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We perform a time-delay analysis of of strong field ionization of atomic hydrogen in the tunnelling
regime. We obtain the values of the time delay from the quantum-mechanical calculation involving
solution of the time-dependent Schrödinger equation, and use these values as parameters defining
corresponding classical trajectories. We demonstrate that almost all the classical trajectories, de-
fined by this procedure, tend to cluster together to a few starting points. This allows one to pose
sensibly and answer the question as to when and where the atomic photoionization process actually
begins.
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Presently available experimental techniques such as at-
tosecond streaking [1, 2] and angular attosecond streak-
ing (attoclock) [3, 4] make it possible to trace electronic
motion in atoms and molecules with the resolution of
several attoseconds. This allows one to pose, and an-
swer experimentally, questions which would have seemed
rather scholastic merely a decade ago. One such a ques-
tion, which has recently drawn considerable attention,
is when does atomic photoionization begin? [5]. This
question was first raised after experimental observation
of a noticeable time delay between photoelectrons emit-
ted from the 2s and 2p shells in neon [6]. Later, a similar
observation was reported of the time delay between the
3s and 3p photoelectrons in argon [7]. The experimental
time delay investigations [6, 7] and the subsequent theo-
retical works [8, 9, 10, 11, 12] were restricted to the XUV
photon energy range and the so-called multiphoton ion-
ization regime. This regime is characterized by the values
of the Keldysh parameter γ ≫ 1, where γ = ω

√

2Ip/F
with Ip being the atomic ionization potential, F and ω
being the strength and angular frequency of the laser
field. The alternative regime of tunneling ionization in
the NIR photon energy range with γ < 1 was investigated
by Eckle et al [3, 4] who determined experimentally the
time needed for an electron to tunnel out of the atom.

In the present Letter, we also consider the tunneling
ionization regime and generalize the time-delay theory
for this problem. We are motivated by the following con-
sideration. The concept of a time delay, as defined by
the wave packet back propagation [6, 8], gives us infor-
mation about a certain combination of the initial time
and initial coordinate for the trajectory which the center
of the ionized wavepacket follows. Assuming a straight
line asymptotics of this trajectory at large times and dis-
tances and back propagating it to the origin, we can de-
fine the time delay as ∆ ≃ t0 − r0/v, where v is the ve-
locity of the center of the outgoing wavepacket, t0 is the
moment of time when this wavepacket has been formed
and r0 is the coordinate of this event. We recall that for
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the tunneling ionization regime t0 is precisely known. As
it follows from the well-known and tested classical model
of tunneling ionization [13], the electron velocity gained
in the EM field is determined by the value of the vector
potential A(t0) at the moment of ionization, an obser-
vation which lies at the heart of the attosecond streak-
ing technique. We have means, therefore, to determine
experimentally t0 and then, knowing the time-delay, to
define unamiguosly r0 - the initial coordinate of the elec-
tron at the moment of ionization. Below, we explore this
idea more rigorously and present some numerical results.
The atomic units are used throughout the paper unless
specified otherwise.

We consider photoionization process in the hydrogen
atom driven by a laser pulse. We will use below both
classical and quantum descriptions of the electron mo-
tion for times long after the end of the laser pulse. To
simplify our analysis, we consider experimental geometry
in which detectors are placed so that electrons moving in
forward direction with asymptotic velocity v parallel to
the z-axis and impact parameter R are detected at very
large times. Asymptotic description of the classical elec-
tron trajectories, satisfying the conditions above, can be
obtained from the Newton equations of motion in the
Coulomb field. Due to the axial symmetry of the prob-
lem, we can consider electron motion in a plane, which
we choose to be the (x, z) plane. For large time t → ∞,
we can write the solution of the equations of motion as

ẍ = − x

(x2 + z2)3/2
, z̈ = − z

(x2 + z2)3/2
, (1)

This solution satisfies the asymptotic expansions

x ≈ x1 = R , z ≈ vt +
ln t

v2
+ c , (2)

where we omitted terms of the order of t−1. Asymptotic
motion is thus determined by the impact parameter R
and the constant c, the latter being undefined in a clas-
sical description.

To proceed further, we turn to the quantum mechani-
cal treatment. We solve the time dependent Schrödinger
equation (TDSE) for the hydrogen atom driven by a laser
pulse with the electric field directed along the z axis and
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defined for t ∈ (−2T, 2T ) as:

F (t) = F0 cos2
(

πt

4T

)

cosωt . (3)

Here the base frequency ω = 0.0577 a.u. (correspond-
ing to the wavelength λ = 790 nm), F0 = 0.1068 a.u.
(corresponding to the peak intensity of 1014 W/cm2 and
T = 2π/ω = 2.63 fs is the optical cycle for the base
frequency ω. These values define the Keldysh parameter
γ = 0.53. The field is zero outside the interval (−2T, 2T ),
the total duration of the pulse is thus 4T ≈ 10.5 fs. At the
moment of time t = −2T , the hydrogen atom is initially
in the ground state. To describe electromagnetic (EM)

interaction, we use the velocity gauge: Ĥint(t) = A(t) · p̂,

with A(t) = −
∫ t

−2T
F (τ) dτ and the electric field F (t)

described above. The time dependence of F (t) and A(t)
is visualized on the left panel of Fig. 1.

To solve the TDSE, we employ the computational pro-
cedure employed in our previous work [14]. Numerically,
the TDSE is discretized on the grid with the stepsize
δr = 0.05 a.u. in a box of the size Rmax = 1500 a.u.
We seek a solution of the TDSE on the basis of a partial
wave expansion

Ψ(r, t) =

rmax
∑

l=0

fl(r, t)Yl0(θ) , (4)

where summation is restricted to lmax = 20. It is
known [15], that our numerical choices are sufficient to
achieve convergence with respect to the number of par-
tial waves. To propagate the wave-function (4) on the
interval (−2T, 2T ), we use the matrix iteration method
developed in Ref. [16].

FIG. 1: (Color online) Left panel: the electric field (red) and
vector potential (green) of the laser pulse. Right panel: the
photoelectron energy spectrum. The arrows indicate selected
photoelectron energies used for timing analysis below.

We expand the solution of the TDSE at the moment
t ≥ T1 = 2T on the set of the Coulomb functions (with
ingoing boundary conditions)

Ψ(t) =

∫

a(k)φ−

k
e−iEkt dk . (5)

The expansion coefficients a(k) determine various ioniza-
tion probabilities, in particular, the photoelectron energy
spectrum as shown on the right panel of Fig. 1. More
importantly for our purposes, the coefficients ak can be

used to study large time behavior of a wavepacket cor-
responding to the particular detection geometry. The
wavepacket describing electrons propagating along the
z-axis with particular value of the velocity v and a given
value of the impact parameter R can be obtained from
the solution Ψ(t) by means of two projection operators,
or two ”measurements”. The one projection restricts the
range of momentum integration in Eq. (5) to some nei-
bourhood of v, where v is directed along the z-axis. An-
other projection restricts the wave function in the per-
pendicular (x, y) plane to a neibourhood of the point ρ
in this plane such that ρ = R. In the case of an ideal
(or a von Neumann measurement), this second operation
consists in putting the wave function to zero for all ρ

outside this neibourhood in the (x, y) plane and leaving
it unchanged for the ρ values inside. For the large time,
when the ”measurements” are performed, we can write
such a wavepacket as

Ψ̃(t) =

∫

Ω

akφ−

k
f(ρ, t)e−iEkt dk , (6)

where Ω is a region in the momentum space containing
the point k = v, and the function f(ρ, t) may spread in
time in the (x, y) plane, but remains peaked at the point
in the (x, y) plane corresponding to a given impact pa-
rameter. Particular values of the velocity v the region Ω
in the momentum space defining integration in Eq. (6)
were chosen as follows. We analyze absolute values of
the coefficients a(k) , with k = (0, 0, kz), as a function
of kz . This function follows closely the pattern shown on
the right panel of Fig. 1 which consist of a series of local
maxima with energies separated by the base frequency ω.
We take such a local maximum kz = v as the center of
the wavepacket and restrict integration in kz in Eq. (6)

to (kz ∈
√

v2 − ω,
√

v2 + ω). Thus we obtain wavepack-
ets which physically represent electrons contributing to a
given peak of the spectrum of above threshold ionization
(ATI) and move in the forward direction.

We are interested in the motion of the center of this
wavepacket and in matching it to the classical asymp-
totics in Eq. (2). Similarly to our classical calculation,
we can assume that this motion occurs in the (x, z)
plane. From Eq. (6) we see that the asymptotic equation
for the x- coordinate is satisfied automatically. Asymp-
totic equation for the z-coordinate can be obtained us-
ing the saddle-point method and the asymptotic form
φ−

k
∝ eikr+iγ(r,k), with γ(r, k) = k−1 ln (kr + kr) for

the hydrogen scattering states [17, 18].
By writing explicitly notation ak = |ak|eiδ, we obtain

the following asymptotic equation for the z-coordinate of
the center of the wavepacket given by Eq. (6):

z ≈ v

(

t − ∂δ

∂v

1

v

)

+
ln t

v2
+

ln 2v2 − 1

v2
(7)

The quantity ∆ =
∂δ

∂v

1

v
can be interpreted as the Wigner

time delay [17, 18]. By comparing the classical and quan-
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tum asymptotics, we find relation between the constant
c in Eq. (2) and the time-delay in Eq. (7).

Knowing the TDSE solution (6), we can determine
values of the time delay for various wavepacket center
energies and particular geometry. Thus, we can deter-
mine values of the parameter c in the asymptotic classi-
cal equation (2) for the z-coordinate. This leaves us with
one undetermined parameter x1 in the equation for the
x-coordinate. For different values of the parameter x1,
we can use asymptotic equations (2) for sufficiently large
t = tf (in the calculation we used tf = 50, 000 a.u.) to
compute values of x and z coordinates at t = tf . To-
gether with the known values of the x- and z- compo-
nents of the velocity, these values provide us with the
initial (or rather final) conditions. Propagating classical
equations of motion of an electron in the Coulomb field
and the field of the laser pulse defined in Eq. (3) back-
ward in time (we employ the leap-frog method for this
purpose), we obtain a one-parameter family of the clas-
sical electron trajectories. This family has the property,
that all these trajectories have the same large-t asymp-
totic for the z-coordinate, coinciding with the quantum-
mechanical asymptotic equation describing motion of the
wavepacket center.

Not all of these trajectories are relevant though. From
the Keldysh theory of tunneling ionization [19] and its re-
finement [20], we know that the electron velocity at the
moment of ionization is small, large velocities are heavily
(exponentially) dampened. To single out the trajectories
possessing this property from our one-parameter family,
we trace the velocity along the trajectory and look for
the minima of its absolute value. If all the minima on a
given trajectory exceed a certain value vmax = 0.2 a.u.,
we discard such a trajectory. We can also expect that
the electron should not emerge too far from the nucleus
at the moment of ionization. Therefore, we also discard
the trajectories for which there are minima with abso-
lute value of the velocity less than vmax, but the cor-
responding absolute value of the z-coordinate is greater
than some zmax = 12 au. Particular numerical values of
vmax and zmax are not important, their role is merely to
discard the classical trajectories which most strongly vi-
olate our selection criteria. For each classical trajectory
which was sieved through these selection criteria, we ob-
tain a point t0, where the minimum of the absolute value
of the velocity was attained, and corresponding values of
x0 = x(t0) and z0 = z(t0). It is natural to interpret t0 as
the moment of time at which ionization occurs whereas
x0 and z0 define the spatial coordinates of this event.

To illustrate our findings, we select several peak pho-
toelectron energies E = 0.283 a.u., 0.391 a.u., and
0.435 a.u. which are marked by arrows on the right panel
of Fig. 1. The time delay figures obtained from the TDSE
solution are ∆ = 537 as, 435 as and 375 as, respectively.
The corresponding values of x(t0) and z(t0) are plotted
in Fig. 2. Upon inspection of this figure, it becomes im-
mediately obvious that almost all the trajectories, which
satisfy the tunneling ionization criteria, start at about

the same moment t0 ≃ 0.4T with the initial values z0

distributed very sharply. This indicates that our inter-
pretation of t0 and z0 as the time and initial z-coordinate
of the ionization event may be a meaningful one. There
is a second family of the classical trajectories with larger
value of z0 for the energy of 0.391 a.u. (middle row in
Fig. 2). This, we believe, is an artifact, introduced by
our selection procedure. We could get rid of this family
by reducing the parameter zmax from 12 a.u. to 8 a.u. in
our selection criterion.

FIG. 2: (Color online) Distributions of initial values z0 =
z(t0) (left column) and x0 = x(t0) (right column) for clas-
sical trajectories corresponding to photoelectrons moving in
forward direction with energies E = 0.283 a.u. (upper row),
0.391 .u. (middle), and 0.435 a.u. (lower row).

We note further that the value of t0, which we in-
terpret as the moment when photoionization ”begins”,
agrees well with what one would expect on the basis of
the classical model [13]. This model predicts that the
photoelectron velocity gained in the EM field is deter-
mined by the value of the vector potential A(t0) at the
moment of ionization. From Fig. 1 we observe that
A(t0 ≃ 0.4T ) ≈ 1 a.u. which falls into the range of
the final velocities we presently consider (from 0.75 a.u.
to 0.93 a.u.).

As far as the z0 coordinate is concerned, an estimate
for this quantity could be obtained using a simple model
illustrated in Fig. 3. Here we plot an effective poten-
tial −1/z + Feffz as a function of the z-coordinate with
Feff ≈ −0.08 a.u. which is the value of the electric field
(3) at the moment t0 ≈ 0.4T when the ionization event
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FIG. 3: (Color online) (Red) solid line: effective potential
−1/z + Feffz as a function of z-coordinate; (green) dashed
line: 1s energy level of the atomic hydrogen E = −0.5 a.u.

occurs. The figure illustrates the case of the over the bar-
rier ionization, and we can estimate z0 as the coordinate
of the maximum of U(z) which is |Feff |−1/2 ≈ 3.5 a.u.
This simple estimate supports qualitatively our findings.
However, it does not capture some additional features
seen in Fig. 2 such as growth of z0 with electron energy.
This growth can be explained in the following way. As
a rough approximation, we can picture electron motion
in the z-direction as a straight line. In this approxima-
tion, the value of the z-coordinate at the moment of ion-
ization is z0 = v(t0 − ∆), where ∆ is the time delay.
which decreases with energy. If we plug the values of
the time delay reported above into this formula together
with t0 ≈ 0.4T , we obtain z0 = 16.5 a.u., 23.1 a.a., and
26.7 a.u. for the energies of 0.283 a.u., 0.391 a.u., and
0.435 a.u. respectively. The absolute values of z0 derived

from the straight line trajectories are inaccurate because
of a crude character of this approximation. However,
these values demonstrate the same characteristic increase
with energy as is seen in Fig. 2.

Plots for the initial values of the x- coordinate are less
informative. They tell us again that trajectories start at
t0 ≈ 0.4 . The only exception is the plot in the middle
row of Fig. 2. On this plot, the second family of the
trajectories with larger z0 can be removed if we made
the zmax selection criteria more stringent.

To conclude, we establish the defining moment of
atomic ionization when the photoelectron leaves the
atom. This moment is mapped distinctively on the co-
ordinate space which allows one to speculate as to where

atomic photoionization actually begins. As always, when
trying to describe a quantum-mechanical phenomenon
using the classical language, we have to rely on some
classical tool. In this work, such a tool is the classical tra-
jectory analysis using an additional information on the
time delay supplied by the quantum-mechanical TDSE
calculation. As a result of this procedure, we define the
moment of ionization t0 which agrees well with what one
would expect from the purely classical model [13]. Suc-
cess of the latter model in describing such phenomena as
ATI, multiphoton two-electron ejection or high harmonic
generation tells us that classical concepts, such as the
moment the ionization event, may be extremely useful.
In the present work, we introduced rigorously another
such a concept: the localization of the ionization event
in space. We hope this localization may be determined
experimentally in future attosecond experiments.
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