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Abstract

The symmetrised gerade and ungerade amplitudes of the helium atom double photoionisation
are extracted from the convergent close-coupling calculations at fixed excess energies of 9, 20,
40 and 60 eV above the double ionization threshold, and varying energy sharing ratios. The
amplitudes are fitted with a simple Gaussian ansatz. Although some deviations from this ansatz
are clearly visible, especially at small mutual angles, the fully-resolved triple differential cross-
sections generated from the calculated and fitted amplitudes are very close. This observation lends
support to the practical parametrisation suggested by Cvejanovi¢ and Reddish [J. Phys. B 33,
4691 (2000)]. A more thorough testing of the ionization amplitudes can be achieved by performing
a complete double photoionisation experiment and by making a comparison with other highly

accurate and computationally intensive theories.

PACS numbers: 31.20.Tz, Photoionisation of atoms and ions

*Electronic address: A.Kheifets@anu.edu.au; URL: http://rsphysse.anu.edu.au/~ask107
tElectronic address: I.Bray@murdoch.edu.au; URL: http://yin.ph.flinders.edu.au/igor.html



I. INTRODUCTION

Double photoionisation (DPI or +,2e reaction) of the helium atom has been a challenging
problem attracting a considerable interest from experimentalists and theorists alike. Until
recently, the most detailed information on the DPI process can be extracted from the fully-
resolved triple differential cross-section (TDCS) which determines the probability of the two
photoelectrons being detected with the fully resolved momenta k;, and ks. The TDCS
have been measured and calculated under a variety of conditions and a very substantial
volume of experimental and theoretical data have been accumulated. Results prior to 2000
have been reviewed recently by Briggs and Schmidt [1]. Latest theoretical developments
in the field include applications of the time dependent close coupling (TDCC) method [2]
and the hyperspherical R-matrix method with semiclassical outgoing waves (HRM-SOW)
[3]. A recently developed exterior complex scaling (ECS) method [4, 5] also shows consid-
erable promise in a related problem of the electron impact ionization of hydrogen. On the
experimental side, the TDCS have been measured recently at 40 and 60 eV excess energies
with improved resolution and statistics [6-8]. Generally, agreement between theory and
experiment is satisfactory.

All non-trivial information on the DPI process is contained in a pair of the symmetrised
amplitudes a4, and a, which depend on the energies of the two photoelectrons E; and E5 and
their mutual angle #15. The indices g and u stand for gerade and ungerade, or symmetric
and antisymmetric, with respect to the permutation of the two photoelectrons. It was
demonstrated in an early work by Huetz et al. [10], extended by Malegat et al. [11, 12], that
only these two amplitudes are needed to construct the TDCS at an arbitrary geometry of
the two-electron escape and any polarisation composition of light.

The symmetrised amplitudes are the most fundamental characteristics of the DPT process.
However, these amplitudes cannot be extracted from the TDCS measurements alone. For
this purpose a complete DPI experiment is needed in which both moduli and phases of
the ionization amplitudes are determined. A possibility of such an experiment utilizing the
COLTRIMS technique has been demonstrated recently by Kraessig [9].

Long before a complete experiment became possible numerous attempts have been made
to extract the DPI amplitudes from “incomplete” experiments in which only the TDCS

have been measured. These attempts relied on a simple analytical representation of the DPI



amplitudes fitted with a few adjustable parameters. Most of these studies have been focused
on the symmetric amplitude. It fully defines the TDCS under the equal energy sharing
condition E; = FE5 as the antisymmetric amplitude vanishes in this case. It is customary to
apply a simple Gaussian parametrisation to the squared symmetric amplitude (correlation
factor). The Gaussian form follows from the Wannier-type quasi-classical theories [13, 14|
which are only valid at very small excess energies £ = E;+ E5 over the DPI threshold. There
is no firm theoretical ground to apply this parametrization at large excess energies. Moreover,
in a later theoretical study it was shown that the Wannier regime dit not necessarily imply
a Gaussian distribution over the correlation angle [15]. Nevertheless, by using the Gaussian
ansatz as a simple practical tool a number of experimental TDCS have been described
accurately at excess energies of 20 eV [12, 16, 17], 40 eV [6] and even 60 eV [18]. Fully
numerical calculations [19] also supported the accuracy of the Gaussian parametrisation at
the energy range of 3 - 80 eV as far as the TDCS was concerned.

More recently a similar “practical” parametrization has been applied to the antisymmetric
amplitude which is essential to describe the TDCS at an unequal energy sharing between
the photoelectrons (R = E;/FEs # 1) [20]. In the simplest three-parameter (3P) model both
the symmetric and antisymmetric amplitudes were described by the Gaussians of the same
width. In a more sophisticated four-parameter (4P) model the symmetric and antisymmetric
amplitudes were allowed to have different widths.

The 3P model was shown to describe adequately the experimental TDCS at the excess
energy of 40 eV [6] and 60 eV [18]. In fact, the simulated TDCS were closer to the experi-
mental data than ab initio calculations using the 3C method [21] and the convergent close
coupling (CCC) method [22]. Both the 3P and 4P models were applied by Bolognesi et al.
[7] at the excess energy of 40 eV. The 4P model was found to fit the experimental data
better than the 3P model. The Gaussian width of the antisymmetric amplitude was sub-
stantially smaller than that of the symmetric amplitude. Again, as in the case of Cvejanovi¢
and Reddish [20], the simulated TDCS were closer to the measured ones than the ab initio
calculations using the 3C and CCC models.

In addition to the somewhat empirical Gaussian parametrisation, an exact recipe was
suggested by Malegat et al. [11] to parametrise both the symmetric and antisymmetric
amplitudes by expanding them over the cosine power series of the mutual angle ;5. The

coefficients of this expansion are to be found by fitting the experimental TDCS. Malegat



et al. [12] tested this recipe on the measured equal energy-sharing TDCS at the excess en-
ergy of 4 and 18.6 eV [23] while truncating the expansion with respect to the one-electron
angular momentum to /. = 4. The resulting symmetric amplitudes were practically in-
distinguishable from a Gaussian. A hybrid parametrisation was employed by Soejima et al.
[24] who analysed both equal and unequal energy sharing TDCS at the excess energy of
9 eV. The symmetric amplitude was fitted with a Gaussian on a constant background. The
much smaller antisymmetric amplitude was fitted with a full cosine expansion as suggested
by Malegat et al. [11]. Although a good fit to the experimental TDCS was obtained, a large
number of fitting parameters employed by Soejima et al. [24] made their fitting process
ambiguous, as was demonstrated subsequently by Cvejanovi¢ and Reddish [20].

In this paper we extract the symmetrised amplitudes from the CCC calculation to allow
for subsequent most detailed comparison with the complete experiment and other calcu-
lations. We demonstrate that the CCC method is fully compliant with the general cosine
power series formalism of Malegat et al. [11]. However, a large number of terms in this expan-
sion makes it impractical to tabulate the expansion coefficients and use them as a reference
base. Instead, we use the Gaussian ansatz to quantify our data by fitting the amplitudes
with the 4P formula of Cvejanovi¢ and Reddish [20]. Although some deviations from the
Gaussian ansatz are clearly visible, especially at small mutual angles, the TDCS generated
from the calculated and fitted amplitudes are very close. This observation lends support to
the “practical” parametrization of Cvejanovi¢ and Reddish [20] as a useful and convenient
tool to analyze experimental TDCS. However, a more physically meaningful analysis can go
beyond the TDCS and be focused on the ionization amplitudes themselves.

The rest of the paper is organised as follows. In Sec. IT we give a brief outline of the CCC
theory and arrive at the cosine expansion of the symmetrised amplitudes equivalent to the
one proposed by Malegat et al. [11]. Computation details are given in Sec. III. Results are

summarised and discussed in Sec. IV.

II. FORMALISM

We write the TDCS as
d30'M
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where M is the angular momentum projection of the photon. We choose the frame in which
the photon is propagating along the x axis and the major polarisation axis of light is directed
along the z axis. The light is characterised by the Stokes parameters 51, S3 and the TDCS
is given by the formula [25]

1 S S
0 (81, 53) = 5(0: + ) + 71(02 —0,) + 53(0+ —0_)=PI+S5,-LD+S;-CD. (2)

Here the polarisation independent (PI), linear dichroism (LD) and circular dichroism (CD)
terms have been isolated. In our notation the two linear polarised components o, 0, are

equal to oy, 01, respectively. The two circular polarised components o+ can be expressed as
1 s
Uizﬁ‘TOilTl‘ .

Therefore the TDCS can be presented as

1+ 5,
2

1-5;

0(51,53) = 9

|To|? + T[> — SsIm(TyTh) (3)

As in our previous work [22, 26] we introduce the partial wave expansion

2

1 A~ A
oM = §C > Blif (K1, ks) Dy, (Br, Bs)| (4)
1l

where C' = 8m?w/c is the photoionisation constant expressed through the photon energy w
and the speed of light in atomic units ¢ ~ 137. The bipolar spherical harmonics [27] for the

angular momentum of the photon L =1 are

Bllll\l;(l%l”%?) = Z Cll;l%;llgm2yvl1m1 (’%1)}/}27% (i‘:2) . (5)

mi1ms2

They depend on the unit vectors 12:Z = k;/k;,i = 1,2 and satisfy the relation
Bf}Txf”(’;’h ’%2) = Bllﬁl(lz’z, ’231), (6)

which we will use later. The reduced matrix elements Dy, (F1, F2) are to be evaluated

within some numerical approximation, but must satisfy the symmetry relation
Dlll2(E1’E2) == Dlzll (EZ’EI) (7)

owing to indistinguishability of electrons.



The angular momentum summation in (4) can be reduced to the sum over a single variable
2

- %c 233\;1(1%1, feo) Dt (B, EBy) + BY (Fey, heo) Divt(En, ) (8)
After we introduce symmetric and antisymmetric combinations of the matrix elements
Dif, (Ey, By) = % {Di,1,(E1, E5) + Dy, (Es, Ev)}, (9)
we have
1 00

Djj1(Ey, Es) [Bfﬁl(kl,kz) +B”+1(k2,’231)]

=0
2

Dy y1(Ey, Bz) [BYyi" (K1, ko) — B3 (o, k)] (10)

For simplicity, we initially consider the DPI by light fully polarised along the z direction
(S1 = 1,53 = 0). In this case M = 0 and we can use expressions for the bipolar spherical

harmonics derived by Kono and Hattori [28]

A -1 1 1/2
B/l (ky, ky) = (47r) (%) {cos 62P], 1 (cos b12) — cos 6 P} (cos 012)}, (11)

where cos 815 = 12:1 . 12:2. This immediately takes us to the final expression

oy = C‘(cos 6, + cosby)ay(Er, E) + (cos 0y — cos b2)a,(Er, Es) 2, (12)

where the symmetric and antisymmetric DPI amplitudes are

ag(Ey, Ep) = [Pl+1(cos 612) F P/(cos b12)| Dif 1 (Ex, B). (13)

Z o VI+1
By using the properties of the Legendre polynomials [29] the angular factors in Eq. (12) can
be transformed to the angular functions introduced by Malegat et al. [11]

F}’Zl (cosbi2) = (I + 1)Pi(cos b12) + (cos b1 F 1) P/(cos 0;5). (14)

For light polarised along the y direction we should substitute the cosine functions in Eq. (12)
with the sine ones. More general expressions can be derived for arbitrary polarisation if the
two photoelectrons are detected in the polarisation plane of light (the so-called coplanar
geometry):

PI = |ay|*[1 + cos 612 + |ay|? [1 — cos 615]

= |ay|? [cos® By — sin® 6 + cos(By + 62)] + |a,|? [cos® B2 — sin® B; — cos(6; + 65)]
—2Re(ayak) [sin® 65 — sin” 4]
CD = 2Im(aya;) sin ;2 (15)



ITI. COMPUTATION DETAILS
A. CCC method

We use the CCC method to estimate the matrix elements D;,;,(F1, E;) and then to plug
them into the cosine power series expansion (13) to determine the amplitudes a, and a,.
In the CCC method the two photoelectrons are treated on a different footing. The higher
energy electron (labelled here as 1) is represented by true Coulomb waves in each partial
wave channel whereas the lower energy electron (labelled as 2) is described by the matching
positive energy bound pseudostates. The method expands the final state wavefunction
using N = ¥;_¢,,... Vi pseudostates [22]. The resultant matrix elements dgf\,;) (E1, E5) are
not symmetric on the interchange of electron labels as required. In fact, with increasing
N, they appear to converge to a step function with dgf\,;) (E1, E5) — 0 for Ey > E;, where
E5 is the energy of a pseudostate. This behavior is identical to that found in the model
e-H scattering problem [30], and is related to the unequal treatment of the two outgoing
electrons within a unitary formalism. Stelbovics [31] showed that the correctly symmetrised
CCC amplitudes could be obtained generally only if the step-function was satisfied. In the

present case the required amplitude is constructed as
DBy, B) = d)(By, Es) + d) (Es, By). (16)

Note that for E; # FE, the energy separation of the pseudostates ensures that one of the
two terms above is dominant. For E; = F,, and sufficiently large l,,, and N; we find
that dl(f\l;) ~ dl(i\l?, and hence (16) leads to a doubling of the raw CCC-calculated amplitude.
This issue has been studied in great detail in the case of e-H ionization by Bray [32]. As
a consequence of the work by Stelbovics [31] the close-coupling expansion behaves like a
Fourier expansion of a step-function with convergence at the step to half the step-height.
This explains the oscillations observed when the step-height is non-zero for E; # FE,, and
yet apparent convergence at By = E» [30].

With this understanding it is clear that we require infinite NV to obtain convergence for
Dl(ﬁg)(El,Eb) whenever Fy # FE,. As this is not practical we rely on a procedure that
averages over the oscillations. Since we know the result at £y = E5 ab initio, the oscillations

for F5 < E; are not particularly large [30], the integral over the energy (closure relation),

and that the underlying energy variation is likely to be smooth, the error associated with
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any sensible energy-averaging procedure is likely to be small. Note that we have no control

(M), which we require to show convergence with

over the angular distributions arising from D
increasing N.
Thus, in CCC calculations we take E; > Fj and hence R = E;/E; > 1. The symmetrised

amplitudes for reciprocal energy sharings R < 1 are found by the permutation rule:
ag(El,Ez) = ag(EZ; El) ) au(El,E2) = _au(E2aE1) ) (17)

which follows from the the symmetry relation (7) and the definition (9).

B. Gaussian parametrisation

The complex amplitudes ag4, a, can be written as a, = Agexp(idy), a, = A, exp(idy),
where A,, Ay, 0g, 6, are real. The cross product aza; which enters the LD and CD terms in
Eq. (15) can be presented as AjA, exp(i¢) where the phase difference ¢ = 6, — d,.

We introduce the Gaussian ansatz for the real amplitudes A, A,:

(7(' - 912)2

_ 2
Ay = bgexp l—?ln? 72 ] , Ay =Dbyexp [—2ln 2M] ) (18)
g

rg

Under the assumption of a constant phase shift ¢ for all mutual angles 6, (18) is equivalent
to the 4P parametrisation of Cvejanovi¢ and Reddish [20] with the four parameters being
the two Gaussian widths Iy, I',, the magnitude ratio n = b,/b,, and the phase shift ¢.
These four parameters are sufficient to construct a relative TDCS. The five parameters (two
magnitudes, two widths and phase shift) are needed to obtained a normalised TDCS. All
of these parameters depend on the total excess energy E and energy sharing ratio R. The
special case of equal energy sharing R = 1 was extensively studied in our earlier paper [19].

In this case n = 0. By virtue of the Coulomb zone argument one would expect I', — I'y as

R —1.

IV. RESULTS AND DISCUSSION

We performed a series of CCC calculations at the excess energies of £ = 9, 20, 40 and
60 eV above the double ionization threshold. The choice of these energies was dictated by

the availability of the experimental TDCS (see Table I). For each total excess energy E,



we first performed the equal energy sharing calculation E; = Ey = E/2. These calculations
yielded similar results to those used in our earlier study [19]. Each calculation had a total
of N = 105 states with the maximum orbital angular momentum /,,,x = 5 and the number
of states for each [ being N; = 20 —[. The Laguerre exponential fall-off parameters \; =~ 1.5
were varied a little so that one of the states had the energy F,. With these choices, for
a given FE, there were always the same number of positive-energy states for each [. This
resulted in a similar energy distribution of states from 0 to E/2 for each I. Accordingly,
unequal energy sharing calculations R > 1 were able to be performed for input parameters
almost identical to those used for R = 1. The number of different R calculated for a given
E depended on the number of states with energy below E/2. Specifically, for E = 9, 20,
40, and 60 eV the R values calculated were (17, 5, 2.5, 1), (17, 8, 4, 2.2, 1), (79, 25, 12,
7,4, 2.2, 1), and (39, 19, 11, 6.5, 3.8, 2.2, 1), respectively. Will present here just a small
representative selection of the results. The complete set may be obtained electronically upon

request.

A. Gaussian parameters

We applied the Gaussian ansatz (18) to the CCC calculated amplitudes Ay, A, using
a non-linear least-x? algorithm of Levenberg and Marquadt . Convergence of the fitting
procedure was very fast. The error bars of the resulting parameters were typically less then
1%. The phase difference ¢ = 6, — J, was extracted from the calculated amplitudes near
the center of the Gaussians 615 ~ 7 where it was found to be approximately constant.

In Figure 1 we show a typical example of the CCC calculated amplitudes A,, A, and their
phases dg4, 6, as functions of the mutual angle 6;5. An excess energy of 40 eV is chosen and
results for varying energy sharing ratios R are presented. We see that the central portion of
both the A, and A, amplitudes around 6, = 180° has the characteristic Gaussian shape.
The central area of the mutual angles 90° < 615 < 270° was fitted with the Gaussian ansatz
(18) and results of this fit are also presented in Figure 1. The phase difference ¢ = ¢, — d,
can be approximated by a constant in the central area.

At small mutual angles 615 < 90° or, equivalently, 6,5 > 270°, the amplitudes noticeably
deviate from the Gaussian shape, especially the antisymmetric amplitude A, which shows

substantial “wings”. In the area of the wings the phase J, shows some rapid variation and



the phase shift ¢ no longer remains constant. It is clear that the present calculations do not
support the Gaussian ansatz across the entire angular range for the antisymmetric amplitude
Ay, though we shall see this has little effect on the TDCS.

The central and peripheral parts of the amplitudes A,, A, reflect quite different escape
regimes. At the mutual angles close to 180° the two photoelectrons propagate back-to-back.
This is the well known configuration of the Wannier escape which gives rise to the near
threshold law of the double ionisation. However, this escape configuration only exists in the
Coulomb zone and is strongly suppressed in the asymptotic region of large distances due
to the dipole selection rules. The fact that the amplitudes A,, A, are very well represented
by the Gaussian shape near ;5 = 180° means that the Wannier regime dominates the
back-to-back escape even at very high excess energies.

The peripheral region of small 6,5 reflects upon a parallel escape of the two photoelectrons.
This escape is strictly forbidden for the equal energy sharing but becomes possible as E; #
E,. The parallel escape configuration is particularly sensitive to the symmetry of the two-
electron wave function which provides a stringent test of the CCC formalism since the two
photoelectrons are treated differently.

The parameters extracted from the Gaussian fit are summarised in Figure 2 for all the
excess energies and energy sharing ratios studied in this paper. To extract values of the
parameters at arbitrary energy sharing ratios a polynomial interpolation is made to the data
which is shown in the figure by solid lines. This interpolation is made under assumption
that I, = I'y and A, = 0 as R — 1. This assumption seems quite natural because in this
case both the symmetrized amplitudes are made from the very similar non-symmetrized
amplitudes. There is no plausible hypothesis regarding the phase difference as R — 1.

Despite some minor numerical instability the Gaussian parameters follow well reproduced
trends. The antisymmetric Gaussian width I', is much smaller than its symmetric counter-
part Iy, contrary to the implicit assumption of the 3P model of Cvejanovi¢ and Reddish
[20]. At the lower total energies of 9 and 20 eV the calculated width parameters show a clear
tendency of I, approaching I'y as R — 1, as was assumed. More energy sharing points be-
tween R = 1 and 2 are needed to prove this tendency at the higher excess energies of 40 and
especially 60 eV, though there is little practical value in determining the width of a Gaus-
sian whose magnitude vanishes. Both the symmetric and antisymmetric magnitudes grow

with R towards more asymmetric energy sharings. The phase difference ¢ demonstrates a

10



non-monotonic dependence on the energy sharing ratio and peaks at R ~ 5. The parameters
given in this figure may be used to readily obtain theoretical TDCS for comparison with

available experiment summarised in table I.

B. TDCS

To demonstrate utility of the Gaussian parametrisation (18) we construct the TDCS
from the calculated and fitted amplitudes. We choose the particular case of 40 eV excess
energy and the energy sharing ratio of 7 (E; = 35 €V, Ey = 5 e€V). These kinematics were
thoroughly analysed by Cvejanovié et al. [6], Cvejanovi¢ and Reddish [20]. In addition,
Bolognesi et al. [7] studied both the case of R = 7 and the complementary kinematics of
R =1/7. Both authors applied the 3P parametrisation and Bolognesi et al. [7] used the 4P
parametrisation as well.

In Figure 3 we show the TDCS as a function of the variable escape angle of the fast
electron (E; = 35 eV) at several selected escape angles of the slow photoelectron (E, =
5 eV). The three sets of theoretical amplitudes are shown: the CCC calculation and the two
Gaussian fits with the parameters extracted from the present calculation and the experiment
of Cvejanovi¢ et al. [6]. The values of these parameters are given in Table II. The margins
on the presently calculated Gaussian parameters reflect numerical stability of our data.
These margins are estimated as deviation of the “raw” calculated parameters from a smooth
interpolated curve in Figure 2.

First, we observe that the TDCS generated from the CCC calculated and CCC-fitted
amplitudes are hardly discernible. This is despite of the fact that the CCC amplitudes,
especially the antisymmetric one, noticeably deviate from the Gaussian ansatz, as can be
seen from Figure 1. However, this deviation takes place only in the peripheral region where
both the A, and A, are relatively small. As the TDCS is quadratic with respect to the
amplitudes, the deviation from the Gaussian ansatz can hardly be noticed.

Next, we compare the calculated and experimental TDCS. Agreement is generally good,
as was previously noted by Cvejanovi¢ et al. [6]. However, there is some deviation from
the experiment for near prallel escape. In these cases the very simple 3P parametrisation
of Cvejanovi¢ and Reddish [20] reproduces the experiment a little better than the CCC

calculation. This, we have to argue, is fortuitous as both the physical arguments and our
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numerical simulations suggest that the 3P assumption that the “Gaussian width” for both
amplitudes is the same, is not correct. We also note that at 60 eV excess energy the CCC
calculation was found in agreement with the measurement of Dawson et al. [8] for all the

escape geometries, including parallel escape.

V. CONCLUSION

In the present study we performed a series of CCC calculations of the symmetrised am-
plitudes of the helium atom DPI at several fixed excess energies and varying energy sharing
ratios. Owing to extensive discussion in the literature of various Gaussian parametrisations
we have provided Gaussian fits obtained directly from the theory. Indeed, in all cases studied
the amplitudes are close in shape to Gaussians, though of substantially different widths for
the symmetric and antisymmetric amplitudes. The phase difference between the amplitudes
is approximately constant at mutual angles close to 180°. This suggests the 4P Gaussian
parametrisation of the amplitudes as proposed by Cvejanovi¢ and Reddish [20], ahead of
the 3P model which assumes the same Gaussian width for both amplitudes. The physical
justification of the 4P parametrisation is in the fact that the back-to-back emission of the
photoelectron pair follows the Wannier regime even at very high excess energies far above
the double ionisation threshold.

Utility of the 4P Gaussian parametrisation is illustrated in the case of 40 eV excess en-
ergy with £y = 35 eV and Ey = 5 eV. The use of the CCC calculated amplitudes or the
4P parametrisation with the set of parameters extracted from the CCC calculation produce
TDCS which are hardly discernible, thereby supporting this parametrisation as a general
scheme over a broad kinematical range. However, the presently calculated Gaussian param-
eters are quite different from those obtained by fitting the experimental TDCS. This reflects
on the uncertainty of the fit obtained from limited statistical accuracy of the experimental
data, and also on the stability of the TDCS with respect to the parameters.

Clear deviations from the Gaussian ansatz are visible at small mutual angles where the
antisymmetric amplitude acquires significant “wings” and its phase shows strong irregulari-
ties. These deviations do not show up in the TDCS as they fall into the mutual angle region
where both amplitudes are small. Nevertheless, it would be interesting to investigate further

if these deviations reflect different physics of the two-electron escape in parallel directions.
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With the emergence of computationally intensive theories that aim to fully solve atomic
ionization problems, such as the ECS method of Rescigno et al. [4], TDCC method of Colgan
et al. [2], HRM-SOW method of Malegat et al. [3], and the CCC method, comparison can
be made using a complete set of ionization amplitudes such as those presented in Figure 1.
This is further supported by emergence of experimental techniques whose goal is to perform

a complete experiment and thereby fully test the calculated amplitudes [9].
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TABLE I: Helium TDCS measurements at excess energies of 9, 20, 40 and 60 eV.

Excess Energy Energy sharing Reference
E (eV) ratio R = E; /E»
9 1,2,8 [24]
20 1 [33]
1 [16]
0.11,1,9 [34]

0.025, 0.053, 0.176, 0.25,
1, 1.86, 4, 5.67, 20, 40 [35]
0.025, 0.081, 0.14, 0.38, 0.6  [36]

1 [17]

40 1,3,7 [6]
0.14,7 [7]

60 1,5,11 [8]

TABLE II: The Gaussian parameters of the He DPI at £y = 35 eV and Ey =5 eV

Width, degree Magnitude Phase shift, degree
Iy r, by by, by /by, dg — Oy

CCC calculation

96+2 69+2 6.4+0.2 1.6+0.2 0.254+0.04 122+2 (—238+2)
Cvejanovi¢ and Reddish [20]
3P 98 +1 0.25 £ 0.01 4246 £+ 2
Bolognesi et al. [7]
3P 102 £+1 0.25 £0.01 +232+2
4P 104 £1 76 £ 2 0.25 £0.01 +229 £ 2
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FIG. 1: The symmetrised amplitudes A, (left panel), A, (central panel) and their phases dy,dy

(right panel) at E = E; + E; = 40 €V and various energy sharing ratios R = E;/E;. The thick

solid line is the Gaussian parametrisation (18).
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Energy sharing ratio R
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FIG. 2: Results of the Gaussian parametrisation (18) at the excess energies of E = 9, 20, 40 and
60 eV (from top to bottom). The width parameters Iy, I'; (left panel), the amplitude parameters
Ay, Ay (central panel) and the phase difference ¢ = 64 — 4, (right panel) are plotted as functions of
the slow electron energy E2 < E/2 (bottom horizontals scale) or, equivalently, the energy sharing
ratio R = E1/E> (top horizontal scale). Gerade and ungerade parameters are shown with filled
and open circles, respectively. Calculations are performed at selected values of R > 1. The solid

lines are a polynomial fit to the data.
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FIG. 3: The DPI TDCS of helium at E = 40 eV and energy sharing ratio R = E1/FE; = 7. The
arrow on the polar plots indicates the direction of the slower ( E; = 5 €V) electron. The thick
solid line is the CCC calculation (velocity form, other gauges near identical), the thin solid line is
the 4P model with the Gaussian parameters extracted from the CCC calculation, the dashed line
is the 3P model with the parameters from Cvejanovi¢ and Reddish [20]. Experimental data shown

with error bars are from Cvejanovi¢ et al. [6].
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