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We study relativistic effects in time delay of atomic photoionization using an example of the Xe
atom subjected to a circularly polarized electromagnetic pulse. We find that while relativistic effects
play only a fairly small role for both the ionization probabilities and the time-delay of the co-rotating
electron with the same sign of the angular momentum projection as the circularly polarized light,
these effects produce substantial change in the time delay for a counter-rotating electron with the
opposite sign of the angular momentum projection.

PACS numbers: 32.80.Rm 32.80.Fb 42.50.Hz

I. INTRODUCTION

Available experimental techniques such as attosecond
streaking and angular attosecond streaking [1–3] added
a new dimension to the traditional atomic and molecular
spectroscopy - a possibility to follow development of the
photoionization process in time. An essential ingredient
in the attosecond streaking approach is the external in-
frared (IR) field (the probe pulse) which is used to set
a clock that measures timing of the photoionization pro-
cess. Any measuring device (a clock in this case) perturbs
the system, a situation not uncommon in quantum me-
chanics. Presence of the IR field (which in experiments
is in the range of 1011 − 1012 W/cm2) has to be cor-
rectly accounted for. This is not always an easy task,
and the theoretical description of the attosecond streak-
ing technique evolved from the original purely classical
description [4] neglecting influence of atomic or molecu-
lar structure on the electron motion in the IR field, to
various refinements of this picture [5–8], attempting to
provide the level of accuracy necessary to correctly ex-
tract timing information from the experiments.

An altogether different idea of a clock, which may be
used for the timing analysis of atomic photoionization, is
the so-called Larmor clock. The Larmor clock exploits
the idea of using the Larmor precession to measure the
time it takes for a particle to traverse a barrier [9]. A
static magnetic field is applied inside the barrier. The
spin of the incident particles is polarized perpendicular
to this field. The angle of the Larmor precession occur-
ring during transmission is used as a measurement of the
time spent traversing the barrier. Recently, this idea was
generalized: instead of a magnetic field, which is diffi-
cult to confine within a barrier, it was proposed to use
the spin-orbit interaction as a means to rotate the par-
ticle spin [10]. In simple physical terms, this idea can
be understood by considering an electron with angular
momentum l orbiting around the nucleus. In the ref-
erence frame associated with the electron, the nucleus
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moves creating magnetic field. Precession of electron
spin in this field records time. The spin-orbit interac-
tion is naturally occurring in many atoms and molecules
and it can be conveniently used to clock various single-
and multi-photon ionization processes. The spin-orbit
wave packets represent another possibility for an alterna-
tive attoclock design. These wave packets are launched
from a coherent superposition of the spin-orbit decou-
pled states of a singly ionized atom which evolve in time
with a well calibrated period inversely proportional to
the spin-orbit energy splitting [11]. This precise calibra-
tion of time presents a natural scale to study the evolu-
tion of the non-stationary multi-electron wave function.
Yet another process that can be used for this purpose is
spin-exchange interaction which is particularly strong in
atoms with half-filled shells which are fully spin-polarized
according to the Hund rule [12]. This interaction causes
a large asymmetry between photoionization amplitudes
to the spin-up and spin-down continuum states which
causes a significant spin rotation during ionization and
can be used to clock the photoionization process.

For ab initio theoretical justification and verification
of these ideas, one has to go beyond the usual frame-
work used for timing analysis of atomic or molecular
photoionization. So far, this analysis has been based on
the non-relativistic time-dependent Schrödinger equation
(TDSE). However, both the spin-orbit interaction and
the interaction of electron spin with a magnetic field are
relativistic effects. In the present work, we describe an
approach which takes into account most essential rela-
tivistic effects. We illustrate this approach by consider-
ing an example of the Xe atom subjected to a circularly
polarized electromagnetic pulse.

The paper is organized as follows. In Sec. II we out-
line our theoretical model. In Sec. III we present our nu-
merical results for the photoelectron momentum distribu-
tion, the ionization probability, and the time delay. The
atomic units are used throughout the paper unless other-
wise specified. The time delay is measured in attoseconds
(1 as = 10−18 s). The speed of light c = 137.036 in the
atomic units.
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II. THEORY

We consider an atom in the field of a circularly polar-
ized electromagnetic pulse propagating in the z-direction,
with the electric field given by:

Ex =
E√
2
f(t) cosωt , Ey =

E√
2
f(t) sinωt . (1)

Here we choose the carrier frequency ω = 1 a.u. =
27.2 eV (close to the 17th harmonic of a 800 nm laser)
and f(t) = cos2(πt/T1) is the pulse envelope. The
field is present on the time interval (−T1/2, T1/2), where
T1 = 4T , T = 2π/ω is an optical cycle corresponding to
the carrier frequency ω. The total duration of the pulse
we use is thus four optical cycles, which gives the FWHM
of 300 as. The magnetic field of the pulse H is related
to the electric field (1) by the relation following from the
Maxwell’s equations:

H(t) = n × E(t) , (2)

where n is a unit vector along the direction of the prop-
agation of the electromagnetic pulse.

We take into account relativistic effects using the so-
called Breit-Pauli approximation [13]. In this approxi-
mation, the four-component Dirac equation is expanded
in powers of a small parameter 1/c and the terms up to
1/c2 are retained. The wave function in this approxima-
tion is a two-component spinor. The Breit-Pauli version
of the time dependent Schrödinger equation for an atom
in the field of a circularly polarized electromagnetic pulse
takes the form:

i
∂Ψ

∂t
=

(

Ĥ0 + Ĥint(t) + Ĥso + Ĥmag

)

Ψ . (3)

Here Ĥ0 is the part of the Breit-Pauli Hamiltonian of
the field-free atom which does not include the electron
spin. We describe the atom in a single active electron
approximation, and we have for this operator:

Ĥ0 =
p̂2

2
+ U(r) − p̂4

8c2
+

∆U(r)

8c2
, (4)

where U(r) is an effective potential [14] of the Xe atom.
The additional spin-dependent terms in Eq. (3) are the
spin-orbit interaction:

Ĥso =
dU

dr

1

2r

l̂ · ŝ
c2

, (5)

and the magnetic term, describing interaction of the elec-
tron spin with the magnetic field of the pulse:

Ĥmag =
1

c
H(t) · ŝ . (6)

The operator Ĥint(t) in Eq. (3) describes interaction of
the atom and the electric field of the pulse. We employ
both the length and velocity forms for this operator:

Ĥint(t) =

{

E(t) · r̂
A(t) · p̂ , A(t) = −

∫ t

−T1/2
E(τ) dτ

(7)

We do not consider here non-dipole terms in the inter-
action Hamiltonian. As dictated by the wave-equation,
for a pulse propagating in the z-direction all the functions
of time in Eqs. (1), (2) should, in fact, be considered as
functions of t − z/c. By expanding these functions in
powers of z/c, we obtain non-dipole corrections to the
Hamiltonian. These corrections are of the order of E/c
or higher, and can be neglected for the small field inten-
sities that we presently consider.

We seek a solution of Eq. (3) in the form:

Ψ(r, σ, t) =

Lmax
∑

l,m,µ

flmµ(r, t)Ylm(θ, φ)χµ(σ), (8)

where Ylm(θ, φ) are the spherical harmonics and χµ(σ)
are the basis spin functions. In the present calculations
we used Lmax = 10. The radial part of the TDSE is
discretized on the grid with the stepsize δr = 0.02 a.u.
in a box of the size Rmax = 600 a.u. Convergence of
Eq. (8) with Lmax and Rmax has been tested thoroughly.
To propagate the wave function (8) in time, we use the
matrix iteration method developed in [15] and further
tested in strong field ionization calculations [16–18]. This
method can be easily modified to include additional spin
degrees of freedom.

At the moment of time t = T1/2, corresponding to the
end of the pulse, we project the solution of the TDSE on
the set of the ingoing scattering states ψ−

µk
[19] charac-

terized by the electron asymptotic momentum k and the
spin projection µ:

ψ−
µk

(r, σ) =
∑

l,j,mj

ile−iδjRkj(r)φljmj
(r̂, σ)S

jmj

lµ (k̂) . (9)

Here s = 1/2 , r̂ = r/r, k̂ = k/k, φljmj
(r̂, σ) describes

angular and spin dependence of the wave-function,

S
jmj

lµ (k̂) =
∑

m

C
jmj

lm sµY
∗
lm(k̂), (10)

C
jmj

lm sµ are the Clebch-Gordan coefficients. This projec-
tion gives us the amplitudes

aµk = 〈ψ(−)
µk

|Ψ(t)〉eiEkt , t = T1/2 (11)

of detecting the ejected electron with the asymptotic mo-
mentum k and the spin projection µ after the end of the
pulse. The squared moduli of these coefficients deter-
mine the photoelectron spectrum. The energy derivative
of the phase of the coefficients (11) gives the photoelec-
tron group delay which is also known as the Wigner time
delay [20–22], which can be conveniently expressed as:

τ0 = Im

(

q̂

q

∂aµk

∂k

)

. (12)

Here the derivative is computed at the point k = q, cor-
responding to the asymptotic momentum of the photo-
electron in the field-free zone and q̂ = q/q. The time
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delay τ has a transparent physical meaning [20, 21]. It
appears as a coefficient in the asymptotic expression for
the trajectory of the crest of the electron wavepacket in
a given direction

r(t) ∼ q(t− τ0) + r′(t) . (13)

Here the term r′(t) gives a well-known Coulomb correc-
tions to the trajectory which grows logarithmically with
t for large t. The time delay, therefore, can be inter-
preted as a moment of time when the photoelectron was
launched on its escaping trajectory. This provides us
with the information about development of the photoion-
ization process in time.

Since the amplitudes (11) depend on the spin projec-
tion µ, so do the ionization probabilities and the time
delays. This is, of course, very different from the non-
relativistic case in which such dependence is absent.

III. NUMERICAL RESULTS

We perform calculations for the Xe atom in the 5pj=1/2

and 5pj=3/2 initial states with different angular momen-
tum projections mj . The quantization z-axis is aligned
along the propagation direction of the electric field (1).
The field strengths are chosen to be E = 0.01 and 0.1 a.u.
which correspond to the field intensity of 3.5 × 1012 and
3.5 × 1014 W/cm2, respectively.

FIG. 1: Photoelectron momentum distribution in the polar-
ization plane for the spin up electrons. Ionization from the
5p3/2 state of Xe with mj = 3/2. The peak strength of the
electric field is 0.1 a.u.

Figure 1 shows the electron momentum distribution
in the polarization plane for the ionization from the
5p3/2 state of Xe with the angular momentum projection
mj = 3/2. We present this figure as an illustration of
the general features of the photoionization process from
the Xe atom. In many respects, this figure looks very
much like its non-relativistic counterpart for the ioniza-
tion of the Li atom by the circularly polarized pulse that
we studied in our earlier work [22]. The top panel of

Fig. 2 of this work, corresponding to the field intensity
E = 0.01 a.u., show the same uniform distribution of the
ionization probability within the circle prescribed by the
energy conservation. A completely uniform distribution
is what the lowest order perturbation theory (LOPT)
would predict. Indeed, according to the dipole selection
rules, absorption of one circularly polarized photon with
m = 1 from the initial 5p3/2 state with mj = 3/2 leads
to the continuum state of even parity with mj = 5/2
which can only be accommodated by j = 5/2. It is easy
to see from Eqs. (9) and (10) that dependence of the
ionization probability on the asymptotic momentum k is
described in this case by a single term that contains the

modulus squared of the spherical harmonic Y22(k̂). This
term produces a uniform probability distribution in the
polarization plane for the only value µ = 1/2 of the spin
projection compatible with the even parity, j = 5/2 and
mj = 5/2. Any departure from such a uniformity can
only be due to higher order processes such as absorption
of two or more photons. Such a departure from unifor-
mity can indeed be seen at a closer inspection of Figure
1 which we will present below.
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FIG. 2: Ionization probability (top row) and time delay (bot-
tom row) as functions of the polar angle in the polarization
plane for the spin-up electrons. Solid (red) line: L-gauge
calculation, filled (blue) circles: V-gauge calculation. The
ionization probability is multiplied by a factor of 100. Left
and right columns show results for the 5p3/2 state of Xe with
mj = +3/2 and mj = −3/2, respectively. The peak strength
of the electric field is 0.1 a.u.

When discussing relativistic effects, which are not very
strong even in a moderately heavy Xe atom, the accu-
racy of the calculation becomes an important issue. We
performed a series of checks of the stability of our cal-
culation with respect to the set of numerical parameters.
Convergence of our calculation was tested with respect
to the parameters Lmax and Rmax in Eq. (8), and the
stepsize δr used to discretize the TDSE. The numerical
results obtained with Rmax = 600 a.u., Lmax = 10 and
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δr = 0.02a.u. are well converged as is confirmed by a
close agreement of the calculations using the length and
velocity forms of the interaction Hamiltonian (7). Since
both gauges weigh completely different regions of the con-
figuration space, any lack of convergence would be imme-
diately apparent. Such a comparison is shown in Figure
2 where we plot the ionization probability and the time
delay as functions of the polar angle in the polarization
plane. The probability is obtained by integration of the
photoelectron momentum distribution shown in Figure
1 in the kx, ky coordinates over the radius k. Figure 2
corresponds to the ionization from the 5p3/2 state of Xe
with the angular momentum projection mj = 3/2. The
numerical results produced by both gauges are virtually
indistinguishable both for ionization probabilities and the
time-delays.

0.43

0.44

0.45

              

Pr
ob

ab
ili

ty
 (

x1
04 )

 

           5p3/2 mj=+3/2

0.26

0.27

              

 

 

             5p3/2 mj=-3/2

18

19

20

 0  60  120  180  240  300  360

D
el

ay
 (

as
)

Angle (degrees)

             5p3/2 mj=+3/2
Relativistic

Non-relativistic

-9

-8

-7

-6

-5

 0  60  120  180  240  300  360

 

Angle (degrees)

             5p3/2 mj=-3/2

FIG. 3: Ionization probability (top row) and time delay (bot-
tom row) as functions of the polar angle in the polarization
plane. Solid (red) line - relativistic calculation, dash (green)
line - non-relativistic results. Ionization probability is mul-
tiplied by a factor of 104. Left column: ionization from the
5p3/2 state of Xe with mj = 3/2, spin up electrons, right col-
umn: ionization from the 5p3/2 state of Xe with mj = −3/2,
spin down electrons. The peak field strength is 0.01 a.u.

To elucidate the influence of the relativistic effects, we
performed two sets of calculations using the relativistic
Hamiltonian Eq. (3) and its non-relativistic limit c →
∞. Such calculations are presented in Figures 3 and 4
where we plot the ionization probability and the time
delay in the polarization plane for two different values of
the electric field E = 0.01 a.u. and 0.1 a.u., respectively.
Both figures present results of our calculations for the
Xe 5p3/2 states with mj = 3/2, spin up electrons (left
columns) and mj = −3/2, spin down electrons (right
columns).

In the non-relativistic limit, the 5p3/2 state of Xe with
mj = 3/2 corresponds to the 5p state with m = 1. Simi-
larly, the state 5p3/2 with mj = −3/2 corresponds to the
5p state with m = −1. The states with mj = 3/2 and

mj = −3/2 are, therefore, relativistic counterparts of the
co-rotating (m = 1) and counter-rotating (m = −1) non-
relativistic states, respectively. It was shown that in the
non-relativistic case the ionization probabilities for the
co- and counter-rotating electrons can be very different
[23, 24]. We have shown [22], that time delays for these
two different initial states can differ also.
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FIG. 4: Same as Figure 3. The peak field strength is 0.1 a.u.
Ionization probability is multiplied by a factor of 100.

We can expect these general features to survive in our
relativistic calculations for the Xe atom which is not a
deeply relativistic system. Figure 3 and Figure 4 show
that this is indeed the case. The ionization probability for
a co-rotating electron (left top panels) is about twice as
large as for a counter-rotating one (right top panels). We
also see oscillations superimposed on the flat background
in the angular dependence of both the ionization proba-
bilities and the time delays. These oscillations are present
both in relativistic and non-relativistic cases. Nature of
these oscillations was elucidated in our earlier work [22]
where we considered ionization of the Li atom in a simi-
lar geometry using a non-relativistic approach. We found
that for small fields, when the LOPT treatment is valid,
this effect could be described as a π-periodic modulation.
This modulation can be attributed to a small pulse dura-
tion giving rise to an appreciable probability of ionization
processes going without energy conservation. A similar
LOPT analysis can be applied to the present case. Af-
ter absorption of a circularly polarized photon, the initial
5p3/2 state with mj = 3/2 makes a dipole transition to
the kd5/2 continuum with mj = 5/2, where the momen-
tum k is determined by the energy conservation. This
continuum state can also emit a virtual photon and thus
violate the energy conservation. For a short pulse of only
4 optical cycles, this virtual process still has an appre-
ciable probability. The dipole selection rules for the cir-
cularly polarized radiation lead to the ks1/2, kd3/2 and
kd1/2 states of even parity with mj = 1/2. These states
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are represented in Eqs. (9) and (10) by the spherical har-

monics Ylm(k̂) with l = 0, m = 0 and l = 2, m = 0, 2.
These terms lead to the angular dependence of the am-
plitude in the polarization plane α + β exp(2iφ) which
has a character of π-modulation. This modulation is in-
deed seen in the time delay plot shown on the bottom
left panel of Figure 3 for the 5p3/2 state with mj = 3/2.

The angular oscillation in the time delay is different
for the ionization from the 5p3/2 state with mj = −3/2
for the weak field of 0.01 a.u. (the bottom right panel
of Figure 3) and for the time-delays for stronger field
of 0.1 a.u. (bottom row of panels of Figure 4). Here,
time delays behavior as functions of the polar angle can
rather be described as a 2π-modulation. We encountered
this type of modulation in the non-relativistic case [22],
for ionization by stronger fields. It can be explained as
contribution of the higher order perturbation theory ef-
fects. This explanation relies on the analysis of the con-
tribution of the higher order terms of the perturbation
theory. Such analysis can be carried with minor mod-
ifications in the present case, with the same conclusion
that for stronger fields the time delays should exhibit a
2π-modulation. This can explain behavior of the time
delays that we observe in Figure 4.

The case which apparently falls apart is the behavior
of the time delay for ionization from the 5p3/2 state with
mj = −3/2 for the weak field strength of 0.01 a.u. (the
bottom right panel of Figure 3). Here the non-relativistic
calculation (dashed line) exhibits a π-modulation, in
agreement with the expectations based on the LOPT.
The relativistic calculation, on the other hand, exhibits
a 2π-modulation, which we would expect to occur for
higher field strengths, and which indeed, occurs for this
state for the field strength of 0.1 a.u. as seen in Figure
4. For the 5p3/2 stare state with mj = −3/2 relativis-
tic effects, therefore, lead to earlier manifestation of the
non-perturbative effects. We are not sure how to explain
this observation.

More importantly, we see that while relativistic effects
play only a fairly small role for time delays of the co-
rotating electron (the bottom left panels of Figures 3
and 4), they produce substantial change in the time de-
lays for a counter-rotating electron (the bottom right set
of panels). This change is of the order of 20% for the
electric field strength of 0.01 a.u, and of the order of
30% for the stronger field of 0.1 a.u. This can be ex-
plained, at least qualitatively, as follows. The predomi-
nant ionization channel of the 5p3/2 state with mj = 3/2
is the kd5/2 continuum state with mj = 5/2. On the
other hand, the dominant ionization pathway of the 5p3/2

state with mj = −3/2 is the ks1/2 continuum state with
mj = −1/2. The centrifugal barrier, that keeps the con-
tinuum electron far from the nucleus, is much higher in
the first case. The spin-orbit interaction decays very
rapidly with the electron-nucleus distance (as r−3 ac-
cording to Eq. (5)). It plays, therefore, much more im-
portant role for the ionization from the 5p3/2 state with
mj = −3/2. That explanation is consistent with the

well-known formula for the energy correction due to the
spin-orbit interaction [13], which decays fast with angular
momentum for large l.
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FIG. 5: Ionization probability (top) and time delay (bottom)
as functions of the polar angle in the polarization plane for
the 5p1/2 state with mj = 1/2 (spin up electrons). Solid (red)
line - relativistic calculation, dash (green) - non-relativistic
results. Ionization probability is multiplied by a factor of
100. The peak field strength is 0.1 a.u.

To make a comparison with non-relativistic calculation
for the spin-orbit split states with arbitrary values of the
total momentum j, we have to ensure a one-to-one cor-
respondence of the relativistic and non-relativistic initial
states. This is easily achieved in the case of the states
with the maximum possible j and mj (for a given l) that
we considered so far. Indeed, in the non-relativistic limit,
the 5p3/2 state with mj = 3/2 corresponds to the 5p state
with the angular momentum m = 1 and the spin projec-
tion µ = 1/2. Similarly, the 5p3/2 state with mj = −3/2
corresponds to the 5p state with m = −1, µ = −1/2.
Non-relativistic limit for a state with an arbitrary j−
value is a linear combination of several non-relativistic
states with different projections of angular and spin mo-
menta. The non-relativistic limit of the relativistic 5p1/2

state with mj = 1/2, for example, is a linear combina-
tion of the 5p states with m = 1, µ = −1/2 and m = 0,
µ = 1/2 weighted with the corresponding Clebch-Gordan
coefficients. Taking such a superposition as an initial
state in the non-relativistic calculation, we can gauge the
role of the relativistic effects. This is illustrated in Fig-
ure 5 where we present results for the ionization from the
5p1/2 state of Xe with mj = 1/2.
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IV. CONCLUSION

We performed relativistic time delay calculations for
the photoionization of Xe atom driven by a circularly
polarized electromagnetic pulse. For a moderately heavy
Xe atom, relativistic effects do not play a very important
role for the ionization probabilities. On the contrary, the
time delays can undergo significant modifications if rela-
tivistic effects are considered. This is probably another
manifestation of the general principle that the phase of
the amplitude is more sensitive to small perturbations
than its absolute value.

Here we considered initial electron states that are co-
and counter rotating with respect to the electric field
vector. We found that, similarly to the non-relativistic
case, the photoelectron spectra and the time delays are
very different for these two orientations. As in the non-
relativistic case, the time delays exhibit modulation with
respect to the polar angle in the equatorial plane. The
period of this modulation is π for a weak field becoming
2π for stronger fields. The π modulation effect can be
explained as a manifestation of the processes going with-
out energy conservation that occur for the ionization by a
short pulse. The 2π-modulation is due to the higher order
processes. More important is the finding, that while rel-
ativistic effects play only a fairly small role for ionization
probabilities and time-delays of the co-rotating electron,
they produce substantial change in the time delays for
a counter-rotating electron. In the latter case, the effect

can reach 30%. This is a large enough effect to be taken
into account in interpretation of the experiments using
the Larmor clock approach. As we have seen, the mag-
netic field, which is a part of the measuring apparatus
in the Larmor clock experiment, may itself modify the
measured quantity considerably.

The present study is only the first step in elucidating
the relativistic effects in time-delay calculations. Going
beyond the single active electron approximation and con-
sidering relativistically many-electron effects may prove
important since these effects are known to play significant
role for noble-gas atoms [25]. A study relying on the rel-
ativistic random phase approximation [26] reported new
effects, due to relativity, in the neighborhood of Cooper
minima. Study of the truly relativistic regime of pho-
toionization by strong laser fields as, i.e. in [27] is also of
considerable interest.
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H. G. Muller, M. Büttiker, and U. Keller, Attosecond

Ionization and Tunneling Delay Time Measurements in

Helium, Science 322(5), 1525 (2008).
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