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We provide an evidence for non-zero electron velocity at the tunnel exit in strong

field atomic ionization. Our investigation is based on the analysis of a suitably

chosen correlation function which describes correlations between the two observables:

the longitudinal electron velocity and the appearance of the photoelectron in the

continuum at the end of the laser pulse. The results of the correlation function

analysis that we perform are confirmed by the calculations using the quantum orbits

method.

I. INTRODUCTION

Electron tunneling induced by a strong laser field is a fundamental process which under-

pins a range of important technological innovations such as high-order harmonic generation

[1], photoelectron holography [2] and creation of metastable atomic states [3]. When the

tunneling occurs in a slow varying laser field, the photoelectron leaves the tunnel adiabat-
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ically with a zero velocity in the direction of the laser field [4]. The adiabatic tunneling

constitutes the basis of the so-called simple man model (SMM) [5, 6]. In this model it is

assumed that the electron emerges into the continuum with zero longitudinal velocity and

its subsequent motion is guided by the the laser field alone.

When variation of the laser field is fast, the tunneling occurs nonadiabatically and the

photoelectron can leave the tunnel with a non-zero longitudinal velocity [7]. This effect has

been studied in the literature, see e.g. [8, 9]. Recently, nonadiabatic tunneling received

a considerable attention in the context of attosecond angular streaking, the experimental

technique also known as the attoclock [10–12]. Nonadiabatic tunneling affects significantly

interpretation of the attoclock measurements [13, 14], see also recent reviews on the attoclock

technique [15–18].

Experimental studies of nonadiabatic tunneling employ various laser field configurations.

The attoclock technique is based on close-to-circular [10–12] or bi-circular [19, 20] laser fields.

Similar studies can be conducted with elliptical [21–23] or counter-rotating two-color linear

fields [24, 25]. Photoelectron holography can also be employed to probe the longitudinal

momentum at the tunnel exit [26]. In many of these studies, a non-zero longitudinal velocity

is inferred by comparing the experimental results with the classical trajectory Monte Carlo

(CTMC) simulations [27–30]. While this comparison is convincing, it lacks the direct access

to the photoelectron velocity at the tunnel exit. Closer insight is provided by more advanced

theoretical approaches [31–34].

In the present work, we offer a very direct and graphical evidence of a non-zero tunneling

velocity. In our study we employ the correlation analysis of strong field atomic ionization

developed in our preceding works [35–38]. This analysis is based on suitably constructed

two-time correlation functions that serve particular needs. In the present application, the

correlation analysis isolates the continuous part of the photoelectron wave packet and maps

its velocity during the ionization process.

II. METHOD

Our approach allows to overcome one of the main difficulties in studying temporal de-

velopment of the ionization process. The very notion of the ionization event or the ionized

electron is not very easy to formulate in the framework of the conventional quantum me-
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chanics (QM). The physical reason for that is quite simple, for the times inside the laser

pulse, when the wave-packet describing ionized electron has not left the atom, it is difficult

to unambiguously separate the part of the wave-function describing ionized electron from

the total wave-function of the system. The well-known Strong Field Approximation (SFA)

and Perelomov-Popov-Terent’ev (PPT) methods [4, 7, 39–42] introduce such a separation

by representing the solution of the time-dependent Schrödinger equation (TDSE) in the

integral form using the Dyson equation and dropping out the term corresponding to the un-

perturbed atomic wave-function [43]. Such a strategy, though offering great insight, is not

entirely rigorous, the separation of the parts of the wave-function done this way depending

on the gauge used to describe atom-field interaction. This fact is responsible for the lack of

the gauge-invariance of the SFA or PPT approaches [43].

We use an alternative approach. It is based on the fact that the wave-packets correspond-

ing to the ionized and the non-ionized parts of the wave-function become well separated after

the end of the laser pulse. We formulate, therefore, the questions about temporal behavior

of different observables in the following way: what would be the probability of detecting

a given value of the observable inside the laser pulse, provided that the electron is found

in the ionized state at the end of the laser pulse. The question, formulated in this way,

looks like classical conditional probability problem. There is, however, a difference with

the classical probability theory. Indeed, the notion of the conditional probability cannot be

unambiguously formulated in quantum mechanics [44–46]. We can, however, use the next

best thing, a correlation function characterizing correlation between the two observables at

different moments of time. Such a correlation function can be naturally defined using the

Heisenberg representation.

III. FORMALISM

We write the correlation function between the observables A and B in the following form:

C(A(t1)B(t2)) = 〈φ0|ÂH(t1)B̂
H(t2)|φ0〉

= 〈ÂΨ(t1)|Û(t1, t2)B̂Ψ(t2)〉 , (1)

Here the operators ÂH(t) and B̂H(t) corresponding to the observables A and B are taken

in the Heisenberg representation, |φ0〉 is the initial state of the system. For the purpose
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of a practical calculation we use a more familiar Schrödinger form given in the second line

of Eq. (1), where Ψ(t) is the time-dependent Schrödinger wave function describing atom in

the laser field, and Û(t, 0) is the evolution operator driving the quantum evolution of the

system, so that Ψ(t) = Û(t, 0)φ0.

We have shown that by choosing for B̂H(t) the Heisenberg form of a suitable Schrödinger

projection operator describing the final electron state one can study the dynamical devel-

opment of ionization processes [36, 37] or frustrated tunneling ionization [38]. The reason

why this approach works can be understood readily from the Schrödinger form in the second

line of Eq. (1). Let us choose in this formula B̂ = P̂ , where P̂ is the projection operator

on the continuous spectrum of the field-free atomic Hamiltonian, and t2 = T1, where T1 is

the moment of time when the laser pulse is gone. According to the well-known projection

postulate of the QM [47], the vector |P̂Ψ(t2)〉 represents, apart from an unimportant nor-

malization factor, the state of the system immediately after the measurement that has found

the electron in an ionized state.

In the present application, we define the observable A in Eq. (1) by means of the projection

operator:

P̂v0 = |φv0〉〈φv0| , (2)

where the components of the ket vector |φv0〉 in the momentum representation are:

φv0(p) = 〈p|φv0〉 = Ne−a2(p−ezv0)2 . (3)

Here N is a normalization factor and the parameter a defines the resolution with which we

look at the evolution of the ionized electron in the momentum space. In all the calculations

that we report below, we employ the length gauge and, therefore, we need not make a

distinction between the electron momentum and velocity.

The correlation function (1) with thus defined observables A and B specifies a quantum-

mechanical amplitude of finding an electron in the state |P̂v0Ψ(t1)〉, with the momentum

space wave function peaking around the value ezv0 at the moment t = t1, on the condition

that the electron is found in the ionized state after the end of the pulse. It offers is, therefore,

an opportunity to track evolution of the ionized electron velocity for times inside the laser

pulse. In the calculations below, we used the value a = 8.3, which allows us to probe the

ionized electron velocity with the resolution of approximately 0.1 a.u.
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Practical numerical calculation of the correlation function (3) necessitates multiple solu-

tions of the TDSE. For this purpose we employed a TDSE solver tested in our previous works

[48–50]. The calculation is a relatively straightforward, albeit computationally demanding

procedure, which follows the steps we described in detail in the previous works [35–38].

All the calculations reported below have been performed with a linearly polarized gaussian

pulse. The electric field of the pulse E(t) = −∂A(t)/∂t is defined in terms of the vector

potential:

A(t) = −êz

E0

ω
e−αζ2 sin(ωt) , (4)

where ζ = t− T/2, T = 2π/ω is an optical cycle (o.c.) corresponding to the base frequency

ω. The majority of the calculations reported below were performed for the base frequency

ω = 0.057 a.u. (the wavelength of 800 nm). We employ the value α = 0.0076 in the Eq. (4),

which corresponds to the pulse intensity FWHM of 175 as. The electric field and vector

potential of the pulse thus defined are shown in Fig. 1. Similar single oscillation pulses with

circular polarization were used in numerical attoclock simulations [51–54]. Even though such

pulses are hard to realize experimentally, they provide a greater transparency in interpreting

theoretical results.
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FIG. 1: Electric field of the pulse.

In the present application, the use of an ultrashort laser pulse gives us the following

advantages. First, it allows us to concentrate below on the contributions of only three main

maxima of the electric field of the pulse, located correspondingly at t = 0.377T , t = 0.5T ,

and t = 0.623T . Second, for the pulse (4) with the parameter α specified above, the values of
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E(0) and E(T ) are of the order of 10−11 a.u., which allowed us to restrict the solution of the

TDSE describing evolution of the system to the interval (0, T ) to diminish the computational

cost.

IV. RESULTS

Using the tools and computational strategies described above we perform a correlation

analysis of tunneling ionization of various target atoms at different laser pulse strengths.

Our results are exhibited in Figs. 2-5 where we display the absolute value of the correlation

function. As we mentioned above, apart from an overall normalization factor, the correlation

function we study can be related to the quantum-mechanical amplitude of finding an electron

localized in the velocity space near particular value vz at the moment t inside the laser pulse,

on the additional condition that the electron is found in the ionized state after the end of the

pulse. Thus constructed correlated function provides us, therefore, with the means to follow

the ionized electron trajectory in the velocity space as the ionization process develops.

The trajectories obtained as a results of the quantum calculation can be compared with

the classical trajectories we obtained by performing CTMC simulations. In doing these

simulations we used the standard prescription of the CTMC calculations [27, 28]. The

classical trajectories were launched at the local field maxima with the corresponding initial

values for the spatial coordinates defined by the Field Direction Model (FDM) [28]. Initial

values for the velocities in the CTMC calculations were chosen to better reproduce location

of the maxima of the correlation function patterns. We impose an additional condition on

the initial velocities in these simulations, imposed by the symmetry of the pulse, requiring

that the initial velocities for the CTMC trajectories launched at the secondary maxima

(t = 0.377T and t = 0.623T ) of the pulse be equal.

We start our analysis with the model Yukawa atom bound by the short range potential

V (r) = −1.903e−r/r and having ionization potential of 0.5 a.u. The absolute value of

the correlation function for the Yukawa atom is displayed in Fig. 2 for two different field

strengths. The patterns displayed in both panels of Fig. 2 can be easily understood using

the SMM. Within this model, electron emerges into the continuum with zero velocity. The

longitudinal velocity of an electron ionized at a particular moment t0 inside the pulse is

therefore given at a later time t by the difference of the vector potentials A(t) − A(t0). If
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FIG. 2: Absolute values of the correlation function for electron velocity in the Yukawa potential.

Dash lines in the plots show the CTMC trajectories for the electrons launched at the local maxima

of the electric field at t = 0.377T (white), t = 0.5T (yellow), and t = 0.623T (cyan), respectively,

and the vector potential of the pulse (black).

FIG. 3: Absolute values of the correlation function for the electron velocity in the hydrogen atom.

Dash lines in the plots show the CTMC trajectories for the electrons launched at the local maxima

of the electric field at t = 0.377T (white), t = 0.5T (yellow), and t = 0.623T (cyan), respectively.

we concentrate on the electrons emitted at the local maxima of the pulse where A(t0) is

near zero, as shown in Fig. 1, we can expect the electron velocity to mimic closely the

vector potential A(t) of the pulse. This is indeed precisely what the both panels of Fig. 2
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FIG. 4: Absolute values of the correlation function for electron velocity in the helium atom. Dash

lines in the plots show the CTMC trajectories for the electrons launched at the local maxima of

the electric field at t = 0.377T (white), t = 0.5T (yellow), and t = 0.623T (cyan), respectively.

FIG. 5: Absolute values of the correlation function for electron velocity in the argon atom. Dash

lines in the plots show the CTMC trajectories for the electrons launched at the local maxima of

the electric field at t = 0.377T (white), t = 0.5T (yellow), and t = 0.623T (cyan), respectively.

exhibit. Black dash lines in both panels show the vector of the pulse. One can see that the

correlation pattern indeed follows very closely the vector potential as the SMM suggests.

The dash white, yellow and cyan lines visualize the classical trajectories for the electrons

launched at the three local maxima of the electric field at t = 0.377T , t = 0.5T , and
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TABLE I: Initial velocities v0 (a.u.) at the local field maxima in various targets at different field

strengths.

Peak field strength E0, a.u.

0.0534 0.1 0.0534 0.1 0.0534 0.1 0.0534 0.1

t/T Yukawa Hydrogen Helium Argon

0.377 0.005 0.006 0.302 0.442 0.197 0.251 0.299 0.391

0.500 -0.001 0.006 -0.384 -0.796 -0.694 0.685 -0.696 -0.695

0.623 0.005 0.006 0.302 0.442 0.197 0.251 0.299 0.391

t = 0.623T , respectively. The initial velocities in the CTMC simulation were chosen, as

described above, to make the trajectories follow as closely as possible the location of the

maxima of the correlation function pattern. As can be seen from Table I, these velocities

are very close to zero.

We expand our analysis further to real atoms in which the departing photoelectron expe-

riences the Coulomb drag of the parent ion. The correlation analysis results are presented

in Figs. 3-6 for the hydrogen, helium and argon atoms at different pulse strengths and base

frequencies. Ionization from the helium and argon atoms is described within the single ac-

tive electron (SAE) approximation with the effective potentials provided in [55]. Unlike the

short-range Yukawa potential, these potentials have a long range Coulomb tail. We see that

the ionization scenario visualized in Figs. 3-6 is different from the one for the short-range

Yukawa atom. In no way can the classical CTMC trajectories launched at the field maxima

with zero velocities describe adequately the evolution of the correlation function. We had to

use non-zero initial velocities in the CTMC simulations to achieve a reasonably good agree-

ment between the pictures provided by the CTMC and the correlation function approaches.

The corresponding velocities v0 are listed in Table I. We see that the sign and the magnitude

of v0 correspond to these parameters of the electric field at the instant of tunneling. As the

peak field strength E0 increases, the corresponding v0 values grow accordingly. It is notable

that the initial velocity depends rather weakly on the target potential. This is so because

the exit point from the tunnel is sufficiently far away from the nucleus where the target

potential assumes its asymptotic Coulomb form −1/r.

For the lower frequency case of ω = 0.02 a.u., shown in Fig. 6b the correlation pattern
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follows the pulse vector potential markedly more closely than for ω = 0.057 (Fig. 6a). This is

an expected behavior, of course, for the non-adiabatic effects are weaker for low frequencies.

FIG. 6: Absolute values of the correlation function for electron velocity for Helium for different

base frequencies of the laser field. White dash lines in the Figure show vector potential of the

pulse.

V. DISCUSSION

A. Role of the Coulomb potential

Figs. 3-6 and Table I show that the initial electron velocities are similar for the hydrogen,

helium and argon atom. It is the long range Coulomb tail that, most likely, is responsible

for this effect, while the short range of the atomic potential plays relatively minor role.

To support this conjecture, we conduct additional simulations with a soft core Coulomb

potential V (r) = − 1.3√
r2 + 0.4

whose parameters are chosen so that ionization potential of

this system is 0.5 a.u. The results of this additional simulation are shown in Fig. 7. It

reveals that the initial electron velocities are very similar to that of the hydrogen atom

exhibited in Fig. 3.

To study the Coulomb tail effect in more detail, we perform a series of calculations with
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FIG. 7: Absolute values of the correlation function for electron velocity for the soft core Coulomb

potential

a cutoff Coulomb potential V (r) = −f(r)

r
where:

f(r) = 1, r < r0 (5)

f(r) = 3(r0 + 1− r)2 − 2(r0 + 1− r)3, r0 ≤ r ≤ r0 + 1

f(r) = 0, r > r0 + 1 .

Eq. (6) defines a Coulomb potential for r < r0 while it is switched off smoothly in the interval

(r0, r0 + 1). Results of the calculations for different values of the cutoff parameter r0 are

presented in Fig. 8. As we can see, the correlation patterns shrink in vertical direction with

decreasing r0, until for r0 = 3 a.u. we practically recover the curve mimicking the vector

potential which we saw in Fig. 2a for the short range Yukawa potential. Thus, we confirm

that the long range Coulomb tail extending to sufficiently large distances from the center is

a necessary prerequisite for a non-zero initial longitudinal velocity of the tunneling electron.

We can have a further glimpse at how this velocity develops by examining the quantum

mechanical amplitude of the tunneling process. Clearly, the non-zero initial velocity may

appear only during the so-called sub-barrier motion of the electron. Within the framework of

the SFA and the saddle point method (SPM), this stage of the ionization process is described

as a motion in imaginary time originating at the saddle point ts [43]. The latter is a solution
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FIG. 8: Absolute values of the correlation function for electron velocity for the cutoff Coulomb

potential.

to the SPM equation:

(p+A(ts))
2 + 2Ip = 0 . (6)

The trajectory of the tunneling electron minimizes the semi-classical action

S(ts, t,p) =

t
∫

ts

(

(p+A(u))2

2
+ Ip

)

du . (7)

In Eq. (7) p, A and Ip are respectively the electron momentum, the field vector potential and

the target ionization potential. The path in the complex t-plane describing the sub-barrier
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motion is usually chosen as a segment of the straight line ts,Re(ts) descending from the

saddle point ts on the real time axis. Eq. (7) is the key equation of the SFA, and it neglects

completely effects of the atomic potential. In the SFA framework, the electron velocity

along the path ts,Re(ts) is purely imaginary, which reflects the classical impossibility of the

sub-barrier motion. At the moment t = Re(ts) which is interpreted as the moment of the

tunnel exit, the longitudinal electron velocity is zero [43].

Effects of the atomic potential which might give a non-zero longitudinal electron velocity

can be included using the quantum orbit analysis of the electron motion [56]. Unlike the

SFA, which relies on the electron propagator neglecting the influence of the atomic potential,

Lai et al. [56] employ the ab initio path integral representation of the electron propagator.

Evaluation of the corresponding path integral leads to a modified saddle point equation:

(p(ts) +A(ts))
2 + 2Ip + 2V (r(ts)) = 0 , (8)

which includes an atomic potential V (r).

The expression defining the action corresponding to the sub-barrier electron motion on

the time interval (ts, t1) with t1 = Re(ts) can be written as [56]:

S(r1(t1), v1(t1), ts) = Ipts −
t1
∫

ts

(

ṗ(t) · r(t) + Ĥ(r(t),p(t), t)
)

dt , (9)

where

Ĥ(r(t),p(t), t) =
(p(t) +A(t))2

2
+ V (r(t)) (10)

is the Hamiltonian. In Eq. (9) v(t) = p(t) + A(t) and r(t) are electron velocity and

coordinates on the sub-barrier interval of motion, V (r) is the atomic potential extended

analytically to complex coordinate values. The calculations are performed for the soft core

Coulomb potential with V (r) = − 1.3√
r · r + 0.4

that we considered above.

Equations of motion corresponding to the Hamiltonian (10) are:

dp(t)

dt
= −∇V (r)

dr(t)

dt
= p(t) +A(t)

(11)
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We solve these equations in the sub-barrier region of the electron motion using the following

procedure. We pick a moment of time t1 (the tunnel exit point) on the real axis and

assume that the electron coordinate r(t1) and velocity v(t1) at the tunnel exit are real.

We then propagate the equations of motion (11) in time along the segment (t1, t1 + iτ)

(with real positive τ) parallel to the imaginary time axis, verifying if the saddle point

equation (8) is satisfied at any point along the trajectory. If such a point is found for a

particular τ , we call the point ts = t1 + iτ the saddle point. Simultaneously, we compute

the action (9) along the trajectory. This procedure is repeated for a grid of the exit times

t1 ∈ (T/2 − T/10, T/2 + T/10) around the main maximum of the pulse (4), and grids of

the real exit coordinates r(t1) and velocities v(t1). Because of the symmetry of the problem

we need not solve the full 3D equations of motion (11), we have to solve only the two-

dimensional version of these equations, assuming that the motion is confined to the (x, z)−
plane.
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FIG. 9: Longitudinal velocity distribution obtained using Eq. (12) for the soft core Coulomb

potential.

Thus we obtain the actions S(r(t1), v(t1), ts) describing the sub-barrier motion for the

electron trajectories launched at various saddle points ts, with various exit coordinates r(t1)

and velocities v(t1) at the exit time t1 = Re ts.

Smaller values of the imaginary part of the action S(r(t1), v(t1), ts) correspond to more

probable quantum trajectories, the relative weight of the trajectory being dampened by the
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factor e−2Im S [56]. Imaginary part of action S(r(t1), v(t1), ts) provides us, therefore, with

a probability measure for the quantum trajectories with different sets of exit parameters.

Using this measure, we may define an (unnormalized) longitudinal velocity distribution:

P (vz) =
∑

r,vx,ts

exp {−2Im S(r(t1), v(t1), ts)} (12)

The sum in Eq. (12) includes all the quantum trajectories characterized by the set of

parameters r(t1), v(t1), ts, and t1 = Re ts, which we obtain using the algorithm we described

above. One should bear in mind that expression (12) for the velocity probability distribution

has only exponential accuracy and should be regarded as a semi-classical estimate.

The probability distribution (12) obtained for the soft core Coulomb potential with the

parameters we considered above is shown in Fig. 9. We chose the model atom with the soft

core Coulomb potential because the calculations in this case are somewhat easier to perform

than for the hydrogen atom, where the potential has a singularity for the real values of the

coordinates. The results in Fig. 3a and Fig. 7a show that the correlation patterns for the

hydrogen atom and the model atom with the soft core Coulomb potential are pretty similar.

We can, therefore, make a direct comparison of the present quantum orbit calculation and

the correlation pattern for the hydrogen atom in Fig. 3a.

One can see from Fig. 9 that the distribution exhibits two symmetric maxima at the

longitudinal velocities of approximately −0.18 a.u. and 0.18 a.u. The origin of this sym-

metric structure can be traced back to the structure of the equations of motion (11) and

the saddle point equation (8). For the electric field E(t) of the pulse symmetric about the

midpoint t = T/2 of the pulse on the real time-axis, considered as an analytic function of

time, the following equality holds: E(−(t − T/2)∗) = E(t − T/2)∗. It follows then, that

since we start the sub-barrier propagation with real values of the coordinates and velocities

at the real time axis, to every quantum orbit with the exit coordinates r1(T/2 + ∆) and

velocities v(T/2+∆) originating at the saddle point T/2+∆+ iτs with the real positive ∆

and τs, corresponds a quantum orbit with the exit coordinates r1(T/2 − ∆) and velocities

−v(T/2 − ∆) originating at the saddle point T/2 − ∆ + iτs. The actions (9) along these

two quantum trajectories have the same imaginary parts, these trajectories are, therefore,

equally probable.

The results obtained using the quantum orbits method are to be compared with the results
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obtained using the correlation function approach shown in Fig. 3a. The quantum orbits

analysis suggests that there should be two branches in the correlation pattern originating

near the midpoint t = T/2 of the pulse. The positive velocities branch in the correlation

pattern is more difficult to observe, however, as it is masked in the Fig. 3a by the band of the

correlation pattern originating at the first field maximum. We do, however, observe a hint at

the presence of such a structure for the positive velocities, which looks like a discontinuity of

the correlation patterns in Fig. 3a and Fig. 3b near the midpoint t = T/2 of the pulse. The

most probable value of the negative exit velocity as given by the quantum orbits method is

approximately −0.18 a.u., which is in a relatively good agreement with the results shown in

Fig. 3a and Table I for the hydrogen atom. The agreement is not perfect, which is probably

due to the limited accuracy of the expression (12) that we noted above. More importantly,

the general qualitative picture provided by the quantum orbits calculation which is shown

in Fig. 9, confirms the presence of the non-zero longitudinal exit velocities in agreement

with the results of the correlation function analysis.

VI. SUMMARY AND CONCLUSION

In the present work, we investigate the process of nonadiabatic tunneling from an atom

subjected to a very short and intense laser pulse. Our results are based on the correlation

analysis of tunneling ionization in the model Yukawa and the hydrogen, helium and argon

atoms. We analyze the correlation function which links the two observables: the longitudinal

electron velocity and the appearance of a photoelectron in the continuum at the end of

the laser pulse. This approach allows us to single out the ionized wave-packet from the

total wave-function describing evolution of the system and to visualize evolution of the

photoelectron longitudinal velocity in real time as the ionization process develops. For a

model atom bound by the Yukawa potential we find, in agreement with the basic premises

of the SMM model, that the photoelectron emerges from the tunnel with the zero velocity.

For the H, He and Ar atoms bound by a Coulomb potential, the initial velocity at the tunnel

is clearly non-zero and grows in magnitude as the field strength of the laser pulse increases.

We supplement our correlation analysis with an analysis of the sub-barrier electron motion

relying on the quantum orbits method. Results produced by the two methods are in good

agreement. This study allowed us to attribute the non-zero longitudinal velocity at the
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tunnel exit to the long-range Coulomb tail of the asymptotic ionic potential which is absent

in the case of the model Yukawa atom.
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U. Keller, Attosecond Ionization and Tunneling Delay Time Measurements in Helium, Science

322(5), 1525 (2008).

[12] A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-Samha, L. B. Madsen, and

U. Keller, Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in

atoms, Nature Physics 8(1), 76 (2012).

[13] R. Boge, C. Cirelli, A. S. Landsman, S. Heuser, A. Ludwig, J. Maurer, M. Weger, L. Gallmann,

and U. Keller, Phys. Rev. Lett. 111, 103003 (2013).



19

[14] I. A. Ivanov and A. S. Kheifets, Strong-field ionization of He by elliptically polarized light in

attoclock configuration, Phys. Rev. A 89, 021402 (2014).

[15] C. Hofmann, A. S. Landsman, and U. Keller, Attoclock revisited on electron tunnelling time,

J. of Modern Optics 66(10), 1052 (2019).

[16] A. S. Kheifets, The attoclock and the tunneling time debate, J. Phys. B 53(7), 072001 (2020).

[17] U. S. Sainadh, R. T. Sang, and I. V. Litvinyuk, Attoclock and the quest for tunnelling time in

strong-field physics, J. Phys. B 2(4), 042002 (2020).

[18] C. Hofmann, A. Bray, W. Koch, H. Ni, and N. I. Shvetsov-Shilovski, Quantum battles in

attoscience: tunnelling, Europ. Phys. J. D 75, 208 (2021).

[19] P. Ge, M. Han, Y. Deng, Q. Gong, and Y. Liu, Universal description of the attoclock with

two-color corotating circular fields, Phys. Rev. Lett. 122, 013201 (2019).

[20] S. Brennecke, S. Eckart, and M. Lein, Attoclock with bicircular laser fields as a probe of

velocity-dependent tunnel-exit positions, J. Phys. B 54(16), 164001 (2021).

[21] X. Sun, M. Li, J. Yu, Y. Deng, Q. Gong, and Y. Liu, Calibration of the initial longitudinal

momentum spread of tunneling ionization, Phys. Rev. A 89, 045402 (2014).

[22] M. Han, M. Li, M.-M. Liu, and Y. Liu, Tunneling wave packets of atoms from intense ellipti-

cally polarized fields in natural geometry, Phys. Rev. A 95, 023406 (2017).

[23] M. Li, M.-M. Liu, J.-W. Geng, M. Han, X. Sun, Y. Shao, Y. Deng, C. Wu, L.-Y. Peng,

Q. Gong, et al., Experimental verification of the nonadiabatic effect in strong-field ionization

with elliptical polarization, Phys. Rev. A 95, 053425 (2017).

[24] S. Eckart, K. Fehre, N. Eicke, A. Hartung, J. Rist, D. Trabert, N. Strenger, A. Pier, L. P. H.

Schmidt, T. Jahnke, et al., Direct experimental access to the nonadiabatic initial momentum

offset upon tunnel ionization, Phys. Rev. Lett. 121, 163202 (2018).

[25] A. Geyer, D. Trabert, M. Hofmann, N. Anders, M. S. Schöffler, L. P. H. Schmidt, T. Jahnke,
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