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Abstract

We perform a time-delay analysis of the strong field ionization of atomic hydrogen in the tun-

neling regime. We obtain values for the time delay by solving the time-dependent Schrödinger

equation, and use these values as parameters to define the corresponding classical trajectories. We

demonstrate that almost all of these trajectories tend to cluster together to a few starting points.

The identification of these starting points and their corresponding starting times allows one to

answer the question as to when and where the atomic photoionization process actually begins.
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Presently available experimental techniques, such as attosecond streaking [1, 2] and an-

gular attosecond streaking (attoclock) [3, 4], make it possible to trace electronic motion

in atoms and molecules with a resolution of several attoseconds. This allows one to pose,

and experimentally answer, questions which would have seemed rather scholastic merely a

decade ago. One such a question, which has recently received considerable attention, is

when does atomic photoionization begin? [5]. This question was first raised after the exper-

imental observation of a noticeable time delay between photoelectrons emitted from the 2s

and 2p shells in neon [6]. Later, a similar observation of a time delay between the 3s and

3p photoelectrons in argon was reported [7]. The experimental time delay investigations

[6, 7] and subsequent theoretical works [8, 9, 10, 11, 12] were restricted to the XUV photon

energy range and the so-called multiphoton ionization regime. This regime is characterized

by values of the Keldysh parameter γ = ω
√

2Ip/F ≫ 1, where Ip is the atomic ionization

potential, while F and ω are the strength and angular frequency of the laser field, respec-

tively. The alternative regime of tunneling ionization in the NIR photon energy range, with

γ < 1, was investigated by Eckle et al [3, 4], who determined experimentally the time needed

for an electron to tunnel out of an atom.

In the present work, we also consider the tunneling ionization regime and generalize time

delay theory for this case. We are motivated by the following considerations. The concept

of time delay gives us information about a certain combination of initial time and initial

coordinate for the trajectory which the center of the ionized wavepacket follows [6, 8]. If, for

simplicity, we assume that the wavepacket trajectory is a straight line, the time delay will

be given by the expression ∆ ≃ t0 − r0/v. In this expression, v is the velocity of the center

of the outgoing wavepacket, t0 is the moment of time when this wavepacket is formed and

r0 is the coordinate of the event. We recall that, for the tunneling ionization regime, t0 is

known. As follows from the well-known and extensively tested classical model of tunneling

ionization [13], the electron velocity gained in the EM field is determined by the value of the

vector potential A(t0) at the moment of ionization. This observation lies at the heart of the

attosecond streaking technique. We have means, therefore, to determine t0 experimentally,

and then, knowing the time delay, to unambiguously define r0, which is the initial coordinate,

or the ’birthplace’, of the photoelectron at the moment of ionization. Below, we explore this

idea more rigorously and present some numerical results. Atomic units are used throughout

the paper unless otherwise specified.
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We consider a photoionization process, driven by a laser pulse, in a hydrogen atom.

Below, we will use both classical and quantum descriptions of the electron motion. To

simplify our analysis, we consider an experimental geometry in which detectors are placed

so that electrons, moving in the forward direction with asymptotic velocity v, parallel to the

z-axis, and impact parameter R, are detected at very large times. An asymptotic description

of the classical electron trajectories, satisfying the conditions above, can be obtained from

Newton’s equations of motion in the Coulomb field. Due to the axial symmetry of the

problem, we can consider electron motion in a plane, which we choose to be the (x, z) plane.

For large time t → ∞, long after the end of the laser pulse, we can write, for the solution of

the classical equations of motion:

ẍ = − x

(x2 + z2)3/2
, z̈ = − z

(x2 + z2)3/2
, (1)

satisfying the above conditions, the following asymptotic expansions:

x ≈ x1 , z ≈ vt +
ln t

v2
+ c , (2)

where |x1| = R and we have omitted terms of order t−1. Asymptotic motion is thus deter-

mined by the impact parameter R and the constant c.

To proceed further, we turn to a quantum mechanical treatment. We solve the time-

dependent Schrödinger equation (TDSE) for a hydrogen atom, driven by a laser pulse with

the electric field polarized along the z axis and varying with time for t ∈ (−2T, 2T ), and

find

F (t) = F0 cos2

(

πt

4T

)

cos ωt . (3)

Here the carrier frequency ω = 0.0577 a.u. (corresponding to wavelength λ = 790 nm), F0 =

0.1068 a.u. (corresponding to a peak intensity of 4× 1014 W/cm2), and T = 2π/ω = 2.63 fs

is the optical cycle period for frequency ω. These values define the Keldysh parameter as

γ = 0.53. The field is zero outside the interval (−2T, 2T ), so the total duration of the pulse

is 4T ≈ 10.5 fs. At the moment of time t = −2T , the hydrogen atom is initially in the

ground state. To describe the interaction of the atom and the electromagnetic (EM) field,

we use the velocity gauge: Ĥint(t) = A(t) · p̂, with A(t) = − ∫ t
−2T F (τ) dτ and the electric

field F (t) described above. The time dependence of F (t) and A(t) is shown in the left panel

of Fig. 1.

To solve the TDSE, we employ the computational procedure employed in our previous

work [14]. The TDSE is discretized on a spatial grid with a step size of δr = 0.05 a.u. in
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a box of size Rmax = 1500 a.u. We represent the solution of the TDSE as a partial wave

expansion:
Ψ(r, t) =

lmax
∑

l=0

fl(r, t)Yl0(θ) , (4)

where the summation is restricted to lmax = 20. This is known [15] to be sufficient to achieve

convergence with respect to the number of partial waves for the laser field parameters that

we consider. To propagate the wave-function (4) on the interval (−2T, 2T ), we use a matrix

iteration method developed in Ref. [16].
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FIG. 1: (Color online) Left panel: the electric field (red) and vector potential (green) of the laser

pulse. Right panel: the photoelectron energy spectrum. The arrows indicate selected photoelectron

energies used in the timing analysis below.

We expand the solution of the TDSE for times t ≥ 2T on the set of the Coulomb functions

(with ingoing boundary conditions)

Ψ(t) =
∫

a(k)φ−

k
e−iEkt dk . (5)

The expansion coefficients a(k) determine various ionization probabilities,especially the pho-

toelectron energy spectrum, as shown in the right panel of Fig. 1. More importantly for

our purposes, the coefficients ak can be used to study long-time behavior of the wavepacket

corresponding to a particular detection geometry. The wavepacket describing electrons prop-

agating along the z-axis with a particular value of the velocity, v, and a given value of the

impact parameter, R, can be obtained from the solution Ψ(t) by means of two projection

operators, or two ”measurements”. The first projection operation restricts the range of mo-

mentum integration in Eq. (5) to some neighbourhood of v, where v is directed along the

z-axis. Another projection restricts the wave function in the perpendicular (x, y) plane to a

neighbourhood of the point ρ in this plane, such that ρ = R. In the case of an ideal (or a

von Neumann measurement), this second operation consists of setting the wave function to

zero for all ρ outside this neighbourhood in the (x, y) plane, while leaving it unchanged for
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the ρ values inside. For long times, when the ”measurements” are performed, we can write

such a wavepacket as

Ψ̃(t) =
∫

Ω
akφ−

k
f(ρ, t)e−iEkt dk , (6)

where Ω is a region in the momentum space containing the point k = v, and the function

f(ρ, t) may spread in time in the (x, y) plane, but remains peaked at a point in the (x, y)

plane corresponding to a given impact parameter. The region Ω in the momentum space

defining integration in Eq. (6) was chosen as follows. We analyze absolute values of the

coefficients a(k) , with k = (0, 0, kz), as a function of kz. This function closely follows

the pattern shown in the right panel of Fig. 1, which consists of a series of local maxima

with energies approximately separated by the carrier frequency ω. We take such a local

maximum kz = v as the center of the wavepacket, and restrict integration in kz in Eq. (6) to

(kz ∈
√

v2 − ω,
√

v2 + ω). Thus we obtain wavepackets which physically represent electrons

contributing to a given peak of the spectrum of above threshold ionization (ATI) and moving

in the forward direction.

We are interested in the motion of the center of this wavepacket and in matching it to

the classical asymptotics in Eq. (2). Similarly to our classical calculation, we can assume

that this motion occurs in the (x, z) plane. From Eq. (6), we see that the asymptotic

equation for the x- coordinate is satisfied automatically. The asymptotic equation for the

z-coordinate can be obtained by using the saddle-point method with the asymptotic form

φ−

k
∝ exp[ikr + iγ(r, k)], with γ(r, k) = k−1 ln (kr + kr) for the hydrogen scattering states

[17, 18].

Writing ak = |ak|eiδ, we obtain the following asymptotic equation for the z-coordinate of

the center of the wavepacket, given by Eq. (6):

z ≈ v

(

t − ∂δ

∂v

1

v

)

+
ln t

v2
+

ln 2v2 − 1

v2
(7)

The quantity ∆ =
∂δ

∂v

1

v
can be interpreted as the Wigner time delay [17, 18]. By comparing

the classical and quantum asymptotics, we find a relation between the constant c in Eq. (2)

and the time-delay in Eq. (7).

Knowing the solution of the TDSE, we can determine values of the time delay for our

particular geometry. Thus, we can obtain values for the parameter c in the asymptotic

classical equation (2) for the z-coordinate. This leaves us with one undetermined parameter,
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x1, in the equation for the x-coordinate. For different values of the parameter x1, we

can use asymptotic equations (2) for sufficiently large t = tf (in the calculation we used

tf = 5 × 104 a.u.) to compute values of the x and z coordinates at t = tf . Together with

the known values of the x- and z- components of the velocity, these values provide us with

the initial (or rather final) conditions. By propagating classical equations of motion of an

electron in the Coulomb field and the field of the laser pulse defined in Eq. (3) backward in

time (we employ the leap-frog method for this purpose), we obtain a one-parameter family

(depending on x1 as the parameter) of classical electron trajectories. This family has the

property that all the trajectories have the same high-t asymptotic for the z-coordinate,

coinciding with the quantum-mechanical asymptotic equation describing the motion of the

wavepacket center.

However, not all these trajectories are relevant. From the Keldysh theory of tunneling

ionization [19] and its refinements [20, 21, 22], we know that the electron velocity at the

moment of ionization is small, as high velocities are heavily (exponentially) dampened. The

same picture emerges if we use the more physically transparent semiclassical theory of ioniza-

tion by low frequency EM radiation developed in [23], where only the first step of the process

– the emergence of the electron into the continuum – is treated quantum-mechanically. De-

scribing subsequent evolution as purely classical motion with near zero initial velocity, one

obtains photo-electron energy spectra which agree very well with quantum mechanical re-

sults [13, 23]. The width, ∆E, of the kinetic energy distribution for the electrons driven into

the continuum by the electromagnetic wave can be estimated using the uncertainty relation

as ∆E = h/∆t [23], where ∆t = γT , γ is the Keldysh parameter and T is the duration

of an optical cycle. The parameter ∆t is the tunneling time introduced in [19]. It is the

time required for an electron to tunnel out from the atom. For the field parameters we

use, we obtain ∆E ≈ 0.1 a.u. Correspondingly, the velocity distribution of the electrons

emerging into the continuum should peak around zero velocity with a characteristic width

of ∆v ≈ 0.4 a.u. A quantum-mechanical treatment [20] shows that this simple estimate

is, in fact, accurate for the width of the distribution of the lateral (i.e. perpendicular to

the EM field polarization direction) electron velocities. The distribution of the longitudinal

velocities is also peaked at zero velocity, but its width is generally larger [20].

Therefore, we can restrict our one-parameter family of classical trajectories to those

trajectories for which the initial value of the lateral velocity is lower than the above estimate.
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We can also expect that an electron will emerge into the continuum not far from the nucleus

and so the absolute value of its initial z-coordinate is not too large.

Values of initial velocity and coordinates for a given trajectory can be determined as

follows. We trace the velocity change along each trajectory and look for the minima of its

absolute value. If, for all the minima on a given trajectory, the lateral velocity exceeds the

value vmax = ∆v, we discard that trajectory. We also discard the trajectories for which

there are minima with absolute values of the initial lateral velocity below vmax, but where

the corresponding absolute value of the z-coordinate is greater than some zmax.

The results presented below were obtained using zmax = 12 au. The particular numerical

values of the parameters zmax and ∆v are, in fact not very important, as their role is

merely to define a filtering procedure which discards those classical trajectories which most

strongly violate our expectations, based on the theory of tunneling ionization. Similarly,

using different filtering criteria to discard irrelevant electron trajectories, does not alter the

conclusions presented below, as long as the criteria comply with the tunneling ionization

theory. We checked this fact, varying parameters zmax and ∆v for the filtering criteria we

described above, and performing the calculations employing different criteria, discarding

the classical trajectories for which not lateral but total electron velocity at the moment of

ionization event exceeds some critical value.

For each classical trajectory which passes the filtering procedure, we obtain a point t0

where the minimum of the absolute value of the velocity was attained, and corresponding

values of x0 = x(t0) and z0 = z(t0). It is natural to interpret t0 as the moment of time at

which ionization occurs, whereas x0 and z0 define the spatial coordinates of this event.

To illustrate our findings, we select several peak photoelectron energies. viz. E =

0.283 a.u., 0.391 a.u., and 0.435 a.u.; these are marked by arrows in the right panel of

Fig. 1. The time delay values obtained from the TDSE solution for these energies are

∆ = 535 as, 421 as and 371 as, respectively. The corresponding values of x(t0) and z(t0),

for those trajectories which have passed the filtering procedure, are plotted in Fig. 2.

Upon inspection of this figure, it becomes immediately obvious that almost all of the

trajectories which satisfy the tunneling ionization criteria start at about the same moment

of time. viz. t0 ≃ 0.4T , with the initial values z0 distributed sharply. This indicates that

our interpretation of t0 and z0 as the time and initial z-coordinate of the ionization event

may be a meaningful one.
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FIG. 2: (Color online) Distributions of initial values z0 = z(t0) (left column) and x0 = x(t0) (right

column) for classical trajectories corresponding to photoelectrons moving in a forward direction,

with energies E = 0.283 a.u. (upper row), 0.391 a.u. (middle), and 0.435 a.u. (lower row).

The clastering of the classical trajectories can be visualized even better if we plot the

density of the trajectories with given x0,z0. We define this density as a number of trajec-

tories with given (x0, z0) per unit area in the (x0, z0)-plane, which have passed the filtering

procedure. Thus defined density, shown in the Fig. 3 for the electron energy E = 0.283 a.u.,

exhibits a sharp maximum in the z-direction.

We note further that the value of t0, which we interpret as the moment when photoion-

ization ”begins”, agrees well with what one would expect on the basis of the classical model

[13]. This model predicts that the photoelectron velocity gained in the EM field is deter-

mined by the value of the vector potential A(t0) at the moment of ionization. From Fig. 1,

we observe that A(t0 ≃ 0.4T ) ≈ 1 a.u., which falls into the range of the final velocities that

we presently consider (from 0.75 a.u. to 0.93 a.u.).

Fig. 2 shows, that z0 grows with electron energy. This growth can be explained in

the following way. As a rough approximation, we can picture electron motion in the z-
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FIG. 3: (Color online) Density of the classical trajectories with initial coordinates x0,z0 for the

electron energy E = 0.283 a.u.

direction as a straight line. The value of the z-coordinate at the moment of ionization is

then z0 = v(t0 − ∆), where ∆ is the time delay which decreases with energy. If we plug

the values of the time delays reported above into this formula, together with t0 ≈ 0.4T , we

obtain z0 = 16.5 a.u., 23.1 a.a., and 26.7 a.u. for the energies of 0.283 a.u., 0.391 a.u., and

0.435 a.u., respectively. The absolute values of z0 derived from the straight line trajectories

are inaccurate because of the crude character of this approximation. However, these values

demonstrate the same characteristic increase with energy that is seen in Fig. 2.

Plots for the initial values of the x- coordinate in Fig. 2 are less informative. They again

tell us that trajectories start at t0 ≈ 0.4T .

To summarize, we propose a procedure which offers us a conceptual framework allowing us

to discuss questions such as when and where does atomic photoionization actually begin? As

always, when trying to describe a quantum-mechanical phenomenon using classical language,

we have to rely on a classical tool. In this work, such a tool is classical trajectory analy-

sis, using additional information about the time delay provided by the quantum-mechanical

TDSE calculation. By selecting trajectories which comply with the classical theory of tun-

neling ionization, we can unambiguously define the moment of time when ionization occurs

and the spatial coordinates of this event. Thus defined, the time of ionization, t0, agrees

well with what one would expect from a purely classical model [13]. The success of the

latter model in describing phenomena like ATI, multiphoton two-electron ejection or high

harmonic generation, tells us that classical concepts, such as the moment of time when an
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ionization event occurs, may be extremely useful. In the present work, we introduced an-

other such concept – localization of the ionization event in space. We hope this localization

may be determined experimentally in future attosecond experiments.
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