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We study the effect of spin flip on tunneling ionization in the attoclock settings.

Our study is based on a fully relativistic approach in which we seek a numerical so-

lution of the time dependent Dirac equation (TDDE). We find that spin flip during

strong field ionization significantly increases the attoclock offset angle, indicating

longer tunneling delay relative to electrons with no spin flip. To interpret our nu-

merical findings, we conduct additional modeling within the perturbative Breit-Pauli

approach, which allows us to elucidate the role of different relativistic mechanisms.

We show that the spin-orbit interaction is mainly responsible for the spin flip, rather

than interaction with the magnetic component of the laser field. We further discuss

the dynamic mechanisms of the spin flip effect, suggesting that it takes place while

the electron is still bound. Our findings indicate that the attoclock can be used to

investigate electron spin flip dynamics during the tunnel ionization process.

I. INTRODUCTION

It has long been recognized that relativistic effects such as electron spin reversal (spin-flip

or SF) can occur in atomic or molecular photoionization for moderate laser fields intensities

[1]. In the following years, the electron SF dynamics have been studied on the attosecond

time scale in the context of single photon absorption [2–4]. In this case, spin-orbit (SO)

effects can manifest themselves in the Wigner time delay of atomic photoemission, which

can be extracted using linear streaking [5–9]. The SF process is explicitly recognized in

these studies [4, 7, 9].

On the other hand, spin-flip dynamics during the strong field ionization is less understood
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theoretically, and has not been investigated experimentally, although SF effects are believed

to be an important part of the tunneling dynamics [19]. Attosecond angular streaking,

known as attoclock, allows to resolve the dynamics of strong field tunnel ionization on the

attosecond time scale [10, 11]. While the interpretation of the attoclock measurements of

tunneling time is still a topic of debate [12–15], the attoclock remains the main tool for time-

resolving attosecond dynamics of tunneling electrons [16, 17]. More recently, the attoclock

has been used to investigate K-shell photoemission delays in ionization of molecules with

attosecond X-ray pulses produced at the X-ray Free Electron Laser (XFEL) at LCLS [18].

Here, we propose to investigate the impact of the electron SF on the attoclock offset

angle. By comparing this offset angle to that of electrons which do not undergo a SF, one

can extract an additional delay associated with the SF process. To this end, we consider

the process of tunneling ionization of the hydrogen and heavier atoms driven by circularly

polarized laser pulses in the intensity range of 1014 W/cm2. We model this process by

solving the time-dependent Dirac equation (TDDE). We focus our attention on the photo-

electron momentum distribution (PMD) in the plane of laser polarization. We derive radially

integrated PMD and determine its angular offset relative to the electric field direction at the

instant of tunneling. In the spirit of attoclock, such an offset is related with the tunneling

time. We demonstrate that said angular offset is significantly affected by the SF process. By

conducting further perturbative Breit-Pauli simulations, we disentangle various relativistic

SF channels and attribute the observed effect to the SO coupling. In the meantime, the

magnetic component of the laser field plays a negligible role in the SF process.

The rest of the paper is organized as follows. in Sec. II we outline our TDDE formal-

ism IIA and perturbative Breit-Pauli approach II B. Our main results are summarized and

discussed in Sec. III. Conclusions are drawn and further directions are outlined in Sec. IV.

Atomic units with ℏ = 1, e = 1, m = 1, and c ≈ 137 (here e and m are charge and mass

of the electron, c- speed of light) are used throughout the paper.
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II. THEORY

A. Time-dependent Dirac framework

We seek the solution of the TDDE using the procedure described in earlier works [20, 21].

For convenience, we recapitulate below the main features of the procedure, emphasizing the

differences of the present calculation using a circularly polarized (CP) laser pulse and the

work [21] where a linearly polarized driving laser pulse was considered.

We solve the TDDE for an atom in the field of a laser pulse

i
∂Ψ(r, t)

∂t
= ĤΨ(r, t) , (1)

where Ψ(r, t) is a four-component Dirac bispinor, Ĥ is the Hamiltonian operator:

Ĥ = Ĥatom + Ĥint (2)

with

Ĥatom = cα · p̂+ c2(β − I) + IV (r) (3)

and

Ĥint = cα ·A (4)

In Eq. (3) α =

 0 σ

σ 0

, β =

 I 0

0 −I

, I =

 I 0

0 I

, σ are Pauli matrices, 0 and I are

2× 2 null and identity matrices, and c is the speed of light. We subtract from the field-free

atomic Hamiltonian (3) the constant term Ic2 corresponding to the rest mass energy of the

electron to make the correspondence with the non-relativistic picture more transparent. The

atomic potential V (r) in Eq. (3) describes the target atom in the single active electron (SAE)

approximation. We will be considering several targets below, with the SAE potentials given

in [22].

We use the standard attoclock geometry with a CP laser pulse. The laser pulse propagates

in the x− direction. The vector potential in Eq. (4) is, therefore, of the form

A(r, t) = ŷhy(ζ) + ẑhz(ζ) , (5)

where ζ = t− x

c
, and ŷ and ẑ are the unit vectors along the y− and z− axes, respectively.

The functions hy(ζ) and hz(ζ) have compact support, they are zero outside the interval
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(0, T ). The parameter T has a meaning of the total pulse duration, as measured at any

given spatial point.

Within the interval (0, T ) the functions hy(ζ) and hz(ζ) are given by the expressions

hy(ζ) =
E0

ω
√
2
sin2

(
Ωζ

2

)
sin(ωζ)

hz(ζ) =
E0

ω
√
2
sin2

(
Ωζ

2

)
cos(ωζ) ,

where Ω = 2π/T , and E0 is the peak electric field strength of the pulse. We will use below

ultra-short pulses with the total duration of one optical cycle (o.c.) T = 2π/ω corresponding

to the base laser frequency ω. With this choice Ω = ω in Eq. (6). All the calculations

performed below used the base frequency ω = 0.057 a.u. (wavelength of 800 nm).

To solve the TDDE numerically we represent the solution as a series in basis bispinors:

Ψ(r, t) =
Jmax∑

j
l=j±1/2

j∑
M=−j

ΨjlM(r, t) , (6)

where

ΨjlM(r, t) =

 gjlM(r, t)ΩjlM(n)

fjlM(r, t)Ωjl′M(n)

 , (7)

and the two-component spherical spinors are defined as

ΩjlM(n) =

 CjM

l M− 1
2

1
2

1
2

Yl,M− 1
2
(n)

CjM

l M+ 1
2

1
2
− 1

2

Yl,M+ 1
2
(n)

 .

Here CjM

lm 1
2
µ
are the Clebsch-Gordan coefficients, Ylm(n) are the spherical harmonics and

n = r/r. The angular momenta l and l′ in Eq. (6) must satisfy the triangle relation

l + l′ = 2j.

To account for the non-dipole effects due to the spatial dependence of the laser field,

the vector potential (5) is expanded in a series of spherical harmonics at every step of the

integration procedure.

Spatial variables in the differential equations for the radial functions gjlM(r, t) and

fjlM(r, t) were discretized on a grid with the step size δr = 0.05 a.u. The radial vari-

able was restricted to an interval (0, Rmax), with Rmax = 200 a.u. The maximum value of

the total momentum j in Eq. (6) was Jmax = 40 which, for the presently considered field
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intensities in the range of 1014 W/cm2 is sufficient to achieve convergence of the expansion

(6).

The chosen computational strategy [20, 21] results in a set of the coupled differential

equations for the radial functions gjlM(r, t) and fjlM(r, t) in Eq. (7), describing propagation

of the TDDE in time. This system was solved using the matrix iteration method (MIM)

[23].

The spin-resolved photoelectron momentum distribution (PMD) is calculated by project-

ing the Dirac bispinor Ψ(r, T ) at the end of the pulse on the set of the ingoing relativistic

scattering states Ψ−
µ,p(r) [24]. These states describe the ionized electron with a given po-

larization, i.e. the spin direction in the electron’s rest frame µ, and the asymptotic electron

momentum p.

In the non-relativistic limit, the TDDE with the vector potential described by Eq. (5) and

Eq. (6) corresponds to the commonly used attoclock setup [12, 25]. In this setup, the target

atom described by the SAE potential V (r) is interacting with a CP laser pulse with the

base frequency ω and the peak field strength E0. The presently employed TDDE approach

differs from the non-relativistic picture in several aspects. The most important feature is the

possibility of the description of relativistic spin-related effects, in particular the SF effect,

which is the main goal of the present work. We retain the coordinate dependence of the

vector potential in our calculations. This way we account for non-dipole effects in the laser-

atom interaction, which lead to the break-down in the conservation of canonical momentum

[12, 26]. For the presently considered pulse intensities of the order of 1014 W/cm2, non-dipole

effects are not important. However, we retain these effects in our calculations for the sake

of completeness and because it is not always easy to disentangle various relativistic effects

in the Dirac framework. Meanwhile, such effects can be easily separated in the simplified

semi-relativistic treatment based on the Breit-Pauli Hamiltonian. This offers a convenient

means to study the contributions of various relativistic effects. We will use this possibility

to interpret the results of the TDDE calculations. We will present below some results of the

calculations using the Breit-Pauli approach. The theoretical framework of this approach is

described in the next section.
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B. Breit-Pauli framework

The semi-relativistic Breit-Pauli approach takes into account the relativistic effects up

to the order of 1/c2 [27]. Breit-Pauli Hamiltonian has been recently used to investigate

spin-orbit effects in strong field ionization with linearly polarized light [28]. The Breit-Pauli

formulation is based on a systematic expansion of the TDDE in powers of 1/c [24]. Such an

expansion leads to the following Hamiltonian describing the atom-laser field system:

Ĥ =
(p̂+A(t))2

2
+ V (r) + V̂so + V̂smf , (8)

where

V̂so =
1

2c2r

dV (r)

dr
l̂ · ŝ (9)

is the SO interaction, and

V̂smf =
1

c
H · ŝ (10)

is an operator describing interaction of electron spin and magnetic field of the pulse. The

vector potential in Eq. (8) is a non-relativistic limit of the relativistic definition given by

Eq. (5) and Eq. (6), which we obtain taking the limit c → ∞.

The Hamiltonian (8) acts in the Hilbert space of the two-component spinor wave-

functions, which we represent as

Ψ(r, t) =
lmax∑
l,m,µ

flmµ(r, t)Ylm(r)vµ . (11)

Here vµ are two-component spinors, Ylm(r) is the spherical function, and flmµ(r) are found

by solving the time dependent Schrödinger equation for the wavefunction (11) with the

Hamiltonian (8). The computational details are rather similar to those used to solve the

TDDE, and we will not dwell on them.

We retain in the expression for the Breit Hamiltonian (8) only relativistic corrections

involving the electron spin. The complete Breit Hamiltonian contains a number of other

terms of the order of 1/c2, such as the kinematic term taking into account corrections

due to the relativistic kinematics, and the Darwin term [27]. We omit these terms in the

calculations in the Breit-Pauli framework which we present below. Our goal in performing

these calculations was merely illustrative. By switching on and off the interactions (9) and

(10) containing the electron spin, we can gauge their role in the SF process.
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In the essentially non-relativistic regime with the field parameters under consideration,

the Breit-Pauli results are typically very close to those in the TDDE approach. One could,

in principle, adopt an entirely perturbative treatment, based on the complete Breit-Pauli

Hamiltonian which takes into account relativistic effects up to the order of 1/c2 and adding

relativistic corrections describing the leading non-dipole effects in the atom-field interaction,

as we did in [29]. Such a calculation would be, however, technically more challenging and less

transparent conceptually. As one can see from Eq. (9) the SO interaction operator behaves

as r−3 for small r for the systems with the Coulomb core. This operator is, therefore,

not self-adjoint unless we take a proper care of the domain of its definition. For instance

we can require it to act only on the wave functions vanishing at the origin, so that its

matrix elements converge. We coped with this problem in the present calculation using the

Breit-Pauli framework by introducing a regularization for the SO interaction operator (9),

making its singular behavior at r = 0 less severe. This, however, introduces an additional

regularization parameter in the calculation, which makes the whole procedure not an entirely

ab initio one. The Dirac framework, on the other hand, is, of course, a completely ab initio

approach.

III. RESULTS AND DISCUSSION.

We will concentrate below on the np orbitals of various target atoms. With this choice

we will clearly see the difference between the patterns of the angular attosecond streaking

of the electrons which underwent the spin reversal (SF) and those which did not. We shall

demonstrate that this difference comes in a large part from the SO interactions during the

initial stage of the evolution of the atom in the external field. At this stage, the electron

is close to the atomic core and the SO interaction (9), which falls fast with the distance, is

the strongest. For an ns-state, the expectation value of the SO interaction operator (9) is

zero. Thus we concentrate the initial states of the p symmetry. Furthermore, if we wish to

track the electron spin direction, it is better to analyze the evolution from the states with a

definite electron spin in the initial state. This dictates our choice of the initial states of the

p symmetry with the total momentum j = 3/2 and its projection on the z-axis mj = 3/2.

Clearly, in such a state the electron spin is aligned along the z− axis, and has a projection

ms = 1/2 on this axis.
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We start presentation of our results with the atomic hydrogen in the 2p3/2 initial state.

Figs. 1 and 2 display, respectively, the PMD P (py, pz) in the polarization (y, z) plane and

the radially integrated PMD:

P (ϕ) =

∫
P (py, pz)dp . (12)

Here p =
√

p2y + p2z with py = p cosϕ and pz = p sinϕ in the presently employed polar

coordinates. In Figure 2, as well as further in Figure 4, Figure 6, and Figure 8 below, we

scale the PMD for the SF ionization to be able to show both distributions on the same plot.

By inspecting the PMD presented in Figure 1, we observe that ionization accompanied by

the SF process leads to an additional main lobe rotation as compared to ionization without

spin reversal. In the attoclock experiments, such an additional angular rotation would be

interpreted as a delay of the SF ionization relative to the ionization without the spin reversal.

This behavior seems to be a general feature of the spin flip tunneling ionization, as can

be surmised from the results shown in Figure 1-Figure 6, for ionization of hydrogen (Figure

1,Figure 2), hydrogen-like ion with nuclear charge Z = 2 (Figure 3,Figure 4), and boron and

gallium (Figure 5,Figure 6) targets. The relative time delays can be estimated as τ = θ/ω,

where θ is the angle of the additional main lobe rotation of the SF PMD as compared to

the PMD of ionization without spin reversal. From the data shown in Figure 1-Figure 6 we

obtain the time delays of 126 as and 192 as (hydgrogen for the field strengths E0 = 0.0534

a.u., and E0 = 0.04 as, respectively), 422 as (hydrogen-like ion with Z = 2), 214 as (boron),

and 318 as (gallium).
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a) Without spin flip, E0 = 0.0534 a.u. b) With spin flip, E0 = 0.0534 a.u.

c) Without spin flip, E0 = 0.04 a.u. d) With spin flip, E0 = 0.04 a.u.

FIG. 1: PMD of hydrogen in the polarization plane, the 2p3/2 initial state with ω = 0.057 a.u.

a) E0 = 0.0534 a.u. b) E0 = 0.04 a.u.
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FIG. 2: Radially integrated PMD in the polarization plane, hydrogen in the 2p3/2 initial state,

ω = 0.057 a.u.
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To elucidate the reason for such a behavior we perform addition calculations using the

Dirac and the Breit-Pauli (BP) frameworks for a model screened hydrogen atom described

by the potential:

V (r) = −1 + 3e−r

r
(13)

with the energy of the 2p3/2 initial state E = −0.351274 a.u. In doing so, we employ the BP

Hamiltonian (8) which includes the relativistic corrections responsible for the electron spin

dynamics. The terms in the Hamiltonian corresponding to these corrections can be switched

on and off, providing a convenient means of gauging their relative importance.

Figure 7a and Figure 7b show the PMD’s obtained using the Dirac framework for the

ionization with and without the spin reversal. As in the previous examples, we see the PMD

for the SF ionization that is rotated with respect to the ionization without the spin reversal.

The plot of the radially integrated PMD shown in Figure 8, derived from Figure 7a and

Figure 7b, allows to estimate this rotation angle as θ ≈ 72 degrees, which can be interpreted

as a relative time delay τ = θ/ω ≈ 533 as.

Figure 7c and Figure 7d show results of the calculations using the BP framework, with

the SO interaction (Figure 7c) and the spin-magnetic field interaction (Figure 7d) switched

off, respectively. We performed the BP calculation for the initial 2p state of the potential

(13) with ml = 1 and µ = 1/2, which is a non-relativistic counterpart of the relativistic 2p

state with j = 3/2 and mj = 3/2 that we used in the TDDE calculations. One can observe

that, upon switching off the SO interaction, the PMD for the SF ionization as rendered by

the BP calculation is virtually indistinguishable from the PMD for the ionization without

the SDF as given by the TDDE calculation.

This observation is yet more clearly illustrated in Figure 8 where we display the radially

integrated angular distributions for the TDDE and various versions of the BP calculations.

We notice that the results of the TDDE calculation for the ionization without the spin

reversal are very close to those of the BP calculation with the SF and SO interaction (9)

set to zero. In this version of the BP calculation, only the spin-magnetic field interaction is

taken into account. These results clearly suggest the following scenario of SF ionization in

the case when the SO interaction is absent. All the ionized electrons are born in the spin

up state, coinciding with the spin orientation of the initial state of the target. The reversal

of the spin direction in this scenario may occur only during the subsequent evolution of the

system under the influence of the magnetic field of the pulse. In this scenario, therefore,
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there is no tunneling time delay of the SF ionization with respect to the ionization without

spin reversal.

Conversely, if we switch off the interaction of the electron spin with the pulse mag-

netic field (results marked as H = 0 in Figure 8) we see virtually no difference in the SF

angular distribution comparing to the case of the BP calculation when both the SO and

spin-magnetic field interactions are retained in the Hamiltonian (8).

Thus we can conclude that the SO interaction (9) is the main actor which is responsible

for the observed effect of the delay of the SF ionization relative to the ionization without

the spin reversal.

To elucidate the particular mechanism of the SO effect, we note that the SO interaction

operator (9) falls fast with the distance from the origin. Its action, therefore, is limited to the

immediate vicinity of the atom, and only states localized in this vicinity might participate

in producing the observed effects of SF ionization.

In Figure 9 we show the decomposition of the BP final state wave-function. The Figure

shows the norms Nlmµ = ||flmµ|| of the coefficients in expansion (11) for various l,m, µ. We

show only the largest contributions for the spin up and spin down components of the wave

function. We also show contributions of the bound 2sµ and 2pµ states to these norms. As

one can see, in all the cases shown in Figure 9, the bound 2s and 2p states contributions by

far dominate the norms Nlmµ for both the spin up and spin down states.

This observation suggests the following scenario of the spin down states production. The

initial 2p state with m = 1 and µ = 1/2 is coupled to the other spin up states 2lm by

the electric field of the pulse, which produces Rabi-like oscillations, populating all the 2lmµ

states with µ = 1/2. Next, the SO interaction comes on the stage. In the coupling scheme

lmµ that we use matrix, the elements ⟨lmµ|Vso|l′m′µ′⟩ of the SO interaction (9) are non zero

only when l = l′ and m+ µ = m′ + µ′ [27]. The SO interaction, therefore, couples 2p01
2
and

2p1− 1
2
states producing the spin down states. The spin down 2p1− 1

2
state, in its turn, is

coupled by the electric field of the pulse to the 2lm spin down states. Then, the Rabi-like

oscillations induced by the field populate the manifold of the spin down 2lm states.

The 2pl− 1
2
states undergo further the ’normal’ spin-conserving non-relativistic tunneling

ionization producing the spin down ionized electrons. As we see from Figure 9, the two main

actors might be the spin down 2p0 and 2p1 states which have comparable populations.

To illustrate the plausibility of this scenario we show in Figure 10 results which we obtain
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within the following simplified model. In the discussed scenario, the spin down ionization

can be roughly pictured as tunneling ionization from a superposition of the states with

energy separation approximately equal to the frequency of the Rabi-like oscillations. For

the employed field strength E0 = 0.0534a.u. and the n = 2 states we can estimate this

frequency as Ω ≈ 0.1 a.u. In Figure 10 we show results obtained if we use the strong field

approximation (SFA) [30, 31] to compute the PMD for the ionization from a superposition

of the two states separated by the energy interval ∆ = 0 (Figure 10a) and ∆ = 0.1 a.u.

(Figure 10b). One can see that we indeed obtain the rotated PMD in the second case in

agreement with the results of the TDDE calculations we discussed above.
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a) Without spin flip, E0 = 0.0534 a.u. b) With spin flip, E0 = 0.0534 a.u.

FIG. 3: PMD in the polarization plane, ω = 0.057 a.u., hydrogen, Z = 2, 2p3/2 initial state
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FIG. 4: Momentum integrated PMD in the polarization plane, ω = 0.057 a.u., hydrogen, Z = 2,
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a) Without spin flip, E0 = 0.03 a.u., B b) With spin flip, E0 = 0.03 a.u., B

c) Without spin flip, E0 = 0.04 a.u., Ga d) With spin flip, E0 = 0.04 a.u., Ga

FIG. 5: PMD in the polarization plane, ω = 0.057 a.u., Boron and Gallium targets, 2p3/2 initial

state

a) E0 = 0.0534 a.u., B b) E0 = 0.0534 a.u., Ga
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FIG. 6: Momentum integrated PMD in the polarization plane, ω = 0.057 a.u., Boron and Gallium,

2p3/2 initial state
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a) Without spin flip, TDDE b) With spin flip, TDDE

c) With spin flip, BP, Vso = 0 d) With spin flip, BP,H = 0

FIG. 7: PMD in the polarization plane, ω = 0.057 a.u., E0 = 0.0534 a.u., screened hydrogen,

TDDE and BP calculations, 2p3/2 initial state
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IV. CONCLUSION

In this work we study systematically the effect of the spin reversal (spin-flip) on the

process of tunneling ionization in the attoclock setting. We consider the hydrogen and

heavier atoms in their initial np states driven by short circularly polarized laser pulses. As

the marker of the SF effect, we study the photoelectron momentum distribution (PMD) in

the plane of the laser polarization. We also consider the radially integrated PMD which

allows to determine its angular offset relative to the electric field direction at the instant

of tunneling. In the spirit of attoclock, we can relate this angular offset with the tunneling

time delay τ = θ/ω, after accounting the the long-range Coulomb interaction following

ionization. The SF process generally increase this delay relative to the ionization process

free from the spin reversal. We attribute the SF effect wholly to the SO interaction whereas

the interaction of the photoelectron spin with the magnetic field of the driving field has

virtually no SF effect.

The question of a non-zero tunneling time is hotly debated at the moment [12–15]. Sim-

ulation and measurement of this process on atomic hydrogen returns an essentially zero

or negative tunneling time, within experimental and numerical accuracy [32, 33]. On the

other hand, an experiment measuring tunneling time of Rb atoms through an optical barrier

reported 0.61 milliseconds for the lowest energy at which tunneling was observed [35]. At

the heart of the attoclock tunneling time debate is the question of absolute time (or time

zero) when tunneling begins, which is assumed to be at the peak of the laser field. Here, we

bypass this question by comparing the relative delay between the electrons which experience

a spin flip and those that do not. This is similar to the linear streaking approach, which

always extracts a relative (rather than the absolute delay) by comparing streaking traces

from two different ionization events.

In the context of the attoclock measurements of strong field ionization, our modelling

indicates that the SF process results in an increased angular offset. This angular offset seems

to be due to the time-delay associated with the spin flip prior to tunneling. Spin-resolved

attoclock experiments can therefore be used to investigate spin-flip dynamics during the

strong field ionization process. Such experiments can take advantage of the fact that strong

field ionization with circularly polarized light produces spin polarization by predominantly

selecting counter-rotating electrons [34]. Using momentum gating to filter out corotating
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electrons, it should be possible to isolate SF electrons in the angular-resolved photoelectron

measurements obtained by the attoclock.

Recent experiments highlight the role of electron SF in photoionization of atoms [4]

and molecules [9] using Reconstruction Attosecond Beating by Interference of Two-photon

Transitions (RABBIT) measurements. However, SF dynamics have not been experimentally

observed in strong field ionization. Our work suggests that a signature of SF during the

tunnel ionization of atoms may be observable using the attoclock set-up. Extending this to

molecules is more challenging due to the dependence of the attoclock interpretation on the

initial state, which is harder to accurately describe in molecules compared to atoms [36, 37].

Another notable observation is that the SF effect is related to the Rabi-like oscillations.

Our simulations return the PMD at the end of the photoelectron propagation to the detector.

It would be tempting to trace this propagation and to resolve the Rabi oscillations in real

time.
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