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Abstract

We present a single-center model of double photoionization (DPI) of the H2 molecule which

combines a multiconfiguration expansion of the molecular ground state with the convergent close-

coupling description of the two-electron continuum. Because the single-center final state wave

function is only correct in the asymptotic region of large distances, the model cannot predict the

magnitude of the DPI cross-sections. However, we expect the model to account for the angular cor-

relation in the two-electron continuum and to reproduce correctly the shape of the fully-differential

DPI cross-secitons. We test this assumption in kinematics of recent DPI experiments on the ran-

domly oriented and fixed in space hydrogen molecule in the isotopic form of D2.
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I. INTRODUCTION

In recent years, remarkable progress has been achieved in experimental and theoretical

studies of atomic and molecular double photoionization (DPI). The hydrogen molecule H2,

often substituted for experimental convenience by its heavier counterpart D2, is a target of

particular interest. The DPI process in H2/D2 is followed by the Coulomb explosion of the

nuclei thus leading to the continuum state of four charged particles. Description of such a

state is one of the most fundamental and challenging problems of the few-body physics.

Progressively sophisticated experimental techniques have been employed to study DPI of

the hydrogen molecule. The first pioneering experiments [1, 2] were performed by detecting

photoion-photoion coincidences. In later experiments [3–7], electron-electron coincidence,

or (γ,2e) reaction was implemented. In the first application of the COLTRIMS technique

[8], DPI from spatially aligned D2 was measured by detecting one of the photoelectrons in

coincidence with both fragment ions. In the latest COLTRIMS experiment [9, 10], angular

correlation of the two photoelectrons was measured thus facilitating the (γ,2e) reaction on

the fixed in space D2.

On the theoretical side, several ab initio calculations [11–13] as well as empirical [14] and

symmetry-driven [15, 16] models have been reported for DPI on H2. Despite these theo-

retical efforts, considerable amount of experimental data, especially the latest fully-resolved

differential cross-sections (FDCS), have not been reproduced in ab initio calculations. This

gives us an incentive to develop a new model which combines a central field expansion of the

molecular ground state with the convergent close-coupling (CCC) description of the two-

electron continuum. The CCC method proved to be predictive and reliable when applied

to DPI of two-electron atomic targets: the He atom [17–19], its isoelectronic ion sequence

[20] and alkaline-earth atoms [21]. It is therefore tempting to implement the CCC approach

for DPI on H2/D2. In this case, however, we are confronted with a fundamental difficulty

of dealing with a two-center nuclear potential. To circumvent this difficulty we may argue

that the angular correlation in the two-electron continuum is established at large distances

where the separation of the two nuclei can be neglected and they can be viewed as a united

helium atom. As to the ground state, we have a choice of progressively accurate single-

center expansions [22–25], the latter work claiming the chemical accuracy achieved for the

ground state energy. With the central-field approximation to the ground and final states,
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the application of the CCC method to molecular DPI is straightforward.

The single-center final state is incorrect in the vicinity of the nuclei where it overlaps

with the molecular ground state and where the photoionization matrix elements gain their

strength. Therefore we cannot expect the present model to produce accurate absolute DPI

cross-sections. However, we hope to reproduce correctly the shape of the DPI FDCS. We

have several reasons for hoping so. Firstly, the (γ,2e) experiments [3–5] revealed a close

resemblance of the photoelectron angular correlation pattern in D2 and He. This validates

our assumption that the angular correlations in the two-electron continuum are not very

different in He and the randomly oriented H2/D2. Secondly, asymptotic final states have

been successful in describing shapes of DPI FDCS in He. For instance, Maulbetsch and

Briggs [26, 27] employed a product of the three Coulomb (3C) functions to describe the He

DPI FDCS at both equal and unequal energy sharings between the photoelectrons. This

is despite of the fact that the 3C final state is incorrect in the vicinity of the nucleus and

the magnitude of the FDCS is in error of several hundred percent [28]. And thirdly, we can

isolate separate terms in the CCC final state which are responsible for the magnitude and

shape of the DPI FDCS. Indeed, we represent the final state by a close-coupling expansion

over the two-electron channel states each of which is composed of a target bound state and

a continuum state (see Sec. III for more detail). The bare photoionization matrix element

is taken between the ground state and the final channel state. This bare matrix element is

modified by an integral term which corresponds to an inelastic electron scattering on the

singly ionized target. Due to a long-range Coulomb interaction, this inelastic scattering

in dominated by large impact parameters We believe that it is the integral term which is

responsible for the angular correlation in the continuum whereas the bare photoionization

matrix elements control the overall magnitude of the DPI cross-sections.

The rest of the paper is organized in the following way. In Section II we give the property

of the single-center ground state. In Section III we outline the photoionization formalism.

Results for the total and differential DPI cross-sections are presented in Sections IVA and

IVB, respectively. The summary is given in Section V.
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II. SINGLE-CENTER EXPANSION FOR THE GROUND STATE OF H2

In the present model, we employ a single-center expansion for the 1Σ+
g ground state of

the H2 molecule proposed by Hayes [25]. The ground state is constructed as a configuration

mixing of symmetrized pairs of the normalized Slater orbitals:

φnlm(r, ζ) = A(n, ζ) rn−1 e−ζr Ylm(r) (1)

where the normalization coefficient A(n, ζ) = (2ζ)n+1/2 [(2n)!]−1/2 . The polar coordinates

refer to the molecule midpoint. The full expansion given by Hayes [25] comprised 57 orbital

pairs of {nlm, n′l′m′} type with m = −m′ and |m| ≤ l. Three sets of orbitals and config-

uration mixing coefficients were given for the internuclear separations of R = 1.2, 1.4 and

1.6 a.u. The minimum of the ground state energy -1.17258 a.u. was found at a separation

of 1.40094 a.u.

For the purpose of numerical computations, we found that only few leading terms in the

configuration mixing were essential. We restricted ourselves with 12 leading configurations

built from 19 Slater orbitals which are listed in Table I. We label orbitals consequently

with a single ordinal number N running from 1 to 19. For a given i-configuration, a pair of

numbers N i
1, N

i
2 denotes the relevant Slater orbitals and the configuration mixing coefficient

Ci specifies the relative strength of this configuration.

Only axially symmetric orbitals with m = 0 are selected in Table I. This simplifies

angular momentum formalism and allows us to write the ground state wave function in the

following form:

Ψ0(r1, r2) =
∑

J0

∑

nl,n′l′
Nnl,n′l′ Bnl,n′l′

∑

mm′

CJ0M0
lm, l′m′φnlm(r1) φn′l′m′(r2) (2)

In the above expression, the normalization factor Nnl,n′l′ = 2−1/2 (1 + P12) for nl 6= n′l′

and Nnl,n′l′ = 1 otherwise, P12 denotes the spatial exchange operator. Since the Slater

orbitals are not orthogonal for l = l′ and n 6= n′, we incorporated an extra overlap factor

into Bnl,n′l′ = Cnl,n′l′

(

1 +
∣

∣

∣〈nζ‖n′ζ ′〉
∣

∣

∣

2)−1/2
, where Cnl,n′l′ ≡ Ci are configuration mixing

coefficients listed in Table I and the radial overlap integral is calculated as

〈nζ‖n′ζ ′〉 = A(n, ζ)A(n′, ζ ′)/A2(n̄, ζ̄)

with 2n̄ = n + n′ and 2ζ̄ = ζ + ζ ′. As is seen from Table I, at least one of the constituent

orbitals in the configuration mixing has always an s orbital character whereas the second
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i N i

1
N i

2
Ci

1 1 1 0.195765

2 2 2 0.003276

3 2 3 0.581843

4 4 5 0.223090

5 5 5 -0.012841

6 6 7 -0.030708

7 6 8 0.007483

8 6 9 0.015074

9 10 16 0.128358

10 11 17 0.061705

11 12 18 -0.023840

12 12 19 0.013445

N n l n/ζ

1 1 0 0.978

2 1 0 0.752

3 2 0 1.328

4 2 0 1.598

5 3 0 0.876

6 1 0 0.876

7 8 0 1.862

8 11 0 1.830

9 14 0 0.753

10 1 0 0.978

N n l n/ζ

11 2 0 1.182

12 1 0 1.122

13 1 0 0.984

14 1 0 1.024

15 2 0 1.170

16 3 2 1.374

17 5 2 0.932

18 8 2 1.538

19 14 2 0.728

TABLE I: Configuration mixing coefficients Ci and parameters of the Slater orbitals (n, l, ζ) for

the ground state of H2 at R = 1.4 a.u..

orbital is either s or d. Therefore the total angular momentum and its projection in the

molecular ground state are J0 = 0, 2 and M0 = 0. The Clebsch-Gordan coefficients entering

Eq. (2) are C00
00, 00 = C20

00, 20 = 1

III. MOLECULAR PHOTOIONIZATION FORMALISM

We align the z-axis in the laboratory frame with the polarization vector of light ε. The

linear polarization along the z-axis in the laboratory frame corresponds to two linear po-

larization components parallel and perpendicular to the molecular axis R̂. We calculate the

dipole transition amplitude in the molecular frame and then transform it to the laboratory

frame using the technique similar to that suggested by Feagin [14]. To deal with parallel and

perpendicular polarizations, we introduce a two-electron dipole operator which corresponds

to a particular angular momentum projection of the photon MP :

d(MP ) =
(4π

3

)1/2
[ r1Y1MP

(r̂1) + r2Y1MP
(r̂2)] (3)
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The two-electron dipole operators for the parallel and perpendicular polarization of light in

the molecular frame can be expressed as z1 + z2 = d(0) and x1 + x2 = [d(−1) − d(1)]/
√

2,

respectively. In equation (3) the dipole operator is given in the length form. Analogous

expressions in the velocity and acceleration forms can be obtained by substituting ri with

∂/∂ri and 2/r3
i , respectively.

In the CCC formalism, we represent the final state by a close-coupling expansion over

the two-electron channel states each of which is composed of a target bound state f and a

continuum state k. To calculate the matrix element of the dipole operator (3) between the

molecular ground state Ψ0 and the channel state | kf 〉 we make a partial wave expansion

over the angular momentum L and its projection M of the continuum state k :

〈 kf |d(MP ) |Ψ0〉 =
∑

JMJ

∑

LM

i−LeiδL(k)YLM(k) CJMJ

LM, lf mf
(−1)MP δMP +MJ , 0 (4)

× 〈kL nf lf‖ d(MP ) ‖Ψ0〉

Here we introduced the total angular momentum J and its projection MJ for the two-

electron final state. In Eq. (4), the reduced dipole matrix element, free of electron angular

momentum projections, is defined as:

〈kL nf lf‖ d(MP ) ‖Ψ0〉 =
∑

J0

∑

nl,n′l′
Bnl,n′l Nnl,n′l′ Ĵ Ĵ0 (−1)MP







J0 J 1

0 −MP MP







×
[

(−1)l>
√

l> 〈kL‖r‖nl〉 〈nf lf‖l′n′〉(−1)l











J0 J 1

L l lf











δl′lf

+(−1)l>
√

l> 〈nf lf‖r‖l′n′〉〈kL‖nl〉(−1)l′











J0 J 1

lf l′ l











δlL

]

(5)

For a spherically symmetric atomic target, J0 = 0, J = 1 and the matrix elements (5) are

identical for all MP . This is not the case for the molecular ground state (2) which has a

substantial J0 = 2 contribution. Because of this contribution there is a difference between

the matrix elements (5) with MP = 0 and MP = 1. However, due to the axial symmetry of

the ground state (2), the matrix elments with MP = ±1 are identical.

We build the CCC final state from the two-electron channel states as:

Ψf(k) = |kf〉 +
∑

j

∑

∫

d3k′
〈kf |T |jk′〉|k′j〉

E − k′2/2 − εj + i0
. (6)

6 (September 21, 2004)



Here 〈kf |T |jk′〉 is half-on-shell T -matrix which is found by solving a set of coupled

Lippmann-Schwinger equations [29]. The dipole matrix element between the ground state

Ψ0 and the final state Ψf (k) is given by

〈Ψf(k)| d(MP ) |Ψ0〉 = 〈kf | d(MP ) |Ψ0〉 +
∑

j

∑

∫

d3k′
〈kf |T |jk′〉〈k′j | d(MP ) |Ψ0〉

E − k′2/2 − εj + i0
. (7)

We strip the angular dependence from the T -matrix

〈kf | T |jk′〉 =
∑

L,L′,J

M,M′,MJ

CJMJ

LM, lf mf
CJMJ

L′M ′, ljmj
YLM(k)Y ∗

L′M ′(k′) 〈kL nf lf‖TJ‖njlj k′L′〉

and perform the spherical integration and angular momentum projections in Eq. (6). This

leads us to the following expression:

〈ΨLnf lf (k)‖ D(MP ) ‖Ψ0〉 = 〈kL nf lf‖D(MP )‖Ψ0〉 (8)

+
∑

j

∑

∫

k′

〈kL nf lf‖TJ‖njlj k′L′〉〈k′L′ njlj‖D(MP )‖Ψ0〉
E − k′2/2 − εj + i0

where we introduced a complex phase-modified matrix element:

〈kL nf lf‖D(MP )‖Ψ0〉 = i−LeiδL(k)〈kL nf lf‖d(MP )‖Ψ0〉 (9)

In the CCC formalism, a complete set of bound states {f} is obtained by diagonalizing

the target Hamiltonian and comprises both the positive and negative energy states. By

projecting the positive energy bound state onto the true continuum state, we can access

the doubly ionized continuum and to calculate the differential and total DPI cross-sections.

This technique is no different to the atomic DPI [17, 18]. We write a dipole matrix element

between the ground state and the two-electron continuum state as

〈Ψ(k1, k2)| d(MP ) |Ψ0〉 =
∑

JM

∑

l1l2

Y l1l2
JM(k̂1, k̂2)Dl1l2(E1E2) (−1)MP δMP +M, 0 (10)

Here we introduced bipolar harmonics [30]

Y l1l2
JM(k̂1, k̂2) =

∑

m1m2

CJM
l1m2,l2m2

Yl1m1(k̂1)Yl2m2(k̂2)

The reduced matrix element is defined by the following projection:

Dl1l2(E1, E2) = 〈Ψll n2l2(k1)‖D(MP )‖Ψ0〉 〈l2k2 ‖ l2n2〉 , (11)
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where 〈l2k2 ‖ l2n2〉 is the radial overlap between the pseudostate of energy εn2l2 = E2 and

the true continuum radial wave function of same energy and angular momentum.

The non spherically symmetric J0 = 2 part of the ground state (2) can couple with the

angular momentum of the photon to produce the two-electron final state with J = 1 and 3.

However, our numerical estimates show that the J = 3 contribution to the matrix element

(10) is small and we neglect it in the following. With this simplification, the angular mo-

mentum summation in (10) can be reduced to the sum over a single variable. By introducing

symmetric and antisymmetric combinations of the radial matrix elements

D±

l1l2
(E1, E2) =

1

2
{Dl1l2(E1, E2) ± Dl1l2(E2, E1)} , (12)

we can write

∑

l1l2

Y l1l2
1M (k̂1, k̂2)Dl1l2(E1E2) =

∞
∑

l=0

D+
ll+1(E1, E2)

[

Y ll+1
1M (k̂1, k̂2) + Y ll+1

1M (k̂2, k̂1)
]

+D−

ll+1(E1, E2)
[

Y ll+1
1M (k̂1, k̂2) − Y ll+1

1M (k̂2, k̂1)
]

.

The bipolar harmonics entering Eq. (13) can be evaluated by using the expression of Manakov

et al. [31] :

Y l1l2
1M (k̂1, k̂2) = − 1

4π

(

3

lmax

)1/2
[

(−1)l1P ′

l1
(cos θ12)(k̂1)M + (−1)l2P ′

l2
(cos θ12)(k̂2)M

]

, (13)

where cos θ12 = (k̂1 · k̂2). This takes us to the following matrix elements for the parallel and

perpendicular polarization:

〈Ψ(k1, k2)| z1 + z2 |Ψ0〉 = (k1z + k2z) g+
Σ + (k1z − k2z) g−

Σ (14)

〈Ψ(k1, k2)| x1 + x2 |Ψ0〉 = (k1x + k2x) g+
Π + (k1x − k2x) g−

Π

Here we introduced the symmetric and antisymmetric DPI amplitudes:

g±

Σ/Π =

√
3

4π

∞
∑

l=0

(−1)l

√
l + 1

[

P ′

l+1(cos θ12) ∓ P ′

l (cos θ12)
]

D±

ll+1(E1, E2), (15)

where indices Σ and Π correspond to the parallel (MP = 0) and perpendicular (MP = ±1)

polarization of light, respectively. The MP dependence is present, but not shown for brevity,

in matrix elements (11) and (12).

Molecular frame expression (14) can be easily transformed to the laboratory frame. We

give this expression for the case of equal energy sharing E1 = E2 when we can simplify
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notations g ≡ g+ since all g− vanish:

〈Ψ(k1, k2)| z1 + z2 |Ψ0〉 = (gΣ cos2 θR + gΠ sin2 θR)(k1z + k2z) (16)

+(gΣ − gΠ) cos θR sin θR(k1x + k2x)

Here θR is the angle of the molecular axis relative to the polarization axis of light taken

as the z-axis in the laboratory frame. The two axes z and R form the xz plane in the

laboratory frame, i.e. φR = 0.

Squared amplitude (16), with an appropriate kinematical factor, gives a FDCS of the DPI

on a molecule fixed in space. An analogous expression for a randomly oriented molecule can

be derived by introducing a non-zero polar angle φR into Eq. (16) and by taking the spherical

integral over θR nad φR. Resulting expression is given by Feagin [14]:

dσ2+

dΩ1dΩ2dE2

=
C

15

{

[

2|gΣ|2 + 7|gΠ|2 + 6Re(gΣ f ∗

Π)
]

(k1z + k2z)
2 (17)

+ |gΣ − gΠ|2 |k1 + k2|2
}

,

For a spherically symmetric atomic target, gΣ = gΠ and the second term in the right-hand

side of Eqs. (16) and (17) cancels out. The proportionality constant depends on the gauge

of the dipole operator. In the L-gauge, C = 4π2ω/c. Expressions (16) and (17) can be easily

generalized to the case of an arbitrarily polarized light.

The total DPI cross-section can be obtained by integrating the FDCS over the angles

of the two photoelectrons and the energy of one of the photoelectrons. This, however, is

a very inefficient computational procedure. Instead, we can use the completeness of the

target states basis {f} and obtain the total cross-section as a sum over the positive energy

target states. For a given momentum projection of the photon MP , the photoionization

cross-section resolved with respect to the final target state f and the angle of emission of

the photoelectron Ωk can be written as

dσnf lf (MP )

dΩk

=
C

3

∑

mf

∣

∣

∣〈Ψf(k)| d(MP ) |Ψ0〉
∣

∣

∣

2
(18)

The angle-integrated cross-section is given by

σnf lf (MP ) =
C

3

∣

∣

∣

∣

∣

∑

L

〈kL nf lf‖D(MP )‖Ψ0〉
∣

∣

∣

∣

∣

2

(19)

When transforming Eq. (19) to the laboratory frame, the perpendicular polarization com-

ponent ∝ [D(−1)−D(1)] cancels out leaving us with the spherically symmetric component
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D(0). The integration over the angular orientation of the molecular axis is performed triv-

ialy. The total DPI cross-section is given by the sum over all positive energy final states:

σ++ =
∑

εf >0

σnf lf (MP = 0) (20)

IV. RESULTS

A. Total DPI cross-section

The total DPI cross-section of H2 calculated in three gauges of the dipole operator, the

length, velocity and acceleration, is presented in Figure 1 in comparison with the experiment

of Dujardin et al. [1] and a theoretical cross-section reported by Le Rouzo [11]. Convergence

between calculations in the three gauges is an indication of an accuracy of the ground and

final state wave functions. A very good convergence can be achieved with the CCC final sate

for He provided an accurate Hylleraas-type ground state wave function is employed [32]. In

a stark contrast, for the H2 molecule all three gauges strongly diverge and the calculated

cross-section should be divided by various factors (20, 2.1 and 4.5 for the L, V and A gauges,

respectively) in order to normalize it to the absolute cross-section reported by Le Rouzo [11].

After this renormalization, the V and A gauges agree well between each other and with the

V-gauge of Le Rouzo [11] whereas the L-gauge shows a very different energy dependence.
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FIG. 1: Total DPI cross-section calculated in three gauges of the dipole operator: length ( L -

dotted line), velocity (V - solid line) and acceleration (A - dashed line). Normalization is made to

the calculation of Le Rouzo [11] in the V-gauge ( thick solid line ) by dividing the present results

by the factors of 20, 2.1 and 4.5 for the L, V and A gauges, respectively. The experimental data

by Dujardin et al. [1] are indicated by dots.

This strong gauge divergence comes to us as no suprise. It is typical for asymptotically

correct final states as was demonstrated by Lucey et al. [33] for the 3C final state in the case

of DPI on He. What is surprising is a relatively good gauge convergence in the calculation of

citetRouzo86. Similarly to the present work, Le Rouzo [11] employed a multiconfiguration

expansion of the H2 ground state built from elliptical molecular orbitals. As to the final

state, this author used a product of two Coulomb waves in the field of an asymptotic charge

Z = 2. We might envisage that the ground state employed by Le Rouzo [11] is somewhat

superior to that of Hayes [25], even though the latter claims the chemical accuracy of the

ground state energy. As to the final state, the CCC wave function is certainly a better

approximation that a completely non-correlated product of the two Coulomb waves.

One more point should be made when discussing Figure 1. Both the present calculation

and that of Le Rouzo [11] completely ignore the vibrational degrees of freedom and cor-

respond to the vertical double ionization energy of H2 at 51.1 eV. The experimental DPI

threshold is somewhat lower due to the Frank-Condon overlap between the vibrationally

allowed part of the ground state and the strongly repulsive final state. Le Rouzo [12] ad-

dressed this question in a later work but we intentionally made a comparison with an earlier

calculation of this author [11] which ignored this issue as we do in our model.

B. Differential cross-section

Much of the renewed interest to DPI on H2/D2 is due to the recent accurate measurements

of fully differential cross-sections on randomly oriented [3–7] and fixed in space [9] molecular

species. In this section we present our calculations for well documented cases of equal energy

sharing kinematics at the total excess energies of 20 eV [3–5] and 24.5 eV [9].
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1. Randomly oriented molecule

A triply differential cross-section of DPI of H2 for the kinematics of experiment of Reddish

et al. [3] is shown in Figure 2. In this coplanar kinematics the two photoelectrons and

the polarization vector of light all belong to the same plane. The escape angles of the

photoelectrons θ1 (fixed) and θ2 (variable) are counted from the polarization axis of light

(horizontal in polar plots of Figure 2).
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FIG. 2: Triply-differential cross-section of DPI on H2 at E1 = E2 = 10 eV and a coplanar kine-

matics. A V-gauge calculation with amplitudes gΣ and gΠ (15) is displayed by a solid line. An

atomic-like calculation with identical amplitudes gΣ = gΠ is shown by a dashed line. A fixed

escape angle of one of the photoelectrons is indicated by an arrow on the inset polar plots. The

polarization axis of light is horizontal. Experimental data are from Wightman et al. [5]

Two different calculations are presented in Figure 2. In the first calculation Eq. (17) is

used with two amplitudes gΣ and gΠ (15) corresponding to the parallel and perpendicular

orientation of the molecular axis relative to the polarization of light. To show clearly the

role of the molecular effects, in the second calculation we only use one amplitude gΣ and the

second amplitude is set to be identical gΠ ≡ gΣ.

Molecular effects due to the second term in the right hand side of Eq. (15) should be

especially noticeable when the fixed photoelectron escape angle θ1 deviates from 90◦. The

atomic-like term in Eq. (15) forbids the two-electron escape on the cone about the polariza-

tion z-axis where k1z = −k2z. It suppresses one of the lobes in atomic-like FDCS (dashed

line in Figure 2) when direction of escape of one of the photoelectrons becomes close to

the polarization axis. The molecular term only forbids the antiparallel escape k1 = −k2

and enforces just one nodal point. That is why the lobes should be more symmetric in
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the molecular case when both terms contribute in Eq. (15) (solid line in Figure 2). The

experimental data seem to show this tendency. However, the theoretical difference between

the molecular gΣ, gΠ and atomic-like gΣ = gΠ calculations is too small. The filling of the

anti-parallel escape node is most likely due to a finite experimental angular resolution.

It is instructive to compare the H2 DPI amplitudes gΠ, gΣ with those for the He atom.

This comparison is made in Figure 3. The amplitudes (left) and their phases (right) are

plotted as functions of the mutual angle of the two photoelectrons θ12.
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FIG. 3: The DPI amplitudes gΣ, gΠ for H2 are shown by the solid and dashed lines, respectively.

Their atomic counterparts gΣ = gΠ for He are displayed by the thick solid line. The moduli are on

the left panel and the phases are on the right panel.

It is also interesting to compare the presently calculated amplitudes with those introduced

empirically by Feagin [14] to fit the experimental data of Wightman et al. [5]. Feagin [14]

considered a pair of real amplitudes gΣ, gΠ in the Gaussian ansatz

gΣ,Π ∝ exp

[

−2 ln 2
(π − θ12)

2

∆θ2
12

]

(21)

and treated the ratio gΠ/gΣ and width ∆θ12 as two adjustable parameters. The best fit to the

experiment of Wightman et al. [5] was achieved at gΠ/gΣ = −2.1± 0.5 and ∆θ12 = 76◦± 3◦.

In the present calculation, the amplitudes are complex. However, inspection of Figure 3

shows that the phase difference between gΣ and gΠ is close to zero for those mutual angles

θ12 where the magnitude of the amplitudes is significant. A small phase difference can be

accommodated by a real gΠ/gΣ ratio. Fitting with the Gaussian ansatz (21) produces the

width parameters ∆θΣ
12 = 84◦, ∆θΠ

12 = 88◦ and the amplitude ratio gΠ/gΣ = 1.2 1. For

1 We introduced an additional phase factor (−1)MP both to the amplitude (4) and the reduced matrix

element (5). Without this factor, the ratio gΠ/gΣ would be negative as reported in Weber et al. [9]
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comparison, the He width parameter is 91◦. The difference between the width parameters

in He and H2 is the sole ground state effect since the CCC final states are identical in both

calculations. We investigated numerical stability of the Gaussian parameters by varying

the size of the CCC basis. The Gaussian parameters were not very stable with the width

changing by as much as ±5◦. However, in all cases we observed that ∆θΣ
12 < ∆θΠ

12 < ∆θHe
12 .

We note that the molecular effects are weak in our model. The gΠ/gΣ ratio differs from

unity by only 20%. This is consistent with the angular composition of the ground state given

in Table I which has about the same amount of the d orbital character. In the meantime, the

amplitude ratio of Feagin [14] is very far from unity and points to strong molecular effects.

2. Molecule fixed in space

Recent COLTRIMS measurements of Weber et al. [9] allowed to obtain FDCS at particu-

lar orientations of the molecular axis rather than averaged over all possible orientations. In

addition, these authors were able to determine FDCS at various energies of the recoiling ions

[10]. Due to the Frank-Condon principle, these measurements probe the molecular ground

state at various internuclear separations. Hayes [25] gave the multiconfiguration expansion

of the H2 ground state at three different internuclear distances of R = 1.2, 1.4 and 1.6 atomic

units. By employing these ground state expansions we should be able, at least in part, to

reproduce the evolution of the FDCS as the molecule expands or shrinks.
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FIG. 4: Triply-differential cross-section of DPI on H2 at E1 = E2 = 12.5 eV and a coplanar

kinematics. The fixed photoelectron escape direction at θ1 = 10◦ is indicated by an arrow. The

top left panel shows the FDCS averaged over all molecular orientations. Other panels correspond to

a fixed molecular angle θR relative to the polarization of light (horizontal). A V-gauge calculation

with amplitudes gΣ and gΠ (15) is displayed by a solid line. Experimental data are from Weber

[34]

In Figure 4 we present our calculation for the case of an H2 molecule being fixed in the

plane of the coplanar (γ,2e) reaction. Both photoelectrons, polarization axis of light and

the molecular axis all belong to the same plane. The escape angle of one photoelectron is

fixed at θ1 = 10◦ relative to the polarization axis of light (horizontal in Figure 4). In the

top left panel, all molecular orientations are taken into account whereas on other panels the

molecular axis angle θR varies from 15◦ to 90◦ relative to the polarization of light.

According to Eq. (17), the gΣ amplitude dominates the FDCS when θR ' 0 whereas the gπ

amplitude makes a sole contribution when θR = 90◦. In intermediate cases both amplitudes

15 (September 21, 2004)



interfere. As gΠ/gΣ > 1, we see an increase of the magnitude of the FDCS when θR varies

from small angles towards 90◦. However, due to the interference, the FDCS peaks not at

90◦ but at a somewhat lesser angle of 60◦. The pure Π-FDCS at 90◦ clearly shows an extra

lobe which is also pronounced in the spherically averaged FDCS. Comparison is made with

unpublished experimental data of Weber [34]. The spherically averaged experiment clearly

shows a two-lobe structure, supported by the present calculation. However, the additional

lobe is much broader and the node at the antiparallel emission of the two photoelectrons

is significantly filled in. This is probably due a finite angular resolution of the experiment

which also combines with a finite energy partition acceptance. These factors cannot be

accounted for in the present calculation. However, simulation of the finite angular and energy

resolutions with the Gaussian amplitudes (21) significantly improves agreement between

calculated and measured FDCS [9]. Experimental data presented in Figure 4 show increase

of the magnitude as predicted by the present calculation. However, at small θR angles, the

shape of the FDCS is much more isotropic and the magnitude is far too small. It is unlikely

these effects are solely due to finite experimental resolutions, rather a limited scope of the

present model may cause this disagreement.
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FIG. 5: Triply-differential cross-section of DPI on H2 at E1 = E2 = 12.5 eV and non-coplanar

geometry. The fixed escape direction of one of the photoelectrons is perpendicular to the plane

which contains the polarization of light, the molecule which is at 55◦ to the polarization axis, and

the escape direction of another photoelectron. The experimental data are from Weber et al. [10].

Finally, in Figure 5 we present the FDCS for perpendicular geometry of the two-electron

escape when one of the photoelectrons is detected at 90◦ to the plane formed by the polariza-

tion axis of light and the inter-nuclear axis of the molecule. The second electron is detected
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in this plane at various angles relative to the polarization axis of light. The molecule forms

an angle θR = 55◦ relative to this axis. The central panel of Figure 5 corresponds to the

equilibrium internuclear distance R = 1.4 a.u. whereas on the left and right panels this

distance is 1.6 and 1.2 a.u. , respectively. The experimental data of Weber et al. [10] shown

on each panel are taken at different kinetic energy release (KER) values. Due to the Frank-

Condon principle and because of a strongly repulsive doubly ionized final state, the smaller

KER correspond to an expanded molecule (left panel), and the larger KER is a signature of

a shrunk molecule (right panel).

The calculation is in a good agreement with experiment at the equilibrium internuclear

distance (central panel). However, there are some obvious features on the experimental

FDCS which are not reproduced by the calculation. We would expect the present central-

field model to fail sooner for an expanded molecule (left panel). Much to our surprise, it

is the shrunk molecule which generates the most unusual four-lobe FDCS. We stress that

Eq. (16) can only describe a two-lobe FDCS as a function of the photoelectron angle θ2

in the present geometry. It is higher multipoles, most notably J = 3 in the final two-

electron continuum that cause such a strong deviation from a dipole two-lobe FDCS. The

present model indicates some reduction in magnitude of the FDCS at smaller inter-nuclear

separations, in line with experiment. However, the J = 3 final channels are far too small to

account for a non-dipole structure of the FDCS.

V. CONCLUSIONS

We presented here a formalism and numerical results for the one-photon two-electron

ionization of the H2 molecule within a simplified single-center model. The model combines a

multiconfiguration expansion for the molecular ground state and a convergent close-coupling

(CCC) expansion for an atomic-like final state in which the two photoelectrons move in a

field of a point-like Z = 2 charge. Electron correlation is accounted for both in the ground

and final states.

We generated a succession of cross-sections, starting with the total integrated DPI cross-

section, following by the fully-differential cross-section for a randomly oriented H2 molecule

and, finally, the FDCS for a molecule fixed in space. We made a comparison with the latest

experimental data and, where available, with previous calculations. We find our model
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modestly accurate. Due to an asymptotic nature of the final state, we do not expect accurate

magnitudes of the calculated DPI cross-sections. In addition, the total DPI cross-section

shows great sensitivity to the gauge of the electromagnetic operator, the velocity gauge being

the closest to the experiment and giving the most accurate photon energy dependence. The

shapes of the FDCS on randomly oriented H2 molecules is found in fair agreement with

experiment [5, 9]. Narrowing of the Gaussian width of the parallel and perpendicular DPI

amplitudes as compared with the fully symmetric He amplitude is shown unambiguously.

The effects of the molecular axis orientation and the internuclear separation on the FDCS

are demonstrated within the present model. However, certain important features of the

experimental FDCS such as strong deviation from a two-lobe dipole structure [10] cannot

be reproduced.

In general, the molecular effects are rather weak in the present model as expected from

a small fraction of the d-orbital character in the multiconfiguration ground state [25]. This

character does not change appreciably as the internuclear distance deviates from the equi-

librium. The possible J = 3 final channels are too weak to explain non-dipole features of

the FDCS.

To improve the accuracy of the present model, it would be highly desirable to include

the molecular effects in the final state. This can be achieved in the prolate spheroidal

coordinates as was demonstrated by Semenov and Cherepkov [35] in their calculation of the

single photoionization cross-section of H2. We plan this development of our model in the

future.
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T. Osipov, A. Bräuning-Demian, L. Spielberger, et al., Phys. Rev. Lett. 81, 5776 (1998).

[9] T. Weber, A. Czasch, O. Jagutzki, A. Müller, V. Mergel, A. Kheifets, J. Feagin, E. Rothenberg,

G. Meigs, M. Prior, et al., Phys. Rev. Lett. 92, 163001 (2004).

[10] T. Weber, A. Czasch, O. Jagutzki, A. Müller, V. Mergel, A. Kheifets, E. Rothenberg, G. Meigs,

M. Prior, S. Daveau, et al., Nature 431 (2004).

[11] H. Le Rouzo, J. Phys. B 19, L677 (1986).

[12] H. Le Rouzo, Phys. Rev. A 37, 1512 (1988).

[13] M. Walter and J. Briggs, J. Phys. B 32, 2487 (1999).

[14] J. M. Feagin, J. Phys. B 31, L729 (1998).

[15] T. J. Reddish and J. M. Feagin, J. Phys. B 32, 2473 (1999).

[16] M. Walter and J. S. Briggs, Phys. Rev. Lett. 85, 1630 (2000).

[17] A. S. Kheifets and I. Bray, Phys. Rev. A 54, R995 (1996).

[18] A. S. Kheifets and I. Bray, J. Phys. B 31, L447 (1998).

[19] A. S. Kheifets and I. Bray, Phys. Rev. Lett. 81, 4588 (1998).

[20] A. S. Kheifets and I. Bray, Phys. Rev. A 58, 4501 (1998).

[21] A. S. Kheifets and I. Bray, Phys. Rev. A 65, 012710 (2002).

[22] H. W. Joy and R. G. Parr, J. Chem. Phys. 28, 448 (1958).

19 (September 21, 2004)



[23] S. Hagstrom and H. Shull, J. Chem. Phys. 30, 1314 (1959).

[24] S. Hagstrom and H. Shull, Rep. Mod. Phys. 35, 624 (1963).

[25] E. F. Hayes, J. Chem. Phys. 46, 4004 (1967).

[26] O. Schwarzkopf, B. Krassig, V. Schmidt, F. Maulbetsch, and J. S. Briggs, J. Phys. B 27, L347

(1994).

[27] F. Maulbetsch and J. S. Briggs, J. Phys. B 26, L647 (1993).

[28] M. Pont and R. Shakeshaft, Phys. Rev. A 51, R2676 (1995).

[29] I. Bray and A. T. Stelbovics, Adv. Atom. Mol. Phys. 35, 209 (1995).

[30] D. A. Varshalovich, Quantum theory of angular momentum (World Scientific Pub., Philadel-

phia, 1988), 1st ed.

[31] N. L. Manakov, S. I. Marmo, and A. V. Meremianin, J. Phys. B 29, 2711 (1996).

[32] A. S. Kheifets and I. Bray, Phys. Rev. A 57, 2590 (1998).

[33] S. P. Lucey, J. Rasch, C. T. Whelan, and H. R. J. Walters, J. Phys. B 31, 1237 (1998).

[34] T. Weber, Ph.D. thesis, Universität Frankfurt, Institut für Kernphysik (2003).

[35] S. K. Semenov and N. A. Cherepkov, Chem. Phys. Lett. 291, 375 (1998).

20 (September 21, 2004)


