
Time delay in atomic photoionization with circularly polarized light

I. A. Ivanov∗ and A. S. Kheifets†
Research School of Physical Sciences, The Australian National University, Canberra ACT 0200, Australia

(Dated: December 17, 2012)

We study time delay in atomic photoionization by circularly polarized light. By considering
the Li atom in an excited 2p state, we demonstrate a strong time delay asymmetry between the
photoemission of the target electrons that are co- and counter-rotating with the electromagnetic
field in the polarization plane. In addition, we observe the time delay sensitivity to the polar angle
of the photoelectron emission in the polarization plane. This modulation depends on the shape and
duration of the electromagnetic pulse.

PACS numbers: 32.80.Rm 32.80.Fb 42.50.Hz

I. INTRODUCTION

Atomic or molecular photoionization in a circularly po-
larized electromagnetic (EM) field exhibits a number of
features that are absent in the case of linear polariza-
tion. One such effect is dependence of the photoioniza-
tion probability on the direction of the rotation of the
target electron relative to the polarization plane of light.
Let us assume that the EM field is right circularly polar-
ized in the (x, y)-plane. We call the target electron co- or
counter-rotating with the field if its angular momentum
projection on the z-axis is m > 0 or m < 0, respec-
tively. This difference of ionization probabilities for co-
or counter-rotating electrons is present both in the multi-
photon and tunneling regimes. However, it manifests it-
self quite differently. In the multiphoton regime, the ion-
ization probability is larger for the co-rotating electrons
[1, 2]. On the contrary, in the tunneling regime, ioniza-
tion for the counter-rotating electron dominates [3]. The
latter effect may have important implications for the an-
gular attosecond streaking technique, which makes it pos-
sible to trace electronic motion in atoms and molecules
with the resolution of several attoseconds [4].

The earlier works [1–3] focused on the asymmetry in
photoionization cross-sections for the co- and counter-
rotating target electrons. In the present study, we sup-
plement these works by the time delay analysis. The
notion of time delay was initially introduced by Wigner
[5] for scattering phenomena and applied subsequently to
photoionization [6]. A number of benchmark experimen-
tal and theoretical results have been obtained in studies
of atomic photoionization using this approach [4, 7–9].
These studies have been extended to molecules [10] and
double electron photoionization [11]. In the present work,
we calculate the time delay following atomic photoioniza-
tion by a circularly polarized EM field. For a numerical
illustration, we consider ionization of the lithium atom
prepared in the excited 2p state. Such a state is readily
experimentally accessible (see e.g. [12]). Our particular
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interest will be in the time delay asymmetry between the
co- and counter-rotating target electrons with m = ±1.

The paper is organized as follows. In Sec. II we outline
our theoretical model. In Sec. III we present our numer-
ical results for the photoelectron spectrum, momentum
distribution and time delay. We conclude in Sec. IV by
outlining the key features of the observed effects. The
atomic units are used throughout the paper unless oth-
erwise specified.

II. THEORETICAL MODEL

We solve the time dependent Schrödinger equation
(TDSE) for an atom with a single active electron

i
∂Ψ(r)
∂t

=
(
Ĥatom + Ĥint(t)

)
Ψ(r) . (1)

Here Ĥatom is the Hamiltonian of the field-free atom with
an effective one-electron potential [13]. Ĥint(t) describes
the interaction with the EM field, either in the length or
velocity gauges:

Ĥint(t) =

{
E(t) · r̂
A(t) · p̂ , where A(t) = − ∫ t

−T1/2
E(τ) dτ

(2)
The field is right circularly polarized propagating along
the z-direction (which is assumed to be the quantization
axis):

Ex = Ef(t) cosωt , Ey = Ef(t) sinωt . (3)

Here f(t) = cos2(πt/T1) is the pulse envelope. The field
is present on the interval (−T1/2, T1/2). We measure the
pulse duration in units of the optical cycle T1/T where
T = 2π/ω.

The solution of Eq. (1) is sought in the form of a partial
wave expansion

Ψ(r, t) =
Lmax∑

l=0

l∑

µ=−l

flµ(r, t)Ylµ(θ, φ), (4)

The radial part of the TDSE is discretized on the grid
with the stepsize δr = 0.05 a.u. in a box of the size
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Rmax. Convergence of Eq. (4) with Lmax and Rmax de-
pends on the field strength E . This convergence is tested
thoroughly in each numerical example presented below.
To propagate the wave function (4) in time, we use the
matrix iteration method developed in [14] and further
tested in strong field ionization calculations [15, 16].

We project the solution of the TDSE at the end of the
laser pulse at t = T1/2 on the set of the ingoing scattering
states:

ψ
(−)
k (r) =

∑

lµ

ile−iδlY ∗lµ(k̂)Ylµ(r̂)Rkl(r) , (5)

which gives us a set of coefficients

ak = 〈ψ(−)
k |Ψ(t)〉eiEkt . (6)

The squared moduli of these coefficients determine the
photoelectron spectrum. The energy derivative of the
phase of the coefficients (6) gives the photoelectron group
delay which is also known as the Wigner time delay. An
equivalent form, which is more convenient in practical
calculations, is the following:

τ0 = Im
(

q̂

q

∂ak

∂k

)
. (7)

Here the derivative is computed at the point k = q, cor-
responding to the asymptotic momentum of the photo-
electron in the field-free zone [16–18]. We notice, that
when a single partial wave l in the sum (5) is dominant,
the photoelectron time delay is simply the energy deriva-
tive of the corresponding elastic scattering phase shift
τ0 = dδl/dE = k−1dδl/dk × 24 as. Here one atomic unit
of time is equated to 24 as.

The time delay τ0 has a transparent physical meaning
[5, 6]. It appears as a coefficient in the asymptotic ex-
pression for the trajectory of the crest of the wavepacket

r(t) ∼ q(t− τ0) + r′(t) . (8)

Here the term r′(t) gives a well-known Coulomb correc-
tions to the trajectory which grows logarithmically with
t for large t.

III. NUMERICAL RESULTS

For numerical illustrations, we perform photoioniza-
tion calculations of the lithium atom in the 2p excited
state. We use circular polarized field pulses with the
carrier frequency ω = 0.5 a.u. (13.6 eV) and the pulse
durations T1 varying from three to ten optical cycles (1 to
3 fs). The field strength ranges from E = 0.01 to 0.1 a.u.
which corresponds to the field intensity of 3.5 × 1012 to
3.5× 1014 W/cm2.
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FIG. 1: (Color online) The photoelectron spectrum of Li
ionization from the 2p+1 state. The field parameters are
ω = 0.5 au, E = 0.1 au and the pulse duration is 10 opti-
cal cycles. The calculations with the following pairs of values
Lmax/Rmax(a.u.) are plotted. Solid (red) line: 12/500, (blue)
short dash: 10/500, (magenta) dots: 10/900, all in the ve-
locity gauge; dashed (green) line: 12/500, the length gauge.

A. Photoelectron spectrum

We start our calculations with the photoelectron spec-
trum integrated over all the escape directions. We test
convergence of our results with respect to the values of
Lmax in Eq. (4) and the box size Rmax as well as the gauge
invariance between the length and velocity forms of the
atom- EM field interaction (2). We illustrate this test
in Figure 1 using the most challenging condition of the
strong field ionization with E = 0.1 a.u. The pulse dura-
tion is 10 optical cycles. In this figure we show the photo-
electron spectrum following ionization of the 2p+1 initial
state. The velocity gauge results with the pair of values
Lmax/Rmax(a.u.) = 12/500, 10/500 and 10/900 as well
as the length gauge result with Lmax/Rmax(au) = 12/500
are indistinguishable on the scale of the figure. A small
peak at higher electron energy of ' 23 eV is a mani-
festation of a two-photon absorption. Such two-photon
processes, as can be seen from Figure 1, are not very im-
portant as long as we are interested in the electron spec-
tra only. As we shall see below, the situation is rather
different if we are interested in computing the time delay.

B. Photoelectron momentum distribution

In this and the following section, we confine our study
to the equatorial (x, y) plane in which most of the photo-
electrons escape. In Figure 2 we present the photoelec-
tron momentum distributions in this plane for various
field strengths and pulse durations. The upper row of
Figure 2 shows the photoelectron momentum distribution
obtained for the weak field of E = 0.01 a.u. and the pulse
length of 3 optical cycles. This weak field regime can
be analyzed within the lowest order perturbation theory
(LOPT). Under this condition, an electron in the 2p+1
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FIG. 2: (Color online) The photoelectron momentum distri-
butions in the equatorial (x, y) plane for Li ionization from
the 2p+1 state (left column) and 2p−1 state (right column).
The field parameters are ω = 13.6 eV, the pulse duration is 3
optical cycles (upper three rows) and 10 optical cycles (bot-
tom row), E = 0.01 a.u. (first row), E = 0.05 a.u. (second
row), E = 0.1 a.u. (third and fourth rows).

initial state, upon absorption of a photon from the circu-
larly polarized EM field Eq. (3), ends up in the d partial
wave with the angular momentum projection µ = 2. An
electron ionized from the 2p−1 state ends up in the super-
position of the continuum s and d states with µ = 0. In
both cases, the photoelectron angular distribution in the
equatorial plane will be independent on the polar angle
φ, which is clearly seen in Figure 2.

Results for the higher field strengths are shown in the
second row ( E = 0.05 a.u. ) and third and fourth
rows (E = 0.1 a.u.). Unlike in the weak field regime, the
photoelectron angular distributions for a short pulse of 3
optical cycles show some angular structure which is due

to the higher order processes.

C. Photoelectron time delay

In Figure 3 we present the time delay results as a func-
tion of the polar angle for the photoelectrons escaping in
the equatorial plane. Also shown are the energy deriva-
tives of the scattering phase shifts in the s and d partial
waves, computed at the energies corresponding to the
peak of the photoelectron wavepacket in the momentum
space. The three sets of panels display the time delay
results for the field strengths of E = 0.01 a.u. (top),
E = 0.05 a.u. (middle), and E = 0.1 a.u. (bottom). The
pulse duration is T1/T = 3 and 10 for the left and right
sets of panels, respectively.

Let us first discuss the weak field regime of E =
0.01 a.u. for which the perturbative treatment is ap-
plicable. Unlike the photoelectron angular distributions
displayed in Figure 2, the time delay results for the short
pulse duration show a noticeable angular anisotropy. The
angular dependence of the time delay has a character of a
π- periodic modulation. This effect depends on the pulse
duration, and disappears completely for a longer pulse of
T1/T = 10. Another observation is that for all the pulse
lengths and pulse strengths, the time delay for the co-
rotating electron 2p+1 is larger than the time delay for
the electron ionized from the 2p−1 state.

The origin of these effects can be elucidated most read-
ily within the LOPT. The corresponding expression for
the ionization amplitude ak reads:

ak = −i
T1/2∫

−T1/2

〈ψ(−)
k |Ĥint(τ)|ψi〉ei(Ek−E0)τ dτ , (9)

where ψi is the initial electron state. By plugging ex-
pressions (3) into the electromagnetic interaction oper-
ator Ĥint(t) in the length gauge, and writing the scalar
product E · r ∝ Exx + Eyy = −E1r−1 − E−1r1 in the
spherical coordinates [19], we obtain:

Ĥint(t) =
E√
2
f(t)

(
eiωtr−1 − e−iωtr1

)
(10)

By using the partial wave expansion (5) for the scattering
state ψ(−)

k and setting the initial electron state to 2p±1

we transform the perturbative expression (9) into

ak =
∑

l=0,2

l∑

µ=−l

i−leiδlYlµ(k̂)〈kl||r||2p〉 (11)

×
[
A

(
l 1 1
−µ −1 m

)
−B

(
l 1 1
−µ 1 m

)]

where
A =

E√
2

∫ T1/2

−T1/2

f(t)ei(Ek+ω−E0)t dt

B =
E√
2

∫ T1/2

−T1/2

f(t)ei(Ek−ω−E0)t dt
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FIG. 3: (Color online) The photoelectron time delays as func-
tions of the polar angle φ in the equatorial plane for the field
strengths E = 0.01 a.u. (top), E = 0.05 a.u. (middle), and
E = 0.1 a.u. (bottom). Pulse duration: T1/T = 3 (left),
T1/T = 10 (right). (Red) solid line: ionization from the 2p+1

state, (green) dash: ionization from 2p−1 state. (Blue) short
dash: τd

0 = dδ2/dE; (magenta) dots: τs
0 = dδ0/dE

and the reduced matrix element 〈kl||r||nili〉 is given by:

〈kl‖r‖nili〉 = l̂l̂i

(
l 1 li
0 0 0

) ∫
r2dr Rkl(r) r Rnili(r) ,

(12)
with l̂ =

√
2l + 1. The terms with the coefficients A

and B in the square brackets on the right hand side of
Eq. (12) describe emission and absorption of a photon,
respectively.

It is easy to see that A = 0 on the energy shell where
Eq = q2/2 = ω + εi. This property does not depend
on the particular form of the envelope function f(t) or
the pulse length T1 in Eq. (3) and it holds as long as
the envelope function is even on the interval of the pulse
duration. On the energy shell Eq. (12) can be rewritten,
therefore, as:

aq =
{
α0,0,−1Y00(q̂) + α2,0,−1Y20(q̂) , m = −1
α2,2,1Y22(q̂) , m = +1 (13)

where

αl,µ,m = −Bi−leiδl〈ql||r||2p〉
(

l 1 1
−µ 1 m

)
(14)

Dependence of the amplitudes on the direction of the
photoelectron escape is contained in the spherical har-
monics appearing in Eq. (13). If we consider the modulus
squared of the amplitude in the Eq. (13) in the equato-
rial plane, we will obtain the probability independent of
the polar angle, a LOPT prediction which the TDSE cal-
culation for weak fields illustrated in Figure 2 conforms
to.

Situation is different for the time delay calculations.
Indeed, according to Eq. (7), to compute the time delay
we have to calculate energy derivative of the amplitude.
This includes the energy derivative of the coefficients A
and B in Eq. (12). It is easy to see that on the energy
shell dB/dE = 0, while dA/dE 6= 0. Similarly to the
statements A = 0, B 6= 0, these are quite general proper-
ties, which do not depend on the particular pulse shape
as long as the envelope function is an even function of
time. Moreover, dA/dE depends rather sensitively on
the pulse duration as shown in Figure 4.
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FIG. 4: (Color online) Coefficients −dA/dE (red solid line)
and B(E) (green dashed line) on the energy shell as functions
of the pulse duration T1/T . The envelope function f(t) is
defined in Eq. (3).

For the energy derivative of the ionization amplitude
from the 2p−1 state we then obtain:

daq

dE
=
dα0,0,−1

dE
Y00(q) +

dα2,0,−1

dE
Y20(q) + ηY2−2(q),

(15)
where the coefficient η is proportional to the derivative
dA/dE computed on the energy shell. In the equatorial
plane, the presence of the term with Y2−2(q) introduces a
modulation proportional to exp(−2iφ). This π-periodic
modulation will also be present in the time delay (7),
which is a logarithmic derivative of the amplitude. The
depth of the modulation is determined by the value of
the derivative dA/dE on the energy shell which, in turn,
is determined by the particular pulse shape and pulse du-
ration. As we observe in Figure 4, the derivative dA/dE
decreases fast with the pulse duration. Consequently, the
depth of the modulation decreases with increasing pulse
length.

No modulation effect is present in the 2p+1 case under
the perturbative regime. Emission of a photon in this
case leads to a continuum state with l = µ = 2, which
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FIG. 5: (Color online) Top: scattering phase shifts δl=0 (red
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Bottom: the energy derivatives dδl=0/dE (red dotted line)
and dδl=2/dE (blue solid line) are converted to the units of
time delay.

does not introduce angular dependence for the time de-
lay. These LOPT effects are clearly seen in our TDSE
calculation in the weak field regime which are illustrated
on the top row of panels in Figure 3. The π-modulation
of the time delay for the 2p−1 is clearly visible for the
3-cycle laser pulse, and disappears completely for the 10-
cycle pulse.

As for the relative values of the time delays for ion-
ization from 2p±1 states, this question can be easily ad-
dressed using the LOPT expressions. Formulas are sim-
pler for the case of a long pulse, when the term with the
coefficient η is negligible in Eq. (15). In this case the
time delay for the ionization from the 2p+1 state is sim-
ply τ0(2p+1) = dδ2/dE. The time delay ratio between
the 2p−1 and 2p+1 states can be expressed as

τ0(2p−1)/τ0(2p+1) ≈ (1 + γ cos∆)
(1 + γ cos∆)2 + sin2 ∆

< 1 , (16)

where γ = α0,0,−1Y00(q)
[
α2,0,−1Y20(q)

]−1 and ∆ =
δ0 − δ2. Here we used the fact that for the presently
considered photoelectron energies dδ2/dE À dδ0/dE.

This property of the scattering phase shifts in the field
of the Li+ ion are illustrated in Figure 5. At lower pho-
toelectron energies, the scattering phases both in the
s-wave (l = 0) and the d-wave (l = 2) display the
Coulomb singularity. At larger photoelectron energy, δ0
acquires a constant shift due to an occupied 1s2 orbital
of the matching angular momentum in the ionic core (the
Levinson-Seaton theorem [20]). No such orbital exists to
match the d-wave and hence δ2 tends to zero at large pho-
ton energies. This turnover from the growing to falling
energy dependence of the s-phase at the photon energy

of about 15 eV makes the energy derivative dδ0/dE small
while the constantly growing d-phase keeps dδ2/dE large
in this photon energy range.
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FIG. 6: (Color online) The time delays as functions of the
polar angle φ in the equatorial plane for the field strength
E = 0.05 a.u. and the pulse duration T1/T = 3. The full
TDSE calculations for ionization from the 2p+1 and 2p−1

states are plotted with the solid (red) and dashed (green)
lines, respectively. The reduced TDSE calculations with the
µ = 1, 3 terms suppressed in Eq. (4) for the 2p+1 state and
µ = ±1 terms suppressed for the 2p−1 state are drawn with
the short dash (blue) and dotted (purple) lines, respectively.

To explain the features of the delays for higher field
strength, we have to go beyond the LOPT. As we have
already observed in Figure 1, two-photon ionization pro-
cesses are clearly contributing, but their role is not very
important in forming the photoelectron spectrum even
for fields as high as E = 0.1 a.u. Situation is rather dif-
ferent for the time delays. We see in Figure 3 that for the
short pulse duration and a large field intensity the time
delays are modulated but, unlike the case of the weak
field, the period of modulation is 2π.

A simple numerical test allows us to clarify the origin
of this modulation. We note that absorption and emis-
sion of a single photon from the circularly polarized field
changes the electron angular momentum projection by
±1. So we can gauge importance of different ionization
channels just by evaluating contributions of different µ-
states in the expansion (4). Results of such reduced cal-
culations are shown in Figure 6, where we suppressed the
contributions of the terms with µ = 1, 3 in (4) for ion-
ization from the 2p+1 state, and terms with µ = ±1 for
ionization from the 2p−1 state. This excludes the second
order processes with participation of two photons and re-
moves the modulation of the time delay completely. For
the 2p+1 initial state, the final state with µ = 1 arises
as a result of emission and absorption of a photon, while
to get to the µ = 3 final state the atom has to absorb
two photons from the circularly polarized field. Similar
observation applies to the initial state with 2p−1. Both
these second order processes lead to the electron states
which are far in energy from the energy shell. Their con-
tribution, therefore, should decay very rapidly with the
increase of the pulse duration. The plots of Figure 3
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support this conclusion, 2π-periodic modulation effect is
clearly visible for E = 0.05 and 0.1 a.u. for the laser
pulse duration of T1/T = 3 and disappears completely
for a longer pulse with T1/T = 10.

IV. CONCLUSION

We performed time delay calculations for the pho-
toionization process driven by a circularly polarized laser
pulse. We considered initial electron states that are co-
and counter-rotating with respect to the electric field vec-
tor. We found, that similarly to the photoelectron spec-
tra, studied extensively in the literature, the time delays
are markedly different for these two orientations, depend-
ing sensitively on the field strengths and pulse durations.
The time delays for the short pulses exhibit modulation
effect with respect to the polar angle in the equatorial
plane. The period of this modulation varies with the
strength of the electric field. For stronger fields the mod-
ulation patterns of the time delays for co- and counter-

rotating electrons look similar, both patterns can de de-
scribed as 2π-modulation superimposed on a nearly flat
background. This effect can be explained as manifesta-
tion of the two-photon processes which do not conserve
energy and contribute noticeably only in the case of the
ionization by a short laser pulse. Situation is different in
the weak-field limit, where modulation effect is present
only for the time delay of a counter-rotating electron,
and can be described as a π periodic modulation on a
constant background. Perturbation theory analysis al-
lowed us to identify the precise absorption mechanisms
responsible for this effect.
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