission.

The Hy FDCS for E; = 23 eV and E> = 2 eV are shown in Figure 6 along with ex-
perimental FDCS of Weber [14] for several fixed fast electron angles. Comparison with the
experiment is not straightforward since the data for Ey < 2.5 eV were binned together.
Nevertheless, we believe that a fixed Fs = 2 eV calculation represents the data reasonably
well. The evolution of the FDCS with varying angle 6, is again explained by the compe-
tition of the terms containing the symmetric and antisymmetric amplitudes. At 90° fixed
angle, the symmetric amplitude clearly dominates and the FDCS contains two symmetric
lobes. Back-to-back emission is forbidden in the He case but can happen in Hy due to a
difference between the IT and ¥ amplitudes. This difference, however, is too small in our
model to account for a large experimental back-to-back emission in this kinematics. At other
fixed angles, agreement with the experiment is satisfactory. We note that the experiment is

internormalized and only one scaling constant was used in all plots of Figure 6.



IV. CONCLUSION

In the present work, we tested a CCC-based model developed to describe the DPT FDCS
of H, in the kinematics of recent experiments at unequal energy sharing. The model employs
a single-center expansion of the molecular ground state and a helium-like description of the
doubly ionized final state. Satisfactory agreement with the experiment, in terms of the shape
of FDCS, indicates that the angular correlation in the two-electron continuum is established
at large distances where the separation of the two nuclei can be neglected and they can be
viewed as a united helium atom.

In the meantime, the anisotropy of the molecular DPI, which comes in the present model
from the single-center ground state, seems to be underestimated. The calculated II and
Y amplitudes differ by only 20% which is insufficient to account for a strong back-to-back
emission in the experiment of Weber [14] and to explain a highly irregular H,/He FDCS
ratio in the experiment of Seccombe et al. [13]. A proper two-center description of the

two-electron continuum is needed for better account of such purely molecular effects.
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FIG. 3: Angular distribution of the fast electron F; is plotted with the slow electron Es being
fixed along the polarization axis of light (horizontal). The box states (red/solid line) and Laguerre
(green/dashed line) calculations are presented along with the experiment of Seccombe et al. [13].
The left and middle panels show helium FDCS in the polar and Cartesian coordinates. The right

panel shows the Cartesian plots for Hs.
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FIG. 4: Ratios of the FDCS in Hy and He shown in Figure 3. The ratios are normalized to unity

at 02 = 180°. Experimental data are due to Seccombe et al. [13]

14



He E;=23 eV

He E,=23 eV

Laguerre  — \ 0L
—~ 10 F Xﬁ 4 —
TP %*%‘ 3 %
3 [ ¥ 60 3
N N
5 i 5
30 ¥ 1w0f
= T d 2
0 o / Iy
5 it 5
F -0t il =
1 1 O =
-20 -10 0 10 0
HeE,=20 eV
L, = e T T
8l A4 v b ] 10
T P 4 )
3 AfE 1 3
O *#«” 09,=0 O
5 e ' 5
S OR § 5
5 % . g
gt F 7
a ¥ a
= \ «'j-} f!} [=
8 N 1 :
1 - — 1 1 0
4 4 0 4 8
HeE,;=18 eV
T T T
—_— — ol ]
8 r B B J
— LA O [#
o ¢ & | x
2 | | 2 | |
ERTE S ER |
g 5 |
& 0 ‘\"o 51 E ‘ b
S 2 .
7y 8 ¢
4L il 4] / ‘
a % | = # &
= @ff% %
8 I \ - /’ \
L \l‘r'r/ L L 0 il L s
8 4 0 4 8 0 9 180 270 360
Angle 6,, deg

FIG. 5: The He FDCS for the slow variable angle electron and the fast reference electron. Exper-

imental data are from Selles et al. [20]

60 T T T T T T T T
% b 0,00 4 | 0,60 4 | 8,230 - 0,50
% 30 7 2 P /‘}?’EI 7
NE se / Py
<© aongre, L o on , ot 9 [Fos
o 0 e { [ hd \m ]
g P B oo
o 4 /N \ | \ )\ T *'AY'}\' Ei
8 -30 - e /. .\ o / N . ° T N @I Ly T £ T
= Vs s NG /

_60 1 1 1 "//l 1 1 1 1

60 30 0 30 60 60 30 0 30 60 -60 30 0 0 60 -60 30 0 0 60
FIG. 6: The Hy FDCS for the slow Fy = 5 €V variable angle electron and the fast E; = 20 eV

reference electron. Experimental data are from Weber [14]

15



