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Abstract

We develop a theoretical model to describe simultaneous ionization-excitation and double ion-

ization of a two-electron atomic shell (i.e. He 1s2) by a fast charged particle impact. The model

accounts for the projectile-target interaction to the second order whereas the interaction of the two

target electrons in continuum is treated non-perturbatively by the convergent close-coupling (CCC)

method. In the second order term, all intermediate states of the target between two subsequent

interactions with the projectile are weighted equally with an average energy denominator (the so-

called closure approximation) and only the dipole interaction of the projectile with the target is

included. The model is suited to describe two-electron ionization processes with large projectile

velocity, small momentum transfer and small to intermediate energy of the ejected electrons. The

model is applied to ionization-excitation and double ionization of He by electron and proton impact

in kinematics of recent experiments.
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I. INTRODUCTION

Two-electron ionization processes caused by charged particle impact such as ionization

with simultaneous excitation and double ionization are strongly dependent on many-electron

correlations [1]. However, unlike the two-electron single-photon ionization processes, which

are driven entirely by correlations, charged particle impact can cause a two-electron tran-

sition in the absence of correlations simply by repeated interaction of the projectile with

the target. This competition of the electron correlations in the target and a complicated

dynamics of the reaction makes it difficult to interpret particle-induced two-electron ion-

ization. However, there exists a case when the correlations and dynamics can be clearly

disentangled. Indeed, if the projectile is fast, its interaction with the target can be treated

perturbatively (the so-called low perturbation regime) by employing a Born series expansion.

This effectively reduces the problem of four interacting charged particles to a three-body

Coulomb problem which is encountered in the two-electron ionization caused by photon

impact. The latter problem can be treated by employing either an asymptotically exact

three-body Coulomb wave function or a close-coupling expansion to account for interaction

of the two target electrons in continuum.

It is believed that in the Born series on the projectile-target interaction, only the two

lowest terms (the so-called first and second Born terms) contribute significantly to the two-

electron ionization [2]. The first Born term has been investigated in great detail and the

benchmark results had been established for the electron-impact ionization-excitation of He

to the n = 2 state [3, 4]. There is also a good agreement between different close-coupling

theories for the second Born contribution as far as ionization-excitation is concerned [5, 6].

However, there is a broad variation of the first and second Born results for the double

ionization by electron impact. There is no agreement in the first Born model between the

convergent close-coupling method and the calculations based on the asymptotically exact

three-body Coulomb final state, popularly known as BBK [7]. The latter method exhibits

a very strong, sometime counterintuitive, dependence on the accuracy of the ground state,

when an inferor ground state gives a better agreement with experiment on the absolute

scale [8, 9]. The second Born results are even more erratic as various BBK calculations do

not agree between themselves. For instance, Choubisa et al. [10] reported recently rather

significant contribution of the second Born term at the electron incident energy of 5.5 keV.
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At the same time, Mkhanter and Cappello [11] found a very weak contribution of this

term at exactly the same kinematics. There had been an attempt to treat the full four-

body problem non-perturbatively by employing either an asymptotically exact four-body

Coulomb wave function [12] or by a Faddeev-type expansion [13]. But these results are

either at variance with reported first and second Born calculations or explore the kinematics

where Born calculations had not been reported.

In this paper, we present a new second Born model based on the CCC description of

the two-electron final state. In our earlier work, we applied the CCC formalism to electron

impact ionization with excitation and double ionization (the so-called (e,3e) reaction) in

the first Born regime. The model was used to describe the two-electron ionization at a

very large projectile energy of 5.5 keV [3, 14]. In subsequent (e,3e) experiments, the energy

of the projectile was lowered to 2 keV [15, 16] and some deviations from the first Born

regime became obvious. In particular, the symmetry of the angular distribution of the two

ejected electrons with respect to the momentum transfer direction was broken, especially

in the angular region of the recoil peak, and when momentum transfer was small q < 1

[15]. In the impulsive regime q > 1, deviation from the first Born regime was not so

obvious [16]. Recent (e,3e) experiments with very low projectile energy of 0.5 keV [17, 18]

clearly demonstrated very strong deviation from the first Born regime. To interpret these

experiments, we extended our first Born implementation of the CCC method to include the

second Born term in the projectile-target interaction. The combined first and second Born

results were found in a much better agreement with experiment [18]. Limited space of a

rapid communication did not allow us to present all the computational details and results

of numerous tests we performed to assure the accuracy of our model. In the present paper

we give these missing details. In addition, we present an extensive set of (e,3e) calculations

in comparison with experimental data of Lahmam-Bennani et al. [8, 17] and Dorn et al.

[16, 18]. We also perform calculations for double ionization of He by proton impact and

compare our results with the latest experimental data of Fischer et al. [19]. This experiment

demonstrated a clear difference between the electron and proton impact double ionization

at the same projectile velocity which can only be attributed to the second (and higher) Born

effects.

The structure of the paper is as follows. In Section II we give the basic formalism of

the second Born implementation of the CCC method. In section IIIA we test our model
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by calculating electron impact ionization of He leading to the n = 2 excited state. We

compare our results with available experimental data [20, 21] as well as the earlier second

Born calculations [5, 6]. As our model is restricted to dipole interaction in the second Born

term, we also compare our results with analogous data obtained by the R-matrix method

with pseudostates (RMPS) with all the multipoles included in the second Born term and the

dipole contribution only [22]. In Section III B we give our (e,3e) results for various electron

impact energies. In Section III C we present the proton impact double ionization data. We

conclude by outlining further directions of this project.

II. FORMALISM

A. First and second Born amplitudes with a plane wave projectile

Formal derivation of the Born series expansion is given by Walters [2]. Here we only

outline briefly details of the formalism specific to the CCC method. For simplicity, we

assume the projectile to be electron. Extension to an arbitrary charged projectile is trivial.

We use a continuum wave normalization 〈k|k′〉 = δ(k − k′) with an asymptotics at

infinity |k〉 ≈ (2π)−3/2ei
���

. With this normalization the incident flux is j = k0/(2π)3 and

the cross-section of a two-electron ionization process caused by particle impact is written as

σ
(e,2e)
f = (2π)4k1k2

k0

∑

mf

∣

∣

∣FB1
f (q,k2) + FB2

f (k0,k1,k2)
∣

∣

∣

2
. (1)

Here we assign indices 0, 1 and 2 to the projectile before and after collision, and the ejected

electron, respectively. Index f refers to the remaining target electron, either in the bound

state (ionization-excitation) or continuum (double ionization). In the latter case the energy

of the ejected electron is matched by positive energy pseudostate εf = k2
3/2.

We treat a fast projectile as a plane wave and write the first Born amplitude as

FB1 = 〈k1Ψf(k2)|U |k0Ψ0〉 =
4π

q2

1

(2π)3
〈Ψf(k2)|ei �

�
+ ei �

�
′ − 2|Ψ0〉 (2)

Here we applied the Bethe transformation to the projectile-target interaction

U = − Z

r0

+
1

|r0 − r| +
1

|r0 − r′| , (3)

where r0, r and r′ are coordinates of the projectile and the two target electrons, respectively.

In the following we consider the two-electron ionization of the He atom and set Z = 2 in the
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nucleus term. The momentum transfer from the projectile to the target q = k0 − k1. By

commuting the Born operator with the Hamiltonian of the atom, the first Born amplitude (2)

can be written in the velocity gauge [23]. Close agreement between calculations performed

with the two gauges of the Born operator, length and velocity, serves as a convenient test of

the accuracy of the wave functions Ψ0 and Ψf . The treatment of the first Born amplitude

within the CCC formalism is given by Kheifets et al. [14].

Similarly to Eq. (2), we write the second Born amplitude as

fB2 =
∫

dk
∑

n

〈k1Ψf (k2)|U |kΨn〉〈kΨn|U |k0Ψ0〉
E0 + k2

0/2 − En − k2/2 + iδ
(4)

=
1

(2π)6

∫

dk
4π

q2
0

4π

q2
1

∑

∫

n

〈Ψf(k2)|ei � 0
�
+ ei � 0

�
′ − 2|Ψn〉〈Ψn|ei � 1

�
+ ei � 0

�
′ − 2|Ψ0〉

k2
n/2 − k2/2 + iδ

Here q0 = k0 − k and q1 = k − k1. The total momentum transfer q0 + q1 = q. In the

energy denominator we introduced k2
n/2 = E0 + k2

0/2 − En. As compared to the first Born

amplitude, Eq. (4) contains an additional integration over the momentum of the projectile

in the intermediate state k as well as the summation and integration over the intermediate

states of the target n. Direct evaluation of Eq. (4) is not possible at present and further

approximations ought to be made. We assume that all intermediate states of the target

between two subsequent interactions with the projectile are equally probable and weight

them with an average energy denominator (the so-called closure approximation). This allows

us to use the closure relation and to perform a summation:

∑

∫

n

|Ψn(r, r
′)〉〈Ψn(x,x

′)|
E0 + k2

0/2 − En − k2/2 + iδ
≈ δ(r − x) δ(r′ − x′)

k̄2
n/2 − k2/2 + iδ

, (5)

where k̄2
n/2 = k2

0/2 − ∆E and ∆E = Ēn − E0 is an average excitation energy. This ap-

proximation was employed by many authors, most recently by Marchalant et al. [5] and

Fang and Bartschat [6] in their calculations of the electron impact ionization-excitation of

He. The validity of the closure approximation hinges on the assumption that the result is

insensitive to the concrete choice of the average excitation energy ∆E. Earlier applications

of the second Born model with the closure approximation were focused on the excitation-

ionization processes. In these applications it was logical to set ∆ close to the lowest most

dominant excitation energy. In our case we intend to apply the second Born model to double

ionization. In this case we found it more practical to set k̄n = (k0k1)
1/2. We tested that for

ionization-excitation processes this choice produced almost identical results to those gener-
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ated by the fixed ∆ recipe. Due to complicated structure of the second Born amplitude (4),

it was evaluated only in the length gauge.

After having adopted the closure approximation, we still have to deal with the k-

integration in the second Born amplitude. In the majority of the reported second Born

works, this integration was performed numerically by various brute force algorithms. Un-

fortunately, due to a very computationally intensive CCC part, we cannot implement any

of those methods. Instead, we perform an analytical angular integration over all possible

directions of the k-vector. To achieve this, we follow Franz and Altick [24] and make use of

the dipole approximation in the second Born amplitude. We make a partial wave expansion

of the Born operator

ei �
�
− 1 = 4π

∑

LM

iL [jL(qr) − δL0]Y
∗
LM(r̂)YLM(q̂) (6)

and restrict summation over the angular momentum to the L = 1 term. It was argued in

Ref. [24] that this is justifiable as long as the momentum transfer from the projectile to

the target q is small. In this case small q0 and q1 are likely to dominate the amplitude (4)

because of the rapidly decreasing factors q−2
0 and q−2

1 . The spherical Bessel functions are

known to be parametrically small jL(x) ∝ xL, j0(x) − 1 ∝ x2 [25]. Therefore, the dipole

term is expected to be leading as long as the argument of the Bessel function is small. Franz

and Altick [24] made the further approximation by taking the optical limit of the dipole

term j1(x) → x/3. We will follow their derivation to demonstrate that this approximation

is, in fact, wrong and leads to a significant overestimation of the second Born amplitude.

In the dipole approximation, taken to the optical limit, the second Born amplitude (4)

becomes

fB2 ∝
∫

dk
〈Ψf(k2)|(q0r + q0r

′)(q1r + q1r
′)|Ψ0〉

|k0 − k|2 |k − k1|2 (k̄2
n − k2 + iδ)

(7)

Having in mind the explicit symmetry of the two-electron wave function with respect to the

interchange of r and r′, we can isolate two distinct terms in the the second Born amplitude:

fB2a ∝ 2
∫

dk
〈Ψf(k2)|(q0r · q1r

′|Ψ0〉
|k0 − k|2 |k − k1|2 (k̄2

n − k2 + iδ)

fB2b ∝ 2
∫

dk
〈Ψf(k2)|(q0r · q1r|Ψ0〉

|k0 − k|2 |k − k1|2 (k̄2
n − k2 + iδ)

We make use of the expansion

q0r = q0r cos(q̂0r̂) =
4π

3
q0r

1
∑

m=−1

Y ∗
1m(r̂)Y1m(q̂0) (8)
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and, following Varshalovich [26], decouple vectors k and k0:

q0Y1m(q̂0) =
√

4π
1
∑

λ=0

∑

|µ|≤λ

(−1)λkλk1−λ
0 Yλµ(k̂)Y1−λ m−µ(k̂0) (9)

For the same purpose, we make an expansion in the denominator:

1

|k0 − k|2 =
4π

2k0k

∑

LM

QL

(

k2
0 + k2

2kk0

)

Y ∗
LM(k̂)YLM(k̂0) (10)

where QL is the Legendre polynomial of the second kind.

Combining expansions (8-10) allows us to perform an analytical integration over the

direction of the k-vector:

∫

dΩk
(q0r) · (q1r

′)

|k0 − k|2|k − k1|2
=

(4π)4

36
rr′

∑

mm′

Y ∗
1m(r̂)Y ∗

1m′(r̂′)Mmm′(k, k0, k1, θ1) (11)

where

Mmm′(k, k0, k1, θ1) =
∑

λµ

∑

λ′µ′

(−1)λ+λ′

kλ+λ′−2k−λ
0 k−λ′

1

Y1−λm−µ(k̂0)Y1−λ′ m′−µ′(k̂1)
∑

JMJ

λ̂λ̂′Ĵ−2CJ0
λ0,λ′0C

JMJ

λµ,λ′µ′ (12)

∑

LM

∑

L′M ′

QL

(

k2
0 + k2

2kk0

)

QL′

(

k2
1 + k2

2kk1

)

L̂L̂′CJMJ

LM,L′M ′CJ0
L0,L′0YLM(k̂0)YL′M ′(k̂1)

Here we used the standard notation for the Clebsch-Gordan coefficients and introduced the

hat-function Ĵ = (2J + 1)1/2. In writing the argument of the function Mmm′(k, k0, k1, θ1)

we assumed that the z-axis is aligned along the direction of the incident projectile k̂0 which

scatters at the angle θ1 in the xz plane. Summation over L, L′ should be terminated at some

large value Lcut when desired numerical accuracy is achieved. In practical computations, we

used the cut-off values of the order of few hundred, the higher incident energy requiring the

larger Lcut.

After performing the angular integration we can present the two parts of the second Born

amplitude as

fB2a ∝ (4π)4

18

∑

mm′

〈Ψf(k2)|rr′Y ∗
1m(r̂)Y ∗

1m′(r̂′)|Ψ0〉
∫

k2dk
Mmm′(k, k0, k1, θ1)

k̄2
n − k2 + iδ

=
(4π)4

18

∑

mm′

Mmm′(k0, k1, θ1)〈Ψf(k2)|rr′Y ∗
1m(r̂)Y ∗

1m′(r̂′)|Ψ0〉 (13)

Here we introduced an integrated kinematical factor (IKF):

Mmm′(k0, k1, θ1) =
∫

k2dk
Mmm′(k, k0, k1, θ1)

k̄2
n − k2 + iδ
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Similarly,

fB2b ∝ (4π)4

18

∑

mm′

Mmm′(k0, k1, θ1)〈Ψf(k2)|r2Y ∗
1m(r̂)Y ∗

1m′(r̂)|Ψ0〉 (14)

Great advantage of Eqs. (13-14) is that the IKF is separated from the matrix elements which

contain the spatial integration of the initial and final state wave functions. Therefore the

IKF can be calculated once and for all the second Born matrix elements.

Spatial integrals can be evaluated by the configuration-interaction expansion of the

ground state

Ψ0(r, r
′) =

∑

nilimi

Cnili

1

l̂i
(−1)li−mi Ylimi

(r̂)
1

r
Pnili(r)Yli−mi

(r̂′)
1

r′
Pnili(r

′) , (15)

and the close-coupling expansion of the final state

Ψf(k2) = ψf (k2) +
∑

n

∑

∫

�

〈k2f |T |nk〉 ψn(k)

k2
f/2 + εf − k2/2 − εn + iδ

(16)

with the channel function further expanded over the partial waves:

ψf (k, r, r
′) =

1

k1/2

∑

lm

e−iδlilY ∗
lm(k̂) Ylm(r̂)

1

r
PEl(r) Ylfmf

(r̂′)
1

r′
Pnf lf (r

′) . (17)

In Eq. (15), Cnili are the configuration interaction coefficients and l̂−1
i (−1)li−mi ≡ C00

limi li−mi
.

In Eq. (16), 〈k2f |T |nk〉 is the half-on-shell T -matrix (see Ref. [14] for more details).

After performing the spherical integration and applying some angular momentum algebra

we can write the second Born amplitude in the form:

〈ψf(k)|fB2|Ψ0〉 =
1

k1/2

3

4π

∑

lm

eiδli−lYlm(k̂) (18)

∑

JMJ

Ĵ







l J lf

m MJ mf





MJMJ
(k0, k1, θ1)

[

D
(2a)
lJf (k) +D

(2b)
lJf (k)

]

Here we introduced the reduced matrix elements

D
(2a)
lJf (k) =

∑

nili

Cnili l̂ l̂i l̂f







l 1 li

0 0 0













lf 1 li

0 0 0





 (−1)J











1 J 1

l li lf











(19)

∫

dr Pkl(r) r Pnili(r)
∫

dr′ Pnf lf (r
′) r′ Pnili(r

′)

D
(2b)
lJf (k) =

∑

nili

Cnili(−1)li l̂







l J li

0 0 0













1 1 J

0 0 0





 (20)

∫

dr Pkl(r) r
2 Pnili(r)

∫

dr′ Pnf lf (r
′)Pnili(r

′)
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and coupled the IKF to the total angular momentum and its projection:

∑

m,m′

CJM
1m,1m′Mmm′(k0, k1, θ1) ≡ MJM(k0, k1, θ1)

The second Born amplitude (7) is to be added to the first Born amplitude:

〈ψf(k)|fB1|Ψ0〉 =

√
4π

k1/2

∑

Jlm

eiδliJ−lYlm(k̂)YJMJ
(q̂)







lf J l

mf MJ m





 Ĵ DlJf(q, E) (21)

where a reduced first Born matrix element

D
(1)
lJf(q, E) =

∑

nili

Cnili(−1)li l̂







l J li

0 0 0





 (22)

∫

dr PEl(r) jJ(qr)Pnili(r)
∫

dr′ Pnf lf (r
′)Pnili(r

′)

Unlike the dipole-only second Born term, we include all numerically significant multipoles

to the first Born amplitude. Exchange terms obtained by swapping the continuum state k

and the discrete state f are included in Eqs. (19), (20) and (22) but not shown for brevity.

The matrix elements (7) and (21) are calculated with the channel function ψf (k). When the

close-coupling final state Ψf(k2) is constructed from the channel functions, as prescribed by

Eq. (16) , these matrix elements should be integrated with the half-on-shell T -matrix [14].

B. Validity of the optical limit

As we already mentioned, Franz and Altick [24] took the dipole approximation for the

second Born amplitude to its dipole limit. Here we demonstrate that this approximation is

too crude and needs to be corrected. We make a partial wave expansion of the q-dependent

part of the second Born operator:

f̂B2a ∝
∫

dΩk exp(iq0r) exp(iq1r
′) q−2

0 q−2
1 (23)

∝ (4π)2
∑

ll′
il+l′

∫

dΩkjl(q0r)jl′(q1r
′)YJM

ll′ (q0, q1) q
−2
0 q−2

1

Here we introduced a bipolar spherical harmonics [26]

YJM
ll′ (q0, q1) =

∑

mm′

CJM
lm,l′m′Ylm(q0)Ylm(q1)

Another second Born operator f̂B2b will have a similar expansion in which r = r′.
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0k1k
Θ k

0
k q

1

q

FIG. 1: Vectors of the momentum

transfer in the second Born process.

As we restrict ourselves to the dipole terms l = l′ = 1, the total momentum J = 0 or 2. In

the optical limit, j1(qr) = qr/3 and we are able to separate the spatial r, r′ integration and

the angular k̂ integration in the second Born term. To justify this approximation we rely on

a very rapid fall of the q−2
0 q−2

1 factor. A typical configuration of the vectors k0, k1 and k is

exhibited in Fig. 1. As the scattering angle of the fast projectile is usually small, the vectors

k0 and k are almost collinear. For most orientations of the vector k both vectors q0 and q1

are large, of the order of k,k0, and the cut-off factor q−2
0 q−2

1 is small indeed. However, in a

narrow angular range near θ � = 0, both q0 and q1 small and the cut-off factor is inefficient.

Here the validity of the optical limit will depend on how far the radial integration over r, r ′

should be extended.

To investigate this matter in more detail we explore the ratio of the two radial functions

z(r) = P (r)/R(r) where

P (r) =

1
∫

−1

d cos θ � j1(q0r)j1(q1r)YJ0
11 (q0, q1)q

−2
0 q−2

1 (24)

R(r) =
r2

9

1
∫

−1

d cos θ � YJ0
11 (q0, q1)q

−1
0 q−1

1 .

These functions contain the azimuthal angle integrals of the full dipole term and with its

optical limit, respectively. We choose MJ = 0 as this term will be leading due to an

approximate axial symmetry. The ratio z(r) is shown in Fig. 2 for J = 0 and J = 2. We

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

J=0
J=2
P1s
P1s
P1s

FIG. 2: Deviation from the optical limit measured as ratio

z(r) = P (r)/R(r) shown as thin and thick solid lines for J = 0

and 2, respectively. The kinematics of Avaldi et al. [21] is chosen

with an impact energy of 570 eV. The He atom orbitals P1s, P2s

(positive half-wave) and P2p from the MCHF ground state are

shown on the same radial scale.
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see that the ratio is indeed close to unity for very small r < 1 a.u. but then it rapidly

falls off, the J = 0 term being effected particularly strongly. In the same figure we show,

for illustration, the radial orbitals from the helium atom ground state calculated in the

multi-configuration Hartree-Fock (MCHF) approximation. We see that the radial extent

of these orbitals, especially P2p, is such that the radial factor is significantly below unity

which indicates significant overestimation of the second Born term taken to the optical limit,

particularly in the monopole channel.

To counter this deficiency of the present formalism but to retain a convenience of the

separate q and r integrations, we propose the following computational scheme. We add the

factor z(r) to the radial integral
∫

dr Pkl(r) r
2 Pnili(r) in the reduced matrix element (20).

Similarly, we introduce a factor z(r, r′), calculated with the same expressions (24) but r 6= r′,

into the reduced matrix element (19). As all the radial orbitals entering Eqs. (19-20) are

defined on a standard radial grid ri, we have to calculate a vector zi and a matrix zij only

once and then use them in all subsequent radial integrations.

III. RESULTS AND DISCUSSION

A. Ionization with excitation

Electron-impact ionization-excitation of He leading to the n = 2 excited state is a very

convenient test case. For this process, a large volume of experimental and theoretical data

exists which can be used to calibrate our model. Dupré et al. [20] reported their ionization-

excitation measurement at E0 ' 5.5 keV and E2 = 5, 10 and 75 eV. The first Born results

for the two lowest electron energies of 5 and 10 eV are well below the experiment and

only for the 75 eV case is agreement with experiment satisfactory [3, 4]. The second Born

calculations [5, 6] are somewhat closer to experiment but significant discrepancies still exist

for the two lowest ejected electron energies. Nevertheless, these calculations provide us with

a useful benchmark to test our model.

In Fig. 3 we show our first and second Born results for the experiment of Dupré et al.

[20] along with the R-matrix calculations with pseudostates (RMPS) by Fang and Bartschat

[6]. Except for the lowest ejected electron energy of 5 eV, both our first and second Born

results are very close to those produced by the RMPS model. This agreement is satisfying
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FIG. 3: Fully resolved triply differential cross-section

(TDCS) of the ionization-excitation of He leading to the

n = 2 excited state. Kinematics corresponds to the ex-

perimental setup of Dupré et al. [20]. CCC calculations in

the first and second Born models are shown by the dashed

and dotted lines, respectively. Analogous calculations in

the RMPS model [6] are shown accordingly by the thin and

thick solid lines. The energy of the ejected electron E2 = 5,

10 and 75 eV from top to bottom panels.

since the CCC and RMPS models rely on different set of approximations. The RMPS model

does not restrict the second Born term to the dipole contribution. Instead, it reduces the

integration over the energy of the projectile in the intermediate state to a single on-shell

point, i.e. only the imaginary part of the integral (7) is taken. In our model, both the real

and imaginary parts of the integrals (7) and (13) are included. Although, the imaginary

part is indeed systematically larger then its real counterpart.

In the case of the lowest 5 eV energy, the first Born calculations in the CCC and RMPS

models disagree. This is most likely due to a very strong sensitivity of the cross-section

to the ejected electron energy which falls into the region of the autoionizing resonances

[27]. It is therefore not surprising that our second Born results deviate from those of the

RMPS method. Nevertheless, the direction and the amount of change caused by the second

Born correction is similar in both calculations. We should stress that the second Born

corrections are generally small at such a large impact energy as 5.5 keV. We will make a

similar observation for the double ionization process at the same impact energy.

The ionization-excitation experiments of Avaldi et al. [21] were performed at a much lower

incident energy (0.6–1.5 keV) than those of Dupré et al. [20]. Consequently, much stronger

second Born effects were theoretically prediced for this kinematics [5, 6]. Therefore, this
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FIG. 4: TDCS of the ionization-excitation of He corre-

sponding to the experimental setup of Avaldi et al. [21].

The energy of the scattered/ejected electron pair E1/E2 is

570/10, 570/40 and 1500/20 eV from top to bottom pan-

els. The RMPS calculations [6] with full and dipole only

second Born term are shown by thick and thin solid lines,

respectively.

kinematics provides us with a more challenging test to assure the accuracy of our model. In

Fig. 4 we show our first and second Born calculations for various kinematics of the experiment

of Avaldi et al. [21] in comparison with RMPS calculation of Fang and Bartschat [6]. The

CCC first Born results are almost identical to those of RMPS and both calculations are

shown as a single dashed line. The second Born results in the RMPS model are shown

with all the multipoles included (thick solid line) as well as the dipole-only second Born

term (thin solid line). The CCC model is only available with the dipole-only second Born

contribution and it is shown by the dotted line. We see that both dipole models produce

very close results. Therefore the difference between CCC and RMPS is primarily due to

limitation of the former to the dipole contribution to the second Born term. The difference

between the first and second Born results is much larger than the difference between the

dipole-only and all-monopoles-included second Born calculations. This indicates that the

dipole contribution is indeed leading in the second Born term.
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B. Double ionization be electron impact

Having tested the accuracy of our approach we are in a position to apply the second

Born CCC model to double ionization processes. We start with double ionization of He

by electron impact which can now be studied experimentally with fully resolved kinematics

of all three electrons involved in the collision, the process known as the (e,3e) reaction.

We begin comparison with experiment by selecting the highest incident energy of 5.5 keV

reported in a series of publications by Lahmam-Bennani and co-workers [8, 14, 28]. In these

experiments, all three electrons were bound to the scattering plane and the fully-resolved

five-fold differential cross-section (FDCS) was measured as a function of the azimuthal angles

of the two ejected electrons θ2, θ3.

R

-q

B

+q

FIG. 5: FDCS of (e,3e) on He at E0 = 5.5 keV and

E2 = E3 = 10 eV. The top panel - first Born calcula-

tion, middle panel - second Born calculation, bottom panel

- experiment of Taouil et al. [28]. The cross-sections are ex-

hibited as filled contour plots with the escape angles θ2 and

θ3 shown on the axes. The areas of large cross-section are

indicated by darker shades of grey. The first Born FDCS

has a q symmetry axis indicated as a straight line. Only

the experimentally accessible angular range is shown.

In Fig. 5 and 6 we present our first and second Born calculations for the ejected electron

energies of E2 = E3 = 10 eV and E2 = E3 = 4 eV, respectively. We display the data as

density plots with the angles θ2, θ3 shown on the axes and the FDCS indicated by various

14



shades of gray, the darker shade representing a larger cross-section. As the double ionization

events are fairly rare, statistics of the (e,3e) experiments is usually limited and the error

bars are quite large. In this situation, the 2D density plots give a clearer view of the data as

compared to one-dimensional cuts through the fixed angles θ2 or θ3 as was used by Lahmam-

Bennani and co-workers. The sign convention of the present experiment is that the scattering

angle of the projectile is positive θ1 > 0 and the momentum transfer angle is negative θq < 0.

This choice, however, is not universal and other (e,3e) experiments considered in this paper

have opposite sign convention θq > 0. To avoid confusion, we always mark the direction of

the momentum transfer q when showing our results.

R

-q

B

+q

FIG. 6: Same as in Fig. 5 for E0 = 5.5 keV and E2 = E3 =

4 eV. Experiment is reported in Ref. [14].

Because of a large incident energy and a low momentum transfer, the experiments of

Lahmam-Bennani and co-workers can be conveniently analyzed in comparison with a simpler

process of double ionization by photon impact known as the (γ,2e) reaction [8]. This analysis

is particularly transparent when the data are viewed as 2D density plots [7, 15]. The two-

peak cross-section pattern displayed in Figs. 5 and 6 is formed by the dipole selection rules
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(rigid in (γ,2e) but somewhat relaxed in low-q (e,3e)) and the exchange symmetry of equal

energy electrons which excludes the parallel emission θ2 = θ3. In the case of (γ,2e), when the

momentum transfer is vanishing, the two peaks are identical. At finite q, these two peaks

can be distinguished as binary (marked B) and recoil (marked R). In the binary peak,

the sum of the ejected electron momenta K = k2 + k3 is aligned with the +q direction

whereas in the recoil peak the K vector is pointed approximately to the −q direction. In

the first Born model, the momentum transfer vector q provides a natural symmetry axis

to the cross-section which is indicated as a straight line in Figs. 5 and 6. On this line, the

two electrons are ejected symmetrically on the opposite side with respect to the momentum

transfer direction θ2 − θ � = −(θ3 − θ � ). In the CCC implementation of the first Born model,

the binary peak is somewhat larger than the recoil one. It is just the reverse in the first

Born model based on the asymptotically exact Coulomb wave functions (BBK) [7].

As is seen on the middle panel of Figs. 5 and 6, the second Born corrections remove the

symmetry with respect to the momentum transfer direction pushing the binary and recoil

peaks to the opposite side of the q̂ axis. Apart from this small shift, no appreciable change

can be seen in the FDCS. Unfortunately, the experimental data have limited statistics as

well as restricted angular range to support or reject these theoretical findings unambigu-

ously. At 10 eV ejected electrons energy, the binary peak seems to be at the right position

but the recoil peak is significantly misplaced. This displacement, however, cannot be stated

categorically since the theoretically predicted angular position of the recoil peak is not ac-

cessible experimentally. At 4 eV ejected electrons energy, the binary peak in the experiment

is shifted much stronger from the q̂ axis as compared to the theory. The recoil peak is either

missing due to a narrow accessible angular range, or too weak and misplaced, as compared

with the calculation.

A more definitive comparison with experiment can be performed at a lower incident energy

of 2 keV where the second Born effects become stronger. The (e,3e) measurements at this

energy were reported by Dorn et al. [15, 16]. This group employed the COLTRIMS method

which allowed, in principle, to sample the full angular range of the two ejected electrons.

The only limitation was imposed by the time-of-flight technique which excluded detection

of the two ejected electrons arriving at the detector at close times (the so-called detector

dead time). This arrival, however, was not very likely and only the area of a relatively small

cross-section was omited from experiment.

16



B

R

q

R

B

+

q

+

FIG. 7: FDCS of (e,3e) on He at E0 = 2 keV and E2 = E3 =

5 eV. Experiment is reported in Ref. [15]. Straight dotted

lines in the experimental plot indicate the nodal lines due

to the dipole selection rules. The angular range which is

not affected by the detector dead-time is encircled by solid

lines. The width of a filled circle on the q- symmetry line

indicates experimental uncertainty of the direction of the

momentum transfer.

In Fig. 7 we show the first and second Born calculations for E0 = 2 keV and E2 = E3 =

5 eV in comparison with the experimental data of Dorn et al. [15]. Here the full angular

range of θ2, θ3 allows to display two pairs of the binary (B) and recoil (R) peaks which are

symmetric due to indistinguishability of the two ejected electrons. In the first Born model

(top panel), all the peaks are symmetric relative to the momentum transfer axis, shown as

a solid line. More intensity goes into the binary peak whereas the recoil peak is weaker

and has a slightly elongated shape. When the second Born corrections are included (middle

panel), the binary peak looses much of its intensity which is transferred to the recoil peak.

Both peaks, especially the recoil one, are displaced relative to the momentum transfer axis.

Displacement of the recoil peak is clearly seen in the experiment (bottom panel). The binary

peak remains approximately on the momentum transfer line. Its possible displacement could

be masked by the experimental uncertainty in the momentum transfer direction (indicated

by the width of the filled circle on the bottom panel). The experiment generally supports

predictions of the second Born model except for the relative intensity of the B and R peaks
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which have about the same strength.
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+
q

R

B

R
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+

FIG. 8: Same as in Fig. 5 for E0 = 2 keV and E2 = E3 =

5 eV. Experiment is reported in Ref. [15].

When the ejected electron energy is increased to E2 = E3 = 20 eV, the first Born

calculation predicts nearly all the intensity going to the binary peak (see top panel of Fig. 8).

This is so because the binary peak is enhanced by its proximity to the Bethe ridge where

k2 + k3 ' q. As in the previous case of E2 = E3 = 5 eV, inclusion of the second Born

corrections transfers intensity from the binary peak to the recoil peak and shifts both peaks

relative to the momentum transfer axis (middle panel of Fig. 8). This shift is seen in the

experiment (bottom panel of Fig. 8), but the binary peak remains much more intense than

the recoil one.

Finally, we consider the case of a very low incident energy of E0 = 0.5 keV [18]. As

can be expected from the previous analysis of ionization-excitation processes, at such a low

incident energy the second Born effects become very strong. And indeed, as is seen from

Fig. 9, the second Born corrections completely transform the FDCS pattern. The binary

peak is all but disappear and both peaks are shifted strongly from the q symmetry line. The
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experimental cross-section dispays a very similar pattern.

q
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B

+

B

R

q

+

B

R

FIG. 9: Same as in Fig. 5 for E0 = 0.5 keV and E2 = E3 =

5 eV. Experiment is reported in Ref. [18].

C. Double ionization by proton impact

The most prominent effect of the second Born corrections is the charge dependence of

the particle impact ionization. The first Born amplitude is proportional to the projectile

charge Z, the second Born amplitude is proportional to Z2 and their cross-product term

in the cross-section is proportional to Z3, i.e. it changes its sign when the charge of the

projectile is reverted. That is why one expects to observe the difference between the particle

and antiparticle induced ionization cross-sections. The counterpart of the (e,3e) would be

positron induced double ionization. This reaction cannot be realized at present. However,

the proton impact double ionization is now feasible with fully resolved kinematics.

Fischer et al. [19] reported FDCS of the proton impact ionization of He at the projectile

velocity V0 = 15.5 a.u. A similar velocity V0 = 12.2 a.u. was used in the (e,3e) experiments
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on He by Dorn et al. [15] and this allowed a straightforward comparison. The count rate

was much lower in the proton induced double ionization and, to accumulate statistically

significant data, Fischer et al. [19] had to accept all equal energy electron pairs with E2 =

E3 < 25 eV binned into large intervals of the momentum transfer qmin < q < qmax. To make

a comparison with electron impact double ionization, they also binned the (e,3e) data in a

similar manner. When compared with each other, the proton data showed clear difference

from their electron counterparts. The proton FDCS exhibited more first Born-like behavior

with a very prominent binary peak nearly symmetric with respect to the direction of the

momentum transfer.

To simulate the proton impact FDCS, we simply change the sign with which the first

and second Born amplitudes interfere. That would amount to the positron impact double

ionization in which the positronium formation and annihilation is neglected. In Fig. 10 we

show our first and second Born calculations for the positron impact FDCS in comparison

with the experimental data of Fischer et al. [19] taken at the lowest momentum transfer

slice from 0.2 to 0.8 a.u. We cannot simulate larger momentum transfers since our dipole

approximation relies on a small q. We represent the experimental interval of the momentum

transfer by a single point q = 0.6 a.u. To investigate an ejected electrons energy dependence

we performed two calculations at E2 = E3 = 5 and 20 eV. Unlike in the case of electron

impact double ionization, we did not find significant difference between the second Born

results at these two energies. In Fig. 10 we present the E2 = E3 = 20 eV calculation only.

The influence of the second Born effects is relatively weaker in the case of proton impact

ionization as compared to (e,3e) under similar kinematical conditions (see Fig. 8). The

Binary peak remains the dominant feature. The recoil peak is displaced from the q-symmetry

line to the direction opposite as compared to the electron impact case. However, unlike in

(e,3e), the recoil peak remains a weak feature relative to a very prominent binary peak. This

predictions of theory are generally supported by experiment.

The authors of Ref. [19] interpreted this apparent closeness of the proton impact double

ionization to the first Born regime by classical arguments. They speculated that the posi-

tively charged projectile would pull the target electron away from its parent nucleus shaking

the second electron into the continuum, thereby increasing the probability of a clear binary

peak. Our quantum mechanical calculations do not support this scenario. Except for their

relative sign, the first and second Born amplitudes are exactly the same for the electron and
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FIG. 10: FDCS of positron impact ionization of He at E0 =

2 keV (V0 = 12.2 a.u), q = 0.6 a.u. and E2 = E3 = 20 eV.

Top panel - first Born calculation, middle panel - second

Born calculation, bottom panel - experiment on proton im-

pact ionization with V0 = 15.5 a.u, 0.2 < q < 0.8 and

E2 = E3 < 25 eV[19]. The solid line indicates the sym-

metry around the momentum transfer direction. This di-

rection varies in the experiment and an average position

is shown. The thick solid bar indicates possible deviation

from this average position. The angular range which is not

affected by the detector dead-time is encircled by dashed

lines. The dipole nodal lines are shown as in Fig. 7.

proton impact, even though, the electron is pushing and the proton is pulling the target

electron from its parent ion. Taken in separation, both amplitudes generate exactly the

same double ionization cross-section with a positively and negatively charged projectiles.

It is the interference of the first and second Born amplitudes which creates the difference

between the electron and proton impact. This is a purely quantum effect and it cannot be

interpreted classically.

IV. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper we describe a theoretical model of charged particle impact ionization-

excitation and double ionization based on the CCC representation of the final state with

two active electrons. The novelty of this model is inclusion of the second Born processes

in which the projectile interacts with the target repeatedly, ejecting two target electrons

in sequence. We employ a number of approximations to treat the second Born amplitude,

most notably, the dipole approximation which restricts the orbital momentum exchange be-
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tween the projectile and the target to two dipole interactions. This approximation allows us

to perform an analytical angular integration over the momentum of the projectile between

these two interactions. The use of the analytical, rather than numerical, integration speeds

up the computations considerably.

To assure the accuracy of the model, we make a comparison with well established theo-

retical and experimental data on the electron impact ionization-excitation of He leading to

the n = 2 final state. As a benchmark, we use the RMPS theoretical results, both with the

full and the dipole-only second Born term. The difference between these two calculations is

not exceeding 30% and this gives us an indication of a typical accuracy of our model.

Having tested our model, we apply it to the electron and proton impact double ionization

of He in kinematics of recent experiments. The (e,3e) experiments are chosen with the pro-

jectile energy ranging from 5.5 keV down to 0.5 keV. The first and second Born calculations

indicate that the second Born effects vary from very weak to very strong across this incident

energy range. The statistical quality of the experimental data at the highest incident energy

does not allow to test predictions of the model unambiguously. The COLTRIMS data at the

projectile energy of 2 keV, and especially at 0.5 keV, support our theoretical findings. The

model also predicts accurately a strong deviation between the proton and electron impact

double ionization at the same projectile velocity. This difference is attributed to the quan-

tum interference of the first and second born amplitudes. We find this explanation more

satisfactory rather than classical interpretation based on the direction of the force exerted

by the projectile on the target electron.

Although we applied the model to He, the simplest two-electron target, the model can

easily accommodate more complex atoms such as Be and Mg by employing the frozen-core

approximation [29]. Other atomic targets such as outer valence shells of noble gas atoms

can be treated in a similar way [30]. To improve the accuracy of the model, it would be

beneficial to go beyond the dipole approximation and to treat the second Born amplitude

in full. This would also allow to describe the large q processes. The work in this direction

is currently underway.

In a broader context, it would be desirable to abandon the Born approximation alto-

gether and to treat the four-body Coulomb final state non-perturbatively. Within the CCC

formalism, this would require construction of a channel function build as a product of a

Coulomb wave and two pseudostates. Some preliminary results in this directions have been
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reported by Plottke et al. [31].
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