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In recent years, strong field ionization of noble gas atoms have been studied

extensively using the Free electron LASer at Hamburg (FLASH). Wabnitz et al (2005)

studied multiple ionization of Ar and Xe atoms at the photon energy of ω = 13 eV.

Moshammer et al (2007) reported few-photon multiple ionization of Ne and Ar at

ω = 38.8 eV. Sorokin et al (2007) mesaured direct, sequential, and resonant multi-photon

ionization and excitation processes in Ne at ω = 42.8 eV. Using an alternative high

harmonic generation technique, Benis et al (2006) observed two-photon double ionization

of Ar and Kr atoms by a superposition of harmonics. Besides the total ionization rate,

the latest experiments are aiming to obtain various differential cross-sections. Very

recently, Braune et al (2007) reported the angular anisotropy β parameters in sequential

two-photon double ionization of Ne at 47.5 eV and Ar at 38 eV. Recoil ion momentum

resolved measurements of Moshammer (2007) on Ne at 45 eV can also be interpreted in

terms of these β parameters.

On the theoretical side, little have been done so far to support these angular resolved

measurements. The only related work is a calculation of Kazansky & Kabachnik (2006)

who reported the angular distributions of the Auger 2p and 3d electrons in Ar and Kr

in coincidence with photoelectrons in femto- and attosecond pulse regimes.

In the meantime, the theoretical framework to evaluate the β parameters in TPDI

of noble gases can be readily developed. The works of Jacobs & Burke (1972) and Dill

et al (1975) provided two alternative formulations for the β2 parameters for one-photon

single-electron ionization of an arbitrary atomic target. The only missing link with the

present measurements of β parameters in sequential TPDI of noble gases is coupling

of the angular momenta of two photons, two photoelectrons and two residual ions.

This coupling can be worked out using the graphical angular momentum summation

technique provided, i.e. by Varshalovich et al (1988).

In the present communication, we perform this task and derive the expressions

for the β2 parameters in sequential TPDI of a closed-shell atomic target. We use these

expressions to evaluate the angular anisotropy parameters for TPDI of the outer valence

subshells of Ne and Ar in a wide photon energy range. We make a comparison of the

calculated parameters with available experimental data at few selected photon energies.

We illustrate our graphical method by first deriving well known expressions of the

β parameter in one-photon single-electron ionization of an arbitrary atomic target. We

write the matrix element of the dipole operator between the initial and final many-

electron states using notations of Sobelman (1972) in which we omit the spin variables:

〈ln0 L0M0 |D | ln−1
0 [La] l LM〉 =

√
n GL0

La
(−1)L−M〈ln0 L0 ‖D ‖ ln−1

0 [La] l L〉 (1)

Here GL0
La

is a fractional parentage coefficient. The expression for the reduced dipole

matrix element is given by Chen et al (2003):

〈ln0 L0 ‖D ‖ ln−1
0 [La] l L〉 =

√
n

2
GL0

La
L̂0L̂ (−1)L+La+l0+1 (2)

×
{

1 L0 L

La l l0

}
〈ν0‖ d ‖ ν〉
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where the one-electron reduced dipole matrix element is defined according to Amusia

(1990):

〈ν0‖ d ‖ ν〉 = (−1)l>
√

l>

∫
r2 drRn0l0(r)Rkl(r) . (3)

Here l > is greater of l0 and l. For a closed-shell system, the factor preceding the

one-electron reduced dipole matrix element in Equation (2) is equal to one.

Using these notations, we can write the differential, with respect to the

photoelectron momentum, cross-section as

dσ

dk
=

1

2L0 + 1

∑

M0

∣∣∣∣∣∣∣

∑

LM
lm

L̂(−1)L+La+l (4)

(
L 1 L0

−M µ M0

)(
La l L

Ma m −M

)
DlLYlm(k̂)

∣∣∣∣∣

2

Here µ = 0, 1 is associated with the linear and circular polarizations, respectively. The

hat-symbol denotes L̂ =
√

2L + 1. Following Jacobs & Burke (1972), we introduce in

Equation (4) a shortcut for the phase-modulated and normalized dipole matrix element:

DlL ≡ 2π(ω/c)1/2 exp(lπ/2 + δl)〈ln0 L0 ‖D ‖ ln−1
0 [La] l L〉 (5)

The product of two spherical harmonics in Equation (4) can be transformed using the

Clebsch-Gordan series given by Eq. (5.6.9) (Equation (9) of Section 5.6) of Varshalovich

et al (1988)

Ylm(k̂)Yl′m′(k̂) =
1

4π
l̂l̂′
∑

JMJ

Ĵ2

(
l l′ J

0 0 0

)(
l l′ J

m m′ −MJ

)
YJMJ

(k̂)(6)

Thus, Equation (4) contains the sum of five 3j symbols running over six angular

momentum projections which can be exhibited graphically by the left diagram of

Figure 1
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Figure 1. Angular momentum coupling schemes for one-photon single ionization (left
and center) and two-photon double ionization (right). The vertex denotes a 3j symbol.
The sign of the angular momentum projection is indicated by the arrow, incoming with
the plus sign and outgoing with the minus sign.
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The sum can be readily evaluated using Eq. (12.1.13) of Varshalovich et al

(1988) which leads to the standard photoelectron angular distribution dσ/dk =

(4π)−1dσ/dE[1 + β2P2(cos θ)] with β2 = A2/A0 where the coefficients AJ are given

for linear polarization (µ = 0) by the following expression:

AJ =
(−1)La+L0

2L0 + 1
Ĵ2
∑

LL′
ll′

l̂l̂′L̂L̂′

×
(

J l l′

0 0 0

)(
J 1 1

0 0 0

){
J 1 1

L0 L L′

}{
J l l′

La L′ L

}
Re{DlLD∗

l′L′}

Equation (7) is equivalent to Eqs. (3)-(4) by Jacobs & Burke (1972) †
When the electron-ion interaction is isotropic, we can neglect the effect of the total

spherical symmetry of the ionized atom on the photoelectron and factor out the explicit

L-dependence of the dipole matrix elements from Equations (2) and (5):

DlL ≡ dl L̂L̂0(−1)L

{
1 L0 L

La l l0

}
(7)

The sum over the total angular momenta L, L′ can now be carried over using successively

Eqs. (12.2.18) and (12.2.7) of Varshalovich et al (1988). This finally leads to

AJ =
1

2l0 + 1
Ĵ2

∑

l,l′=l0±1

l̂l̂′
(

J l l′

0 0 0

)(
J 1 1

0 0 0

){
1 1 J

l l′ l0

}
Re{dl d

∗
l′} (8)

The asymmetry parameter β2 = A2/A0 derived from Equation (8) does not contain

atomic or ionic quantum numbers. The fractional parentage coefficient occur both in

A0 and A2 and cancels out. Thus the β2 parameter can be expressed solely through

one-electron quantum numbers. This result can be obtained straightforwardly if we

consider the photoionization in the independent electron approximation and describe it

by the angular momentum coupling scheme exhibited by the center diagram of Figure 1.

This is a well-known result (see e.g. (Dill et al 1975)) which explains the success of the

Cooper-Zare independent-electron model (Cooper & Zare 1969).

Now we extend our formalism to the case of two-photon two-electron ionization.

The cross-section of the sequential TPDI process can be written as

dσ

dk1dk2
=

1

2L0 + 1

∑

M0Ma

∣∣∣∣∣
∑

LiMi

∑

L1M1
l1m1

∑

L2M2
l2m2

(9)

(−1)L1+Li+l1

(
L1 1 L0

−M1 µ M0

)(
Li l1 L1

Mi m1 −M1

)
Dl1L1 Yl1m1(k1)

(−1)L2+La+l2

(
L2 1 Li

−M2 µ Mi

)(
La l2 L2

Ma m2 −M2

)
Dl2L2 Yl2m2(k2)

∣∣∣∣∣

2

† Notations of Jacobs & Burke (1972) are ambiguous as the angular momenta of the atom and the ion
are both denoted by the same symbol. When unambiguous notations are employed, the equivalence of
the original equations and the present Equation (7) becomes evident
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Here we adopt the following angular momentum coupling scheme:

ln0 [L0] + γ → ln−1
0 [Li] + k1l1}L1 , ln−1

0 [Li] + γ → ln−2
0 [La] + k2l2}L2

By integrating Equation (9) over dk1 and employing the Clebsch-Gordan series (6),

we end up with the expression containing the sum of nine 3j-symbols running over

eleven angular momentum projections. This sum can be exhibited by a triangular

diagram similar to the one on the left of Figure 1 but with a larger number of “ladder

steps”. Varshalovich et al (1988) does not provide a direct summation formula for

this case. Nevertheless, the summation can be carried over using reduction formulae

(12.1.10) and (12.1.11) which reduce the number of ladder steps by one. As a result, the

angular distribution of the photoelectron is given by the Legendre polynomial expansion

dσ/dk2 = (4π)−1dσ/dE2[1 + β2P2(cos θ2) + β4P4(cos θ2)] where the angular anisotropy

coefficients βJ = AJ/A0 can be derived from the following coefficients:

AJ = Ĵ2
∑

l1l2l′2

(−1)L0+La+l1 l̂2 l̂
′
2

∑

L1L′
1

L2L′
2

∑

LiL′
i

(
l2 l′2 J

0 0 0

)
Re{Dl1l2 L1L2D∗

l1l′2 L′
1L′

2
}

{
L2 L′

2 J

l′2 l2 La

} ∑

KK′
K̂2K̂ ′2(−1)K+K′

(
1 K 1

0 0 0

)(
1 K ′ 1

0 0 0

)(
K K ′ J

0 0 0

)

{
1 1 K

L1 L′
1 L0

}{
Li L′

i K

L′
1 L1 l1

}




K L′
i Li

K ′ 1 1

J L′
2 L2





(10)

Here we denoted Dl1l2 L1L2 = Dl1L1Dl2L2 for brevity of notations and set µ = 0.

For a closed atomic shell, L0 = 0 and Li = L′
i = l0, L1 = L′

1 = 1. Further

simplification of Equation (10) can be achieved if we neglect the dependence of the

wave function of the second photoelectron on the total angular momentum L2. Then the

explicit L2 dependence of the matrix element Dl2L2 can be factored out using Equation

(7) and the summation over L2, L
′
2 can be carried over. This leads to the anisotropy

parameters βJ = AJ/A0 which can be extracted from the following coefficients:

AJ = Ĵ2
∑

l1l2l′2

(−1)l1+l2+l′2 l̂2 l̂
′
2

(
l2 l′2 J

0 0 0

)
|dl1|2Re{dl2d

∗
l′2
}

∑

KK′
K̂2K̂ ′2(−1)K′

(
1 K 1

0 0 0

)(
1 K ′ 1

0 0 0

)(
K K ′ J

0 0 0

)

{
1 1 K

l0 l0 l1

}{
l0 l0 K

l0 l0 La

}




K l0 l0
K ′ 1 1

J l2 l2





(11)

As in the case of Equation (8), the β parameters extracted from Equation (11) do not

contain the ionic or atomic quantum numbers except for the total angular momentum of

the doubly charged ion La. Equation (11) can be derived straightforwardly if we consider

an independent electron TPDI process in which the angular momenta of the two holes
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couple to the total angular momentum La. This process is exhibited graphically by the

right diagram of Figure 1.

We use Equation (11) to evaluate the βJ parameters of TPDI of Ne 2p and Ar 3p

valence subshells. Isotropy of the system containing the doubly charged ionic core and

the photoelectron, which is essential for application of Equation (11), can be judged, at

least partly, from the properties of the discrete excited states of this system reflected

in the spacing of the energy levels of the singly charged ion. Inspection of the Ne II

energy levels (Moore 1949) shows that 2p4[LaSa]nl}LS manifold is indeed governed

by the quantum numbers LaSa and depend very weakly on LS. This is less so in

Ar II. Therefore the present Ar results should be treated as qualitative rather than

quantitative. More accurate calculation using Equation (10) is needed to get the Ar

β-parameters on the same level of accuracy as for Ne.

In practical computations, we obtain the one-electron dipole matrix elements for

the neutral atom dl1 running the RPAE computer code (Amusia & Chernysheva 1997).

The random phase approximation with exchange (RPAE) provides a very accurate

description of single-photon one-electron ionization processes in noble gas atoms

(Amusia & Cherepkov 1975). The β2 parameters derived from the RPAE dipole matrix

elements using Equation (8) are in excellent agreement with experimental data of Braune

et al (2007). For Ne at 47.5 eV, β2 = 0.98 as compared with experimental value of 1.00.

For Ar at 38 eV, β2 = 1.84 as compared with experimental value of 1.88.

In principle, the RPAE method can be modified to describe ionization of an open np5

shell (Cherepkov & Chernysheva 1977). This, however, would require an explicit account

for anisotropy of the ionized system which we neglect when substituting Equation (10)

with Equation (11). Therefore, we opted for a less computationally demanding Hartree-

Fock method when calculating the one-electron dipole matrix elements dl2 for the singly

charged ion. The radial orbitals Rn0l0 and Rkl entering Equation (3) are calculated

using the self-consisted and frozen-core Hartree-Fock codes, respectively (Chernysheva

et al 1976, Chernysheva et al 1979).

Results of our computations are shown in Figure 2 for Ne (left) and Ar (right).

On the same figure we indicate the numerical values of the experimental anisotropy

parameters β2 = 0.74, β4 = −0.5 for Ne at 47.5 eV and β2 = 1.82, β4 = −0.14 for Ar at

38 eV as reported by Braune et al (2007) for the 3P final state of the doubly charged

ion. These results are in fair agreement with the present calculation. However, more

experimental data across a wider photon energy range are clear needed to gauge the

quality of the present theoretical model and its numerical implementation.

It is noteworthy that the β2 parameters depend weakly on the symmetry of

the doubly charged ion. Conversely, the β4 parameters demonstrate a very strong

dependence with very small absolute values for 1D state and relatively large in

magnitude and opposite in sign values for 3P and 1S states. This behavior can be

understood from Equation (11). The statistical average
∑

La
(2La +1)AJ is proportional

to δK0 which eliminates the coefficients A4 and reduces A0 to single-photon one-electron

value (8). Although the statistical average does not apply directly to the ratio AJ/A0,
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Figure 2. The angular anisotropy β-parameters for Ne (left) and Ar (right). The
experimental data are from Braune et al (2007)

one would expect the term average value of β4 close to zero which is indeed the case for

Ne for which β2 shows little term dependence. For Ar, β2 shows strong term dependence

near the threshold and the statistical average of β4 deviates from zero in this photon

energy range.
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