Frozen-core model of the double photoionization of beryllium
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Abstract

We calculate the ionization-exitation and double ionization cross-sections of the valence 2s2 shell
of beryllium. Our model combines a multiconfiguration Hartree-Fock expansion of the beryllium
atom ground state and a momentum space close-coupling expansion of the final ionized state. A
near-complete set of negative and positive energy pseudostates is employed to represnet various
singly and doubly ionized channels. The role of the frozen 1s? core is elucidated by comparing the
beryllium single and double photoionization cross-sections with those of the “hollow” helium 2s2
atom in which the 2s orbital is made orthogonal to the vacant 1s orbital. The angular correlation
in the two-electron continuum is studied by calculating the triply differential cross-section of Be at

equal energy sharing between the photoelectrons.
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I. INTRODUCTION

Two-electron single-photon ionization processes including ionization with excitation
(exitation-photoionization - EPI) and double photoionization (DPI) are only possible due
to many-electron correlations. As such, these processes constitute an ideal testing ground
for various theoretical models dealing with correlations. Most of the experimental and the-
oretical studies of the two-electron photoionization have been peroformed so far on He. The
helium atom is the simplest two-electron target with no relevant structure of the remaining
He?" ion. This simplifies considerably theoretical treatment and interpretation of exper-
imental results. Other members of the helium isoelectronic sequence (H™, Lit etc) can
be treated with the same level of accuracy. However, these targets are difficult to handle
experimentally.

There is another class of atomic targets, namely the alkaline-earth atoms, which can be
treated, in some approximation, as two-electron systems. Indeed, a compact electron core
is well separated, both in the corrdinate space and in energy, from the valence ns? shell. At
relatively small photon energies the inner core electrons can be treated as “spectators” not
taking a direct part in the photoionization of the outer valence electrons. In this case the
influence of the core on the valence electrons can be included via the self-consistent field
and/or the polarization potential. This scheme is implemented to describe the single-photon
one-electron photoionization of the valence shell in Be, Mg and Ca.

Several attempts have been made to study the two-electron ionization in the alkaline-
earth atoms. The fully-resolved triple differential cross-section (TDCS) of the DPI of Ca
have been measured in the region of the giant 3p — 3d resonance [1, 2]. These measurements
have been analyzed in subsequent theoretical papers [3-5]. However, a complete theory of
the DPI in the resonance region is still lacking because of a complex nature of this process.
Resonance-free DPI in Ca has been measured very recently [6] and this new set of data
awaits its theoretical interpetation.

Double ionization of Mg by electron impact has been studied by the Maryland group with
the view of obtaining the two-electron momentum density [7]. Experiments on the direct
and resonant DPI of Be and Mg are now underway at the Photon Factory [8]. Theoretical
interpretation of the Be measurements will be the most straightforward since the valence 2s?

is very well separated from the 1s? core. Accordingly, there is good motivation for studying



the problem from a theoretical perspective. Here, we complement the study by Colgan
and Pindzola, who used the time-dependent close-coupling approach at a few energies [9],
by a systematic study on a broad energy range using the convergent close-coupling (CCC)
method.

In our earlier works [10, 11] we applied the CCC method to describe the two-electron
photoionization of the helium atom and its isoelectronic sequence. In this method the
two-electron photoionization is treated as a two-stage process. The single photoionization
is followed by scattering of the photoelectron on the positive ion thus producing various
singly ionized and excited as well as the doubly ionized final states. By employing the
Hylleraas or multiconfiguration Hartree-Fock (MCHF) ground state wave functions, the
CCC method provides a very accurate description of both the total and the fully-differential
photoionization cross-sections, independent of the gauge of the electromagnetic operator.

Here we report an application of the same theoretical scheme to the two-electron photoion-
ization of the valence 2s? shell of the beryllium atom. The static ground state correlation in
this shell is described by employing a MCHF wave function in which the 1s? core is frozen.
The dynamic correlation in the two-electron continuum is represented by a momentum space
close-coupling expansion, obtained from a CCC calculation for electron-impact ionization
of Be™. The target space is spanned by a set of negative and positive energy pseudostates
which diagonlize the Hamiltonian of the positive Bet ion. The lowest, in energy, target state
represents the frozen atomic core (1s? in the case of beryllium). The photoelectron wave
function is calculated in the Hartree-Fock field of this frozen core.

To elucidate the role of the frozen core we calculate the two-electron photoionization of
a simpler target in which the 1s? shell screens the Z = 4 charge of Be to the Z = 2 of He.
We call the resulting system the “hollow” 2s? helium. Unlike the autoionizing 2s? state of
the real helium atom, in the “hollow” helium the 2s state is made orthogonal to the missing
1s? shell.

In addition to the total cross-sections of the two-electron photoionization we also calculate
the triply differential double photoionization cross-section at equal energy sharing between
the photoelectrons. We apply a Gaussian ansatz to the squared double photoionization
aplitude (correlation factor) and compare the Gaussian width parameters of the Be and He
atoms.

The rest of the paper is organized as follows. In the next section we give a detailed



description of the MCHF ground states of Be and “hollow” He. In Section III we present
the CCC formalism as applied to the frozen-core beryllium. Section IV contains our results

for the total and differential photoionization cross-sections.

II. MCHF GROUND STATE

We assume the LS coupling scheme and make the following configuration-interaction

expansion of the 1S ground state:
‘1’0(7‘1; 7’2) = ZCnl |¢nl(7‘1) ¢nl(7'2) 315) (1)
nl

Only diagonal nl? terms are included in (1) as is always the case for the MCHF ground
state. This is so because a HF ground state is stable with respect to the one-electron-one-
hole exitations and the first non-vanishing correction should be of the two-electron-two-hole
type.

The coefficients in the MCHF expansion (1) are found by using the MCHF computer
code [12]. The number of terms in the MCHF expansion is increasing until we are satisfied
with the accuracy in terms of the energy and, more importantly, the asymptotic EPI and
DPI ratios. As was shown by Dalgarno and Stewart [13] these ratios can be calculated solely
from the ground state wave function through the overlap integrals

e 0 (85,1 6(r2) | W), oc [(To) 8(r) W) (2)
In the above expression ¢, is the one-electron ns orbital of the singly ionized atom. The

asymptotic DPI and EPI ratios are then given by,
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where o, is the partial EPI cross-section, and o™ = >>7°, 0,, and o' are the total single
and double photoionization cross-sections. Here we follow notations of Refs. [14, 15] and
define R,, as the ratio of the partial to the total cross-sections whereas R is defined as the
ratio of the double to single cross-sections. Results for RY° and R* are shown in the Table.
For comparison, we also show the corresponding results for the ground state He and the
“hollow” 2s helium in which the 2s orbital is made orthogonal to the missing 1s orbital.

The asymptotic photoionization cross-section ratios are quite close for Be and the hollow
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He. In the following sections we will see that other photoionization results are also quite
close for these two targets. This indicates a relatively minor role played by the frozen 1s?

core in the two-electron photoionization of the valence 2s? shell of Be.

III. CCC FORMALISM

The photoionization cross section, as a function of the photon energy w, corresponding

to a particular bound electron state j of the ionized target is given by [16]
o5 Z [ @k (25 (ko) D] W6) 2 50 — B+ E), (4)

where ¢ ~ 137 is the speed of light in atomic units.
The dipole electro-magnetic operator D can be written in one of the following forms

commonly known as length, velocity and acceleration:

D" = w(z + 22)

DY =V, +V,, (5)
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with the 2z axis chosen along the polarization vector of the photon. We used all the three
gauges in our previous calculations on He [10, 11, 17]. However, the acceleration gauge
cannot be used with the presently emploed frozen core model. This gauge enhances the
small distances from the nucleus where the excitations from the core 1s? shell are important.
This excitations cannot be accounted for in the frozen-core model.

The dipole matrix element entering Eq. (5) is calculated as
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Here the channel wavefunction (k,(,_) Jj| is the product of a one-electron target orbital ¢; with
energy ¢; and a (distorted) Coulomb outgoing wave x(~)(k;) with energy er. Like in the
case of helium, the target orbital is generated with the asymptotic charge being two, and

the asymptotic charge seen by the Coulomb wave is one.



The square-integrable basis set of the target states ¢ is obtained by diagonalizing the

target Hamiltonian Hr in a large Laguerre (Sturmian) basis of size N
(om Hr|pp') = € dmn- (7)

The target Hamiltonian is defined as

z z
1
Hr=Y (K;+ Vi)=Y (—§v§ +VC+ V;p"‘) (8)
i=1 i=1
The non-local frozen-core Hartree-Fock potential VFC is generated by performing a self-
consistent-field Hartree-Fock calculation [18] for the ground state of the Be?* ion

VFCo. (r) = (__+2 z /d3 /||T_T, |) /ds I(P]|r_r/(| )<Pj("'): )
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Polarization potential

VPOl(r) = —ad/27'4 WG(T/p)a

where

Win(r/p) = {1 —exp[~(r/p)"]},
and qq is the static dipole polarizability of the core. For the case of the Be™ ion there is no need
to use VP°l and so we set ag = 0. However, the polarization potential would have to be included
for heavier atoms like Mg and Ca.

The contribution from the final channels <k1()_) Jj| is separated into single and double ionization
according to the energy of the ¢; which are positive for the double ionized channels and negative
for the singly ionized channels. We also ensure that for the negative-energy state cross sections,
contributions to the ionization plus excitation cross sections are multiplied by the projection of
the state onto the true target discrete subspace as is done for electron-impact ionization [19]. The
fully differential DPI TDCS is calculated from the same dipole matrix element (5), but without
integration over the momentum of the one photoelectron. Details of the TDCS calculation are
presented elsewhere [20].

The number of the states NV in the Laguerre basis (7) was increased until satisfactory convergence
is achieved. In practice, our calculations were performed with 20 — [ target states where [ =
0,...,lmax is the angular momentum of the target orbital and I/, = 5. Higher values of the [,y
are required for Be than for He because of a larger radial extent of the target orbitals. To get

convergence in the TDCS even higher [,,x = 7 was necessary.



IV. RESULTS

A. Total EPI and DPI cross-sections

We test our model by first calculating the ground state single photoionization cross-section.
This cross-section corresponds to the BeT ion being left in its ground state 2s'. Our results in the
length and velocity forms are shown in Fig. 1. In the same figure we also show the calculations
of Radoevi¢ and Johnson [21] (labeled as RJ) in the random phase approximation with exchange
(RPAE) and the Tamm-Dancoff approximation (TD). These calculations are available in a smaller
photon energy range closer to the single ioonization threshold. Where a comparison can be made,
our results are close to those of Radoevi¢ and Johnson.

A more complex truly two-electron process is the ionization with excitation in which the Be™
ion is left in an excited state nl,n > 2. We show our results for the ionization-excitation in Fig. 2
in the form of the cross-section ratios R, = o,/(ct + o7T) for n = 3...6. The asymptotica
ratios RS° calculated according to formula (3) and listed in the Table are indicated by the arrows.
The cross-section ratios flatten at photon energy above 200 eV and approach quite closely the
asymptotic values. Of course, one should bear in mind that the frozen core model is most accurate
at photon energies below the third ionization potential, i.e. below 180 eV for Be. So, approaching
a correct asymptotic limit only indicates an internal consistency of our model.

In the same figure we show analogous ratios calculated for the “hollow” helium. Calculation
for the velocity form only are shown for both targets as the length form is very close. We see that
qualitaive behaviour of the EPI ratios is similar in Be and the “hollow” helium, especially at larger
photon energies. This again indicates a passive role of the 1s2 core which only serves to shield the
excessive charge of the nucleus.

In Fig. 3 we show the double-to-single photoionization cross-sections ratio for He (left panel)
and Be (right panel) calculated in the length and velocty gauges. The MCHF-15 and MCHF-13
ground states were used for He and Be, respectively, as indicated in the Table. We note that the
length-form calculation with a MCHF-type ground state is not reliable. Our calculation on He [17]
with a far more accurate Hylleraas-type ground state agreed well with the MCHF calcualtion in the
velocity form. The length form appeared to be significantly off. So, of the two markedly different

results in Fig. 3 we favour the velocity form calculation. Qualitatively, and even quantitatively, the



DPI ratio in Be is similar to that in He. A certain scaling should be applied to the photon energy
scale as the DPI threshold is markedly different in both these targets (79 eV in He and 27 eV in
Be). Again, as in the case of the EPI ratios, the asymptotic DPI ratio for Be is of purely academic
interest as the frozen core model loses its validity much earlier than the asympototic ratio can be

reached.

B. Triple-differential DPI cross-section

Much more detailed description of the DPI porcess can be achieved when the fully-differential,
rather than an integrated, cross-section is measured or calculated. It has been demonstrated very
convincingly in the case of He [22]. Although the DPI cross-section ratio in ground state He and
Be is quite similar (see Fig. 3) we demonstrate here that the fully resolved TDCS of these two
targets are quite different.

We choose the equal energy sharing kinematics F1 = FEs. In this case a simple Gassian ansatz
can be applied to the TDCS [23]. We assume the coplanar geometry in which the two photoelectrons
are detected in the plane perpendicular to direction of the photon which is fully linearly polarized.
The TDCS is then given by the formula [24]:

do

(7 — 012)?
dQ1dQ9dFEs

02

= Aexp l—4 In2
1/2

] (cos 87 + cos B2)? (10)

Here angles 61, 65 are counted from the polarization axis of light, the mutual angle is 612 = |01 — 62|
The magnitude parameter A absorbs the DPI constant and the width parameter 6,/ defines the
width of the Gaussian (10) at the half maximum.

We select the escape energy of the two photoelectrons at 10 eV. In the case of helium this is
a widely studied energy partition which we adopt for Be also. While detailed comparison of the
TDCS calculated by the CCC and TDCC methods are given by Colgan and Pindzola [9], here we
concentrate on an overview.

In Fig. 4 we show the TDCS at the full angular range of the two photoelectrons 61,85. The
contour plot is used in which the areas of a larger cross-section are indicated by dacker shades of
grey. Conventional plots of the TDCS at a fixed escape angle of one of the photoelectrons can be
produced as vertical or horizontal cuts across our 3D plots, and are found to be in good agreeement

with those obtained from the TDCC method [9].



In our 3D representation the TDCS has a characteristic shape of four islands separated by deep
valleys. These valleys are formed due to the nodal lines along which cos8; + cos8y = 0. This
forbids the two-electron escape along the straight lines 81 + 85 = +180°. In addition, the Gaussian
term in (10) strongly suppresses the parallel emission at the diagonal #; = 0. The width of the
TDCS perpendicular to the diagonal is controlled by the Gaussian parameter ¢, /5. Looking at the
TDCS plots in Fig. 4 we see that this width is markedly different in Be and He. Indeed, if we fit
our calculated TDCS with the Gaussian ansatz (10) we get the width parameters of 90 and 68°
for He and Be, respectively. Much smaller Gaussian width in Be means much stronger angular
correlations. This difference cannot be attributed to a different photon energy scale. The excess
energy of 20 eV takes us relatively further from the DPI threshold in Be than in He. Away from

the threshold the width is expected to grow as was confirmed by many studies (see e.g. [25]).

V. CONCLUSIONS

We presented here the integrated and fully-differential cross-sections of the DPI of Be in the
frozen-core approximation. This approximation is expected to be valid at photon energies not
exceeding the ionization potential of the Be?" ion, i.e. below 180 eV.

We observe that the photon energy dependence of the total ionization-excitation and the double
ionization cross-sections in Be resembles qualitatively that of He. The effect of the core is weak.
This is illustrated in the Fig. 2 where the cross-section ratios of the single ionization with excitation
to the ground state ionization o, /(6™ + 0?%) are presented for Be and the “hollow” He 2s? in
which the radial orbital 2s is made orthogonal to that of the empty 1s shell.

Despite similarity of the total cross-sections, the triple differential cross-section (TDCS) in Be
and ground state He are quite different. Our calculations at the excess energy of £ = 20 eV
shared equally between the photoelectrons show considerably smaller Gaussian width in Be than
in He. This can be interpreted by employing the arguments of Cvejanovi¢ and Reddish [26]. They
noted that the strength of the angular correlation in the two-electron continuum depends on the
time spent by the photoelectrons in the so-called Coulomb zone where they follow the Wannier
trajectory. Stronger angular correlation in Be means a larger spatial extend of the Coulomb zone
which is not surprizing given a large electron radius of the Be atom. Incidently, a recent non-

resonant measurment of the DPI TDCS in Ca [6] also indicates quite a small correltaion width,



probably even smaller than that of Be. A poor statistical accuracy of the Ca data precludes us
from making a quantitative estimate.

Our results for both the total and fully-differential cross-sections of the DPI of Be agree well with
another non-perturbative calculation by Colgan and Pindzola [9], who used the time-dependent
close-coupling approach. Detailed comparison between the two calculations is presented in their
paper.

In the future we plan to extend our frozen-core model to a heavier and stronger polarizable Mg
and Ca atoms. This would require inclusion of the polarization potential both in the ground and

final state.
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TABLE I: Asymptotic photoionization cross-section ratios (%) of various two-electron targets

Target He He* Be
Expansion MCHF15 MCHF5 MCHF13
l=0...4 1=0...2 [=0...4

Orbitals
n=1...5 n=2...3 n=2...5

R®n=1 929071
2 47278  91.6062  94.2291
0.5970 6.1847 5.0933
0.1988 0.4805 0.3961

0.0504 0.0674 0.0543

3
4
5 0.0919 0.1483 0.1205
6
7 0.0308 0.0370 0.0296
8

0.0202 0.0228 0.0181
R 1.7587 0.3660 0.3709
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FIG. 1: Photoionization cross-section of Be leaving the BeT ion in the ground state. The CCC
calculation in the velocity and length gauge is shown by the thick solid and dotted lines, respectivley.
The calculations by Radoevi¢ and Johnson [21] (labeled as RJ) in the random phase approximation
with exchange (RPAE) and the Tamm-Dancoff approximation (TD) are shown by the thin solid

and dotted lines, respectively
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FIG. 2: Velocity gauge calculation of the cross-section ratios of the ionization with excitation to the
total photoionization cross-section R, = o,,/(6™ + o*™) in Be (solid line) and the hollow helium

(dotted line). The asymptotica ratios RS° for various n in Be are indicated by arrows.
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FIG. 3: The double-to-single photoionization cross-section ratio R = 2% /0" in He (left panel) and
Be (right panel). Calculations are performed for selected photon energies and results are shown by
the closed and open circles for the velocity and length gauges, respectively. The solid lines are to

guide the eye. The asymptotic value R* from the Table is indicated by an arrow.
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FIG. 4: Contour plots of the TDCS at E; = E; = 10 €V in He (left panel) and Be (right panel).
The escape angles of the two photoelectrons 61,60> are plotted on the axes, the areals of larger

cross-section are indicated by a dacker shade of grey.
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