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We solve the time dependent Schrödinger equation for a noble gas atom (He and Ne) driven by
an ionizing XUV and dressing IR fields. From this solution we deduce an angular dependence of the
photoemission time delay as measured by the RABBITT (Reconstruction of Attosecond Beating
By Interference of Two-photon Transitions) technique. We use a recent angular resolved RABBITT
measurement on helium [Phys. Rev. A 94, 063409 (2016)] to test and calibrate our theoretical
model. Based on this calibration, we find no significant difference between the time delay in He
measured in the angular integrated RABBITT experiments [J. Phys. B 47, 245003 and 245602
(2014)] and measured or calculated in the polarization axis direction. The angular dependence of
the photoemission time delay of Ne is shown to be qualitatively different from He because of the
different orbital character of the valence 2p orbital. The angular momentum projection dependence
of the time delay in Ne is also investigated.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

A measurable time delay in laser driven atomic ion-
ization has been discovered recently [1, 2]. Since
the first pioneering experiments, the time-delay spec-
troscopy of laser-induced atomic ionization (attosecond
chronoscopy) has become a rapidly developing field [3].
In a recent report, Heuser et al. [4] investigated an an-
gular dependence of the photoemission time delay in he-
lium as measured by the RABBITT (Reconstruction of
Attosecond Beating By Interference of Two-photon Tran-
sitions) technique. The RABBITT technique builds on
the interference of two ionization processes leading to the
same photoelectron state by (i) absorption of ω2q−1 and ω
or (ii) absorption of ω2q+1 and stimulated emission of ω.
Both ionization processes lead to the appearance of a side
band (SB), in between the one-photon harmonic peaks
in the photoelectron spectrum. The sideband magnitude
oscillates with the relative phase between the XUV and
IR pulses [5, 6]

S2q(τ) = A+B cos[2ωτ −C] , C = ∆φ2q +∆θ2q , (1)

where τ = ϕ/ω denotes the phase delay of the IR field.
The term ∆φ2q = φ2q+1 − φ2q−1 denotes the phase dif-
ference between two neighbouring odd harmonics 2q ± 1
that is related to the finite-difference group delay of the

attosecond pulse as τ
(GD)
2q = ∆φ2q/2ω. The additional

term ∆θ2q = θ
(−)
2q+1 − θ

(+)
2q−1 arises from the phase dif-

ference of the atomic ionization amplitude for emission
(−) and absorption (+) paths, respectively. This phase
difference can be converted to the atomic delay

τa = ∆θ2q/2ω = τW + τcc , (2)

which contains the two distinct components [7]. Here τW
is the Wigner-like time delay associated with the XUV
absorption and τcc is a correction due to the continuum–
continuum (CC) transitions in the IR field. The latter

term, τcc, can also be understood as a coupling of the
long-range Coulomb ionic potential and the laser field in
the context of streaking [8, 9].

In the case of helium with only one 1s → Ep photoe-
mission channel, the Wigner time delay τW does not de-
pend on the photoelectron detection angle relative to the
polarization vector. The early investigations of the τcc
correction [7] showed no dependence of τcc over various
angular momentum paths in hydrogen, e.g. the transi-
tions s → p → s and s → p → d showed τcc in excellent
agreement. This would imply that the RABBITT mea-
sured time delay in He should be angular independent.
This assumption was challenged in a recent experiment
by Heuser et al. [4] in which the RABBITT technique was
supplemented with the COLTRIMS (Cold Target Recoil
Ion Momentum Spectroscopy) apparatus. This combina-
tion made it possible to relate the time delay to a specific
photoelectron detection angle relative to the joint polar-
ization axis of the XUV and IR pulses. The finding of
Heuser et al. [4] is significant because the helium atom
is often used as a convenient reference to determine the
time delay in other target atoms. If the RABBITT mea-
surement is not angular resolved, like in the experiments
by Palatchi et al [10] or Guénot et al [11], the angular
dependence of the time delay in the reference atom may
compromise the accuracy of the time delay determination
in other target atoms. However, in the present work, we
demonstrate that the magnitude of the RABBITT sig-
nal is dropping off very rapidly, as cos4 θ away from the
polarization direction and hence the angular integrated
RABBITT measurement on He would return the time
delay very close to that calculated or measured in the
polarization direction.

In the case of Ne and heavier noble gases, both compo-
nents of the measured time delay τa = τW +τcc are angu-
lar dependent. Indeed, for a one-photon transition from
a bound np-orbital, there are two competing s and d con-
tinua which can lead to the angular dependent Wigner



2

time delay τW [12–14]. Because of the propensity rule
[15], the d-channel is strongly dominant except in the
vicinity of its Cooper minimum. Such a minimum is ab-
sent in Ne. So the Wigner time delay should depend on
the emission angle very weakly. Therefore any measur-
able angular variation of the time delay in Ne should be
attributed almost entirely to the τcc component. The lat-
ter arises due to the competition of the CC transitions
d → p or d → f . This competition is analyzed in the
present work.

II. THEORY AND NUMERICAL

IMPLEMENTATION

We solve the TDSE for a helium atom described within
the single active electron (SAE) approximation

i∂Ψ(r)/∂t =
[

Ĥatom + Ĥint(t)
]

Ψ(r) , (3)

where Ĥatom is the Hamiltonian of the field-free atom
with an effective one-electron potential [16]. The Hamil-

tonian Ĥint(t) describes the interaction with the external
field and is written in the velocity gauge

Ĥint(t) = A(t) · p̂ , A(t) = −

∫ t

0

E(t′) dt′. (4)

As compared to the alternative length gauge, this form
of the interaction has a numerical advantage of a faster
convergence.
The vector potential of the APT is modeled as the sum

of 11 Gaussian pulses of altering polarity shifted by a half
of the IR period T = 2π/ω :

Ax(t) =

5
∑

n=−5

(−1)nAn exp

(

−2 ln 2
(t− nT/2)2

τ2x

)

× cos
[

ωx(t− nT/2)
]

. (5)

The amplitude of each pulse is defined as

An = A0 exp

(

−2 ln 2
(nT/2)2

τ2T

)

,

where A0 is the vector potential amplitude related to
the field intensity I = (ω2/c2)A2

0. The XUV central fre-
quency is ωx = 1.378 au = 37.5 eV. The time constants
τx = 0.14 fs and τT = 4.83 fs determine the length of an
XUV pulse and the APT train, respectively. The field
intensity of the APT is chosen at 5×108 W/cm2 and the
XUV frequency ωx ≃ 25ω.
The vector potential of the IR pulse is modeled by the

cosine squared envelope

A(t) = A0 cos
2

(

π(t− τ)

2τIR

)

cos[ω(t− τ)] , (6)

with an intensity of 3× 1011 W/cm2 and pulse duration
of τIR = 14.5 fs. The IR pulse is shifted relative to the

APT by a variable delay 0 ≤ τ ≤ 0.5T . A positive delay,
τ > 0, corresponds to the IR pulse being delayed with
respect to the center of the XUV pulse train. Further,
the laser photon energy is ω = 0.05841 au = 1.59 eV,
which corresponds to a period of T = 2π/ω = 107 au =
2.60 fs. The laser pulse duration is τ = 5.58T = 14.5 fs.
To solve the TDSE, we follow the strategy tested in

our previous works [17, 18]. The solution of the TDSE is
presented as a partial wave series

Ψ(r, t) =

Lmax
∑

l=0
|m|≤l

fl(r, t)Ylm(θ, φ) (7)

with only m = m0 momentum projections retained for
the linearly polarized light. Here m0 refers to the target
orbital: m0 = 0 for He 1s andm0 = 0,±1 for Ne 2p . The
radial part of the TDSE is discretized on the grid with the
stepsize δr = 0.05 a.u. in a box of the size Rmax = 2000
a.u. The number of partial waves in Eq. (7) was limited
to Lmax = 5 which ensured convergence in the velocity
gauge calculations.
Substitution of the expansion (7) into the TDSE gives

a system of coupled equations for the radial functions
flµ(r, t), describing evolution of the system in time. To
solve this system, we use the matrix iteration method
[20]. The ionization amplitudes a(k) are obtained by
projecting the solution of the TDSE at the end of the
laser pulse on the set of the ingoing scattering states of
the target Hamiltonian. Squared amplitudes |a(k)|2 give

the photoelectron spectrum in a given direction k̂ deter-
mined by the azimuthal angle θk.
After collecting the photoelectron spectra from TDSE

in various directions, the SB intensity oscillation with
the variable time delay between the APT and IR fields
is fitted with the cosine function (1) using the non-linear
Marquardt-Levenberg algorithm. The quality of the fit
is very good with the errors in all three parameters not
exceeding 1%.

III. RESULTS

A. Helium

The angular dependence of the parameters A, B and
C in Eq. (1) for the SB20 is shown in Fig. 1. It fol-
lows from the soft photon approximation (SPA) [21] that

the angular dependence of the A = |M
(−)
k

|2 + |M
∗(+)
k

|2

and B = 2Re
[

M
(−)
k

M
∗(+)
k

]

parameters are simple cos4 θ

functions for an initial s-state,

A,B ∝ |J1(α0 · k)|
2|〈f |z|i〉|2 ∝ cos4 θk (8)

Here M
(±)
k

are complex amplitudes for angle-resolved
photoelectron produced by adding or subtracting an IR
photon, respectively. In Eq. (8) we made a linear ap-
proximation to the Bessel function as the parameter
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FIG. 1: (Color online) Angular dependence of the fitting parameters A, B, and C for the SB20 in He. The TDSE calculation is
shown with the filled (red) circles and open (blue) circles, respectively. The insets show the variation of the A and B parameters
near 90◦. The cos4 θk fit to the A and B parameters is displayed with the solid line.

α0 = F0/ω
2 is small in a weak IR field. This simple

dependence fits very well both the A and B parameters.
The only deviation occurs at large angles where the B
parameter becomes negative while cos4 θ always remains
positive (see insets of Fig. 1. The SPA also predicts no
angular variation of the time delay. So angular depen-
dent time delay and alteration of sign of the B parameter
are both signs of breakdown of the SPA.
The group delay τGD of the APT is zero in our

approach since we consider Fourier limited attosecond
pulses by setting φ2q+1 = 0, for all integers q in the fre-
quency comb. Hence the parameter C can be converted
directly into the atomic time delay as τa = C/2ω ac-
cording to Eq. (1). The atomic time delay obtained in
this fashion is given in Table I for the direction along
the polarization axis, which we refer to as the zero an-

gle for photoemission. To connect with Eq. (2) we
also show the breakdown of the atomic delay into the
Wigner time delay τW , which was computed separately
by a one-photon RPAE program [22], and the extracted
continuum–continuum delay τcc which we compare with
an earlier calculation [7]. The discrepancy between the
two CC quantities is reasonably small, less than ten at-
toseconds, even though the present result is obtained for
He whereas the calculation [7] was performed for H. This
reflects a universal nature of the CC correction which is
not sensitive to the target ns orbital. The variation of the
atomic time delay relative to the zero angle polarization
direction ∆τ = τa(θk) − τ(0◦) is displayed in Fig. 2 for
SB 18 to 24. In the same figure, we plot the experimental
data and the lowest order perturbation theory (LOPT)
calculation from Heuser et al. [4].
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FIG. 2: (Color online) Variation of the time delay relative to the zero angle ∆τa = τa(θk)− τa(0
◦) for SB 18, 20, 22, 24 (from

left to right). The TDSE results are shown with the (green) asterisks. The LOPT calculation and experimental data from
Heuser et al. [4] are visualized with the (blue) open circles and error bars, respectively.

In the experimentally accessible angular range of 0 to
65◦, the angular variation of the time delay is rather
small. It progressively decreases from about 60 as in
SB18 to less than 30 as in SB24. It is expected that
for higher sidebands it will be even smaller as the CC

phases for the s and d waves become indistinguishable in
the high photon energy limit. Given the rapid drop of the
magnitude A and B parameters in Eq. (1) with the de-
tection angle as cos4 θk, the angular averaged time delay
τ̄a will be very close to that recorded in the polarization
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FIG. 3: (Color online) Angular dependence of the fitting parameters A, B, and C for the SB20 in Ne. The TDSE calculation is
shown with the filled (red) circles and open (blue) circles, respectively. The cos4 θk fit to the A and B parameters is displayed
with the (red) solid line and the fit with actuall anisotropy parameter β = 0.3 is shown by the thick solid line. The TDSE
result for He is also shown for parameter C.

TABLE I: Atomic time delay τa and its various components
τW and τcc in the ẑ direction for various side bands.

SB nω E τa (as) τW (as) τcc (as)
n eV eV TDSE RPAE (i) (ii)

18 27.9 3.3 -85 231 -316 -315
20 31.0 6.4 -61 60 -121 -129
22 34.1 9.5 -46 30 -76 -83
24 37.2 12.6 -37 16 -53 -57

(i) Atomic delay minus Wigner delay

(ii) Fit to exact hydrogen calculation [7]

direction of light at the zero degree angle τa(θ = 0) .
This allows to use the helium atom as a convenient stan-
dard both in the angular specific streaking and angular
averaged RABBITT time delay measurements.
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FIG. 4: (Color online) Variation of the atomic time delay relative to the zero emission angle ∆τa = τa(θk)− τa(0
◦) for SB 18,

20, 22, 24 (from left to right) in neon. The TDSE results are shown with the (red) filled circles. The analogous calculation
for He is displayed with the (blue) asterisks. The angular variation of the Wigner time delay ∆τW = τW (θk) − τW (0◦) in
one-photon ionization is shown with open circles.

B. Neon

The angular dependence of the parameters A, B and
C in Ne for the SB20 is shown in Fig. 3. This varia-
tion is qualitatively similar to that in He as displayed in
Fig. 1. However, unlike in He, where the cos4 θk depen-

dence fits both the A and B parameters very well, in Ne
this dependence deviates noticeably from the TDSE cal-
culation. This is so because the squared dipole matrix
element |〈f |z|i〉|2 ∝ 1+βP2(cos θk) deviates from cos2 θk
for β 6= 2 which is the case of the Ne 2p shell where for
the SB20 β ≈ 0.3 [19]. In this case a more accurate fit is
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provided by the second Legendre polynomial expression
as shown in Fig. 3.
Even though the A and B parameters decrease very

rapidly with the detection angle, this decrease is not as
rapid in Ne as prescribed by the soft photon approxima-
tion. The C parameters both in Ne and He experience
the drop of one unit of π. However, in Ne, this drop is
more gradual in comparison with He.
Angular variation of time delay in neon for SB18 to

24 is shown in Fig. 4. The analogous set of He data
is also plotted for the sake of comparison. The angular
dependence of the time delay in Ne is more pronounced
at small angles where the He data are virtually flat. The
flattening of the angular dependence in Ne is also hap-
pening towards the higher order sidebands, but not as
quickly as in He.
As it was mentioned in the introduction, both the com-

ponents of the atomic time delay in Ne can be angular
dependent. However, because of the lack of the Cooper
minimum, the angular dependence of the Wigner time
delay τW should be weak. This dependence is shown in
Fig. 4 in comparison with the angular variation of the
total atomic time delay τa. The Wigner time delay, cal-
culated in the relativistic random-phase approximation
[14] varies noticeably only in the lowest side band and
this variation is significantly smaller that that of the to-
tal time delay in all the sidebands. This indicates that
the angular variation of the measured time delay in Ne
should be attributed almost solely to the τcc component.
The latter arises due to the competition of the CC tran-
sitions d → p or d → f . Unlike in helium, where the two
CC transitions compete strongly only beyond the magic
angle, this competition seems to be noticeable in Ne even
at small angles.
To quantify this competition, we consider the case of

m = 0 projection in the target orbital and adapt the
parametrization of the ionization amplitudes similar to
that suggested in Heuser et al. [4]:

M
(±)
k

∝ Y10(n) + c
(±)
fp eiφ

(±)
fp Y30(n) , (9)

where c
(±)
fp and φ

(±)
fp are the magnitude ratio and phase

difference between the f and p partial wave components
of the absorption (+) and emission (−) amplitudes, re-
spectively. Fitting the angular dependence of the time
delay in the SB18 for m = 0 is shown in Fig. 5. The
values of the fitting parameters are c±fp = 0.39, 1.68

and φ±

fp = 1.65, 0.54 . In comparison in SB20 of He,

c±ds = 0.67, 1.17 and φ±

ds = 0.082, 0.076 . In the high en-

ergy limit of He, c+ds = 1/c−ds =
√

4/5 ≈ 0.89 whereas for

Ne this limit is
√

4/7 ≈ 0.75. The case of Ne seems to
be farther away from the asymptotic limit in which no
angular dependence should be observed. Even more con-
trasting is the phase difference in Ne which is an order of
magnitude larger than in He.
Quite remarkably, the m = 0 angular dependence of

the atomic time delay is very different from that summed
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FIG. 5: (Color online) Angular dependent time delay in neon
for SB18. The full TDSE calculation summed over all the m

projections is shown by the (red) filled circles whereas them =
0 calculation is visualized by the open circles. Parametric fit
to the latter calculation with Eq. (9) is shown by the (blue)
solid line

over all the m =projection. It is dominated by the sharp
drop near the kinematic node of the Y30 spherical har-
monic. This drop is all but disappeared in the angu-
lar dependence summed over all the m-projections be-
cause Y3±1 fill the node. Despite this difference, the
parametrization (9) can still be employed meaningfully
to quantify the competition of the CC transitions d → f
and d → p because their strengths depend only on the
radial integrals.

IV. CONCLUSION

In the present work we studied angular variation of
the atomic time delay in the RABBIT measurement on
helium and neon. We employed a numerical solution
of the time-dependent Schrödinger equation for a single
atomic electron driven by a combination of the XUV/IR
fields with parameters similar to that used in a recent
RABBITT measurement by Heuser et al. [4]. Our re-
sults for He compare favorably with this measurement.
Based on this agreement, we make further predictions for
neon which is yet to be measured in an angular resolved
RABBITT experiment.
In comparison to He, the angular variation of time de-

lay in Ne is more pronounced at small ejection angles
relative to the polarization axis where the He time delay
is essentially flat. This can be explained by a larger phase
difference between the d → f and d → p CC transitions
in the absorption and emission channel. The analogous
phase difference between the p → d and p → s CC tran-
sitions in He is an order of magnitude smaller.
We also analyze the magnitude of the RABBITT sig-

nal in both targets and find it dropping off very rapidly
away from the polarization direction. In He, the RAB-
BITT signal drops as cos4 θk, much faster than the usual
dipole factor cos2 θk. The difference between these two
factors becomes particularly noticeable at large ejection
angles: at θk = 70◦ the one-photon angular factor leaves
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∼ 10% magnitude relative to the maximum whereas the
two-photon factor leaves only ∼ 1%. It is for this rea-
son that Heuser et al. [4] were not able to extend their
measurements beyond the ejection angle of 65◦. However,
because of the same reason, the angular integrated RAB-
BITT measurements on He and Ne in [10, 11] could be
compared directly with the time delay calculated along
the polarization axis. In contrast, the angular varia-
tion of the atomic time delay in Ar was found noticeable
in [10] as the angular averaged calculations were found
much closer to the experiment than that in the polariza-
tion direction.
The angular dependence of the RABBITT time delay

in molecules becomes even more pronounced because of
an additional anisotropy relative to the molecular axis.
This can be seen from a recent theoretical study on the
hydrogen molecular ion [23]. Angular integrated RAB-
BITT experiments have been reported on other molecules

[24] and the work is underway to make this measurement
angular resolved. So extension of the theory to complex
molecules is warranted.
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Himenez Galán, Fernando Mart́ın, Sebastian Heuser,
Claudio Cirelli, Ursula Keller, Marcus Dahlström and
Eva Lindroth for many stimulating discussion. We ac-
knowledge support by the Australian Research Council
in the form of the Discovery grant DP120101805. IA
acknowledges support from the Institute for Basic Sci-
ence, Gwangju, Republic of Korea, under IBS-R012-D1.
Resources of the National Computational Infrastructure
facility were employed.

[1] M. Schultze et al, Science 328(5986), 1658 (2010).
[2] K. Klunder et al, Phys. Rev. Lett. 106(14), 143002

(2011).
[3] R. Pazourek, S. Nagele, and J. Burgdörfer, Rev. Mod.

Phys. 87, 765 (2015).
[4] S. Heuser, A. Jiménez Galán, C. Cirelli, C. Marante,

M. Sabbar, R. Boge, M. Lucchini, L. Gallmann, I. Ivanov,
A. S. Kheifets, et al., Phys. Rev. A 94, 063409 (2016).

[5] H. Muller, Appl. Phys. B 74, s17 (2002).
[6] E. S. Toma and H. G. Muller, J. Phys. B 35(16), 3435

(2002).
[7] J. M. Dahlström et al, Chem. Phys. 414, 53 (2013).
[8] C.-H. Zhang and U. Thumm, Phys. Rev. A 84, 033401

(2011).
[9] R. Pazourek, S. Nagele, and J. Burgdorfer, Faraday Dis-

cuss. 163, 353 (2013).
[10] C. Palatchi et al, J. Phys. B 47(24), 245003 (2014).
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