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We use the soft photon approximation to extract the Wigner time delay in atomic photoionization.
Unlike the strong field approximation, the present method does not require introduction of the
Coulomb-laser coupling corrections and enable one to extract the Wigner time delay directly from
attosecond streaking measurements.
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I. INTRODUCTION

The concept of time delay was introduced in particle
scattering theory by Wigner [1] and his contemporaries
(see Ref. [2] for a comprehensive review). It is a quantity
related to the phase of the complex scattering amplitude
which provides an insight into development of the scat-
tering process in time. In recent years, this idea has made
a dramatic comeback when it was realized that the time
delay can be measured experimentally in photoionization
processes. This has led to many interesting and not yet
fully understood results such as observation of a consid-
erable time delay between photoelectrons emitted from
the 2s and 2p sub-shells in neon [3], or an experimental
determination of the tunneling time in a ionization event
[4].

The timing information in photoionization process is
extracted experimentally by applying an ionizing XUV
pulse (the pump pulse) followed by an infrared (IR) probe
pulse. In the attosecond streaking experiments, the time
delay between the pump and probe pulses is mapped onto
the kinetic energy of the photoelectron in the form of a
spectrogram. In such experiments, duration of the probe
pulse may be several optical cycles of the IR field [3].
Alternatively, one may use the so-called RABBIT tech-
nique [5] which employs a monochromatic IR probe. In
this technique, the pump-probe delay is mapped onto
the phase of the sideband oscillations caused by interfer-
ence of alternative two-photon ionization processes. A
detailed description of these techniques can be found in
[6].

To extract the Wigner time delay related to the XUV
photoionization, one has to take into account the effect of
the probe IR field on the system under investigation. In
the RABBIT experiments with monochromatic probes,
the IR field is typically weak, which allows the perturba-
tion theory treatment [7, 8]. In the attosecond streaking
approach, where the IR probe intensity is typically in the
range 1011−1012 W/cm2, the non-perturbative treatment
is called for. In the first interpretation of the attosecond
streaking experiment [9], the well-known classical equa-
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tion was invoked pf (t) = p0 − AIR(t) relating the un-
perturbed asymptotic momentum of the photoelectron
p0 and the final momentum pf (t) for emission at time
t in the presence of an IR field AIR. This implies that
the interaction of the photoionization with the ionic core
is neglected. To account for the corrections due to this
interactions and distortion of the initial atomic state by
the IR field (the so-called Coulomb-laser coupling) , the
further refinement of this model has been developed [10–
12].

Below we present an alternative procedure of extrac-
tion of the time delay from the experimentally observ-
able photoionization cross-sections. This procedure in-
troduces an accurate description of the IR field influence
from the outset.

II. THEORY AND COMPUTATIONAL DETAILS

The procedure is based on the so-called soft photon

approximation [13]. Under condition of the IR photon
frequency being small in comparison with the photoelec-
tron energy, this approximation has been shown to repro-
duce quite accurately the angle-integrated cross sections
of the process of two colour ionization by the XUV and
IR fields [14]. To extract timing information, one has to
know the phase or, rather, the energy derivative of the
phase of the amplitude of the ionization process. It is
unclear whether the soft photon approximation can cope
with this problem. Below, we address this question.

We consider a typical configuration of the XUV and
IR fields used in the attosecond streaking experiments.
The time dependence of the electric field of the IR pulse
is

EIR(t) = EIR
0 sin Ωt , (1)

with the base frequency Ω = 0.057 a.u. ( photon energy
of 1.55 eV) and the peak field strength EIR

0 = 0.004 a.u.
(intensity of 5.6 × 1011 W/cm2). The IR field is present
on the interval of time (0, T1), where T1 = 2π/Ω = 2.7 fs
is an optical cycle corresponding to the IR frequency Ω.

The XUV pulse is present on the time interval ∆ −
4T, ∆ + 4T , where T = 2π/ω is an optical cycle of the
XUV pulse. Parameter ∆, therefore, characterizes the
relative shift between beginning of the IR pulse and ar-
rival of the center of the XUV pulse. On this interval the
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XUV field time-dependence is

EXUV(t) = EXUV
0 f(t′) cosωt′ , (2)

where t′ = t − ∆, and we use a cosine squared envelope
function f(t′) = cos2(ωt′/16). The XUV field strength is
EXUV
0 = 0.01 a.u. (intensity of 3.5× 1012 W/cm2). Both

pulses are assumed linearly polarized along the z-axis.
As a target system, we consider the Ne atom described
by a model potential [15] within the single active electron
(SAE) approximation.

The amplitude of the photoionization process can be
defined as

f(k) = lim
t→∞

τ→−∞

ei(E(k)t−E0τ)〈Ψ−

k
|Û(t, τ)φ〉 , (3)

where Ψ−

k
is the (ingoing) scattering wave function de-

scribing the photoelectron with the kinetic energy E(k),

Û(t,−∞) is the evolution operator propagating the sys-
tem in presence of the IR and XUV fields, φ is the ini-
tial atomic state and E0 is its energy. For a relatively
weak XUV field strength, the photoionization amplitude
in presence of the XUV pulse alone is given by the well-
known perturbative formula:

fXUV(k) = −i

∫

∞

−∞

〈Ψ−

k
|ĤXUV

int (t)|Ψ0〉e
i(E(k)−E0)t dt

(4)
Expression for the evolution operator applicable for a
weak XUV field can be obtained from the Dyson equa-
tion:

Û(t, τ) = Û0(t, τ) − i

∫ t

−∞

Û0(t, x)HXUV
int (x)Û0(x, τ) dx,

(5)

where Û0(t, τ) is the evolution operator for the atom in
presence of the IR field only. In the following, we adopt
the Coulomb-Volkov approximation (CVA) [16, 17]. In
this approximation, the action of the evolution operator
U0(τ, t) on the scattering state Ψ−

k
of the atom is ex-

pressed as

Û0(τ, t)Ψ
−

k
= Ψ−

k
exp

(

−
i

2

∫ τ

t

(k + AIR(x))2dx
)

, (6)

where AIR(t) = −
∫ t

0
EIR(x) dx is the vector potential of

the IR field. We shall also make an assumption that the
IR field perturbs the initial (ground) state only slightly.

So we can write Û0(x, τ)φ = e−iE0(x−τ)φ.
We shall consider below emission of the photoelectron

in the z- direction which is parallel to the polarization
vectors of both the IR and XUV fields. By substituting
Eq. (5) into (4), using the CVA, expanding exponential
introduced by the CVA as a Fourier series, and utilizing
the perturbative equation Eq. (4) for the photoionization
amplitude in presence of the XUV field only, we obtain
the following expression:

f(kz) = ei(y−E(k))T1

∞
∑

m=−∞

Jm

( y

Ω

)

fXUV(k(m)
z ) , (7)

where y = E0
IRkz/Ω, k

(m)
z =

√

k2 − 2y + 2mΩ and Jm

is a Bessel function. Terms with different m in Eq. (7)
describe processes with participation of m IR photons.

By using Eq. (7) for various delays ∆ between the IR
and XUV fields, we can obtain a set of relations between
the amplitudes f(kz, ∆) and the amplitudes fXUV(kz , ∆)
of the photo-ionization driven by the XUV field alone.
Here we introduced the explicit dependence of the pho-
toionization amplitudes on ∆ for convenience of nota-
tions. The perturbative expression (4) allows us to ex-
press fXUV(kz , ∆) in terms of the ’reference’ amplitude
fXUV(kz , 0) as fXUV(kz , ∆) = ei(E(k)−E0)∆fXUV(kz , 0).

Our goal is to determine the phase, or rather the phase
derivative, of the reference amplitude with respect to the
electron momentum, since the quantity of interest for us,
the time delay τ0 can be expressed as [18]:

τ0 =
1

kz

Im

(

∂fXUV(kz , 0)

∂kz

)

. (8)

Here the derivative is to be taken at the point kz satisfy-
ing the energy conservation E0 +ω = k2

z/2, E0 being the
energy of the initial atomic state. By using this equation
and Eq. (7), it is not difficult to devise a procedure allow-
ing to obtain information about the phase of the reference
amplitude for the process of photoionization by the XUV
field from the experimentally measurable cross-sections of
the photoionization process in presence of both the XUV
and IR fields. Before describing implementation of such
a procedure, we have to ascertain first that Eq. (7) is
accurate enough.

III. NUMERICAL RESULTS

To this end, we solve the time dependent Schrödinger
equation (TDSE) for the Ne atom described by means of
the model SAE potential [15] in presence of the XUV and
IR fields given by Eq. (1) and (2). We employ the proce-
dure allowing us to solve numerically a 3D TDSE which is
described in details in [18, 19]. By projecting the solution
of the TDSE on the scattering state Ψ−

k
of the Ne atom,

as prescribed by Eq. (3), we obtain the photoionization
amplitude f(k) in presence of both the XUV and IR
fields. A separate calculation of atomic evolution in pres-
ence of the XUV pulse alone described by (2) with ∆ = 0
gives us a ’reference’ amplitude fXUV(kz, 0). By using
the relation connecting fXUV(kz , ∆) and fXUV(kz, 0) and
Eq. (7), we can compute values of f(kz , ∆), which is the
amplitude of the two-colour ionization for different val-
ues of the delay ∆ between the XUV and IR pulses, and
compare them with the ab initio values of f(kz, ∆) pro-
vided by the TDSE calculation. Such a comparison is
shown in Figs. 1, 2 and 3 below. The data were obtained
retaining the terms with |m| ≤ 5 in Eq. (7).

The data displayed in these figures show that Eq. (7)
allows to compute values of the two-color ionization am-
plitude f(kz, ∆) with a reasonable accuracy for ioniza-
tion from 2s and 2p states of Ne provided we know the
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FIG. 1: (Color online) Ionization from the 2s state of a Ne
atom. Ref(kz, ∆) computed using Eq. (7), solid (red) line,
and TDSE calculation (green) dash. Imf(kz, ∆) given by
Eq. (7), (blue) short dash and TDSE (magenta) dots. XUV
photon energies (top to bottom) are ω = 68, 81.6, and 95 eV.
Delays ∆ are (top to bottom) 0.2T , 0.3T , and 0.7T , where
T is an optical cycle of the XUV pulse. Vertical solid line
corresponds to the momentum kz for which E0 + ω = k2

z
/2.

reference amplitude fXUV(kz , 0) as a function of the mo-
mentum. We may now try to solve an inverse problem of
the reconstruction of the amplitude fXUV(kz, 0) provided
that absolute values of the two-color amplitudes f(kz, ∆)
are known for some selected values of the delays ∆ and
momenta kz . This can be demonstrated as follows. We
choose a trial form for the amplitude fXUV(kz, 0):

fXUV(kz , 0) = Ae−a(E−ǫ)2+iτ(E−ǫ), (9)

where E = k2
z/2, a, τ , and ǫ are fitting parameters ,

and A is a complex number which does not depend on
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FIG. 2: (Color online) Ionization from the 2s state of Ne
atom. Ref(kz, ∆) computed using Eq. (7), solid (red) line,
and TDSE calculation (green) dash. Imf(kz, ∆) given by
Eq. (7), (blue) short dash and TDSE (magenta) dots. XUV
photon energy ω = 106 eV. Delays ∆ (top to bottom) are
∆ = 0.4T , ∆ = 0.5T , ∆ = 0.7T , T is an optical cycle of the
XUV pulse. Vertical solid line corresponds to the momentum
kz for which E0 + ω = k2

z
/2.

the energy E. Parameter ǫ has a meaning of the energy
at which the cross-section of the photo-ionization by the
XUV pulse is peaked. The first guess for the value of this
parameter can be obtained from the energy conservation
E0 + ω = ǫ0. We could fix the value of this parameter
to ǫ0. However, more accurate results are obtained if we
treat it as a fitting parameter. The parameter τ , as can
be immediately seen from the Eq. (8), has a meaning of
the time delay.

The ansatz (9) does, in fact, a very good job at re-
producing the amplitude fXUV(kz , 0) as Fig. 4 testifies.
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FIG. 3: (Color online) Ionization from the 2p state of Ne
atom. Ref(kz, ∆) computed using Eq. (7), solid (red) line,
and TDSE calculation (green) dash. Imf(kz, ∆) given by
Eq. (7), (blue) short dash and TDSE (magenta) dots. XUV
photon energy ω = 106 eV. Delays ∆ (top to bottom) are
∆ = 0.3T , ∆ = 0.4T , ∆ = 0.5T , T is an optical cycle of the
XUV pulse. Vertical solid line corresponds to the momentum
kz for which E0 + ω = k2

z
/2.

This figure shows comparison of a fit using the functional
form (9) to the ’exact’ amplitude fXUV(kz , 0) which we
obtain from the TDSE solution for ionization of the 2p
sub-shell of the Ne atom by the XUV pulse.

By using Eqs. 9 and 7, we can compute the ampli-
tude f(kz , ∆) and, consequently, the electron spectrum
P (kz , ∆) of the two-colour ionization of the Ne atom as a
function of the momentum for various values of the delay
∆ between the IR and XUV pulses. We can then form a
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FIG. 4: (Color online) RefXUV(kz, 0) computed using
Eq. (9), solid (red) line, and TDSE calculation (green) dash.
ImfXUV(kz, 0) given by Eq. (9), (blue) short dash and TDSE
(magenta) dots. XUV photon energy ω = 106 eV, ionization
from the 2p state of Ne. Vertical solid line corresponds to the
momentum kz for which E0 + ω = k2

z
/2.

functional:

D =
∑

ki
z
,∆i∈S

∣

∣

∣

∣

P c(ki
z , ∆

i)

P c(k1
z , ∆1)

−
P t(ki

z , ∆
i)

P t(k1
z , ∆1)

∣

∣

∣

∣

2

, (10)

where P c(kz, ∆) stands for the spectral intensity that we
obtain from the TDSE calculation, and P t(kz , ∆) for the
spectral intensity that we obtain using the trial expres-
sion (9). Sum in Eq. (10) is performed over a set S of
momenta kz and delays ∆. This set can represent, for
example, the set of available experimental data. We use
below the set S consisting of the momenta points satis-
fying |kz −k0

z | ≤ 0.03 a.u. , where k0
z is the point defined

by the energy conservation, and we used a set of values
0.2T1, 0.3T1, 0.4T1, 0.5T1, and 0.7T1 (T1 is an optical
cycle corresponding to the IR frequency) for the delay ∆
between IR and XUV pulses. P t(k1

z , ∆1), and P c(k1
z , ∆1)

in Eq. (10) are trial and computed spectra for some par-
ticular value of ∆ and kz (we use values of ∆ = 0.2T1 and
k = k0

z). Forming ratios of P t(ki
z, ∆

i) and P t(k1
z , ∆1) in

Eq. (10) allows us to get rid of the constant parameter A
in Eq. (9) and thus reduce the number of parameters to
be varied. Minimizing the functional thus defined with
respect to the remaining parameters a, τ , and ǫ, we ob-
tain a value for the parameter τ and consequently, the
time-delay.

Results of this procedure are illustrated in Fig. 5,
where we present the data for the time delay obtained
as described above for several base frequencies ω of the
XUV pulse for ionization from the 2s and 2p sub-shells
of the Ne atom. These results are compared with the val-
ues for the time delays which we can extract directly from
the TDSE calculation using the computed amplitudes of
XUV photo-ionization and Eq. (8).

Fig. 5 shows that the results of the fitting procedure
described above agree well with the results of the ab ini-

tio TDSE calculation. In the same figure, for complete-



5

-2

 0

 2

 4

 6

 8

 70  80  90  100  110

D
el

ay
 (

as
)

Photon energy (eV)

FIG. 5: (Color online) Time delays computed using Eq. (8)
and the fitting procedure. Ionization from the 2s state: (red)
empty box- Eq. (8), (green) solid box- the fitting procedure.
Ionization from the 2p state: (magenta) empty circle- Eq. (8),
(blue) solid circle- the fitting procedure. The HF results:
2s → Ep transition - (red) solid line, 2p → Ed transition
- (blue) dashed line.

ness, we show the time delay results obtained from the
Hartree-Fock elastic scattering phases τHF = dδHF

l /dE.
These phases are calculated in the frozen core Hartree-
Fock approximation to electron scattering in the field of
the Ne+ ion [20]. The scattering phase in the dominant
photoionization channel l = li + 1 is taken according to
the Fano propensity rule [21], where li is the angular
momentum of the initial bound state. Although these
results are not directly comparable to the present cal-
culations, which employ a localized effective potential,
they demonstrate a qualitatively similar dependence of
the time delay on the photon energy.

IV. CONCLUSION

We addressed in this work the question of applicabil-
ity of the soft photon approximation to the calculation
of the amplitudes of the process of two-colour ionization,
using the Ne atom as a target system. We have found
that the two-colour ionization amplitudes, computed us-
ing the soft photon approximation, agree well with the
ab initio TDSE amplitudes. This fact can be used to
extract phase information and, in particular, the time
delay from the experimental photoelectron spectra de-
tected in attosecond streaking measurements. We tested
applicability of the soft photon approximation using the
Ne atom with a model localized potential. We demon-
strated that this approximation renders the two-colour
ionization amplitudes accurately for the IR field intensi-
ties in the range from 3.5 × 1010 to 5.6 × 1011 W/cm2.
The softness of the IR photon requires that its frequency
should be much less than the kinetic energy of the photo-
electron Ω/Ekin ≪ 1. This means that the XUV photon
energy should be well above the photoionization thresh-
old. This is usually the case in the attosecond time delay

measurements to minimize the effect of a large spectral
width due to a short XUV pulse. It was found in Ref. [14]
that the soft photon approximation reproduces quite ac-
curately the angle integrated cross sections for the values
of this ratio as large as 0.06. We saw in the present
study that the amplitudes were rendered accurately by
the soft photon approximation for Ω/Ekin ≈ 0.07 for the
ionization from the inner 2s sub-shell of the Ne atom
with with the XUV frequency of 2.5 a.u. This defines
the lower bound for the XUV frequency where we can
use this approximation safely.

In deriving our basic equation (7), we did not make
any assumptions about the pulses duration. We can ex-
pect, therefore, that the applicability of the soft photon
approximation for the description of the two colour ion-
ization process is not confined to the IR and XUV fields
arrangement corresponding to typical attosecond streak-
ing experiments that we examined in the present study.
It can be used, therefore, for the timing analysis of the
photoelectron spectra obtained in RABBIT experiments.
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