Calculation of HHG spectra in complex atoms.
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Abstract. We propose a procedure for calculating the high harmonics yield from
complex atoms. The procedure relies on the description of an atomic system by means
of the Hartree-Fock potential including the exchange interaction to describe the motion
of the single active electron.
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1. Introduction

High harmonic generation (HHG) is a nonlinear atomic phenomenon which can be
described qualitatively as a 3-step process. At the first step, the atomic electron
undergoes a tunneling ionization. If this event occurs at the right moment of time
such that the classical trajectory of the electron in the electromagnetic (EM) field will
eventually return to the nucleus, the electron can recombine and emit a photon. This
essentially classical model proposed by Corkum (1993) explains many characteristic
features of HHG such as the existence of the plateau in the spectrum (Krause et al
1992, L’Huillier and Balcou 1993). A typical pattern of the HHG spectrum consists of
the first few generally quickly decreasing harmonics followed by a plateau. The plateau
ends with a sharp cut-off located at the photon energy of approximately I, + 3.17U,,
where I, and U, are the ionization potential of the atom and the ponderomotive energy
of electronic motion in the EM field. These general features of HHG follow also from
semiclassical (Becker et al 1994, Kuchiev and Ostrovsky 1999, Kuchiev and Ostrovsky
2001) or quantum (Usachenko and Pazderezsky 2002) approaches to the description of
HHG. From the quantum mechanical point of view, HHG can still be regarded as release
and quantum evolution of the atomic electron followed by emission of the HHG photon.

For a quantitative description of HHG, one has to develop a procedure allowing
to describe these steps for a real atomic or molecular system of certain complexity. A
complete, ab initio solution of this problem is hardly possible for systems with more
than one electron. One has to adopt various approximations to make the problem
tractable. This can be, for example, the so-called strong field approximation (SFA)
(Usachenko and Pazderezsky 2002, Milogevi¢ 2006, Milogevi¢ 2007) which neglects the
influence of the atomic potential on the motion of the released electron during the
second stage of the HHG process. The electron motion is described by a propagator
constructed from the Volkov states (Milosevi¢ 2006, Milosevi¢ 2007) which simplifies
the problem considerably. Modification of this approach which takes into account the
atomic structure is possible in principle (Ivanov and Kheifets 2008a, Ivanov and Kheifets

2008b). Such a modification helps to understand the known effect of the atomic structure
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on the HHG spectra (Ganeev et al 2006a, 2006b, 2007a, 2007b) . However, this method
can hardly be used as a computational tool for studying HHG in complex atoms or
molecules.

The method which is commonly employed to describe qualitatively HHG and a
closely related process of the above threshold ionization (ATI) in complex systems is
the single active electron (SAE) approximation (Krause et al 1992, Takahashi et al
2007, Peng and Starace 2006, Shon et al 2000). In SAE, the atomic structure is
replaced by an effective potential so chosen as to represent accurately the energies of the
ground and first few excited states. Solution of the time-dependent Schrédinger equation
(TDSE) for the active electron in such a potential is possible in three dimensions without
further approximations and can be used to compute HHG or ATI spectra.

This method allowed to solve successfully many otherwise almost untractable
problems such as the ATT spectra in argon which were reproduced in good agreement
with experiment Nandor et al (1999). Calculations of HHG using the SAE
approximation revealed such features of the HHG process as spectral cutoff, the phase
structure and formation of the attosecond pulses.

The choice often made for the effective potential in the SAE approximation is the
Hartree-Slater potential (Shon et al 2000). Below, we describe a procedure which goes
one step further. We employ the Hartree-Fock potential which includes the exchange
interaction to describe the motion of the active electron in SAE approximation. This
gives us a better description of the atomic core and more accurate energies of the ground
and excited states.

It should be realized, of course, that SAE has its inherent limitations. A limited
description of electron correlations used in SAE implies that such effects as resonances
due to excited states or core excitations cannot be treated properly. It is known, for
example (Gordon et al 2006), that SAE predicts similar emission rates in all noble gases
contradicting the experiment, which shows that heavier noble gases have much stronger
harmonics yield. It is known also (Kitzler et al 2004) that SAE cannot describe properly

extended, highly polarizable systems, such as large molecules. More elaborate methods
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are needed in these cases, such as multi-configurational time-dependent Hartree-Fock
method (Kitzler et al 2004), three-dimensional time-dependent Hartree-Fock approach
(Nikolopoulos et al 2007), or time-dependent density functional theory (Tong and
Chu 1998). Application of such methods poses a difficult computational task, often
necessitating the use of other approximations such as reducing dimensionality of the
TDSE. On the other hand, the SAE approximation, effectively reducing the problem
to a single-electron one, allows to solve the three-dimensional TDSE with moderate
computational efforts. The latter property is especially important if we are interested
in description of generation of the harmonics of high orders when retaining terms with
high angular momenta in the wave function is important.

Below, we describe the procedure based on the description of an atomic system by
means of the Hartree-Fock potential including exchange interaction, and apply it to the

calculation of HHG spectra in Li, K, and Rb atoms.

2. Theory.

We are looking for a weak solution of the TDSE for the atom in the external EM field:

@) (127 ~ Hawm — Hin(0)) 9) =0. )
where |®) is any vector from certain subspace V of the Hilbert space H which we will
specify below.

In Equation (1) H,iom is the Hamiltonian of the field-free atom. We describe
the field-free atom in the ground state by solving a set of self-consistent Hartree-Fock
equations (Chernysheva et al 1976). We adopt the single active electron approach and
describe the one-electron excitations from the valence shell in the frozen-core Hartree-

Fock (FCHF) approximation. This part of the atomic Hamiltonian is thus a non-local

integro-differential operator. To account for the polarization effects, the polarization
o
description of the core polarization (Bray and Stelbovics 1995). Here « is atomic

potential V(r) = is added to the Hamiltonian to provide a limited

polarizability, the parameter 7y is chosen such that the energy of the first excited atomic

state is reproduced accurately.
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To describe interaction of the atom and the external electromagnetic field we use
the length gauge. The EM field is chosen to be linearly polarized along the z-axis. The

operator Hiy(t) in Equation (1) reads in atomic units:

A

Hiy(t) = f(t)zF cos (2)

Here f(t) is a switching function which is smoothly growing from 0 to 1 on a switching
interval 0 < t < T}, and is constant for ¢ > 7. The switching time is 7} = 5T where T'
is a cycle of the laser field. The whole interval of time on which the time-evolution was
computed was 30 cycles of EM field.

To approximate a weak solution of TDSE (1), the subspace V has to span as large
portion of the entire Hilbert space H as possible. This can be achieved using for V a
subspace spanned by the set of the so-called pseudostates. This set can be obtained by

diagonalizing the field-free Hamiltonian in a square integrable basis (Bray 1994):

(il | Hasom| fil) = B0 . (3)

Here FE,; is the energy of a pseudostate and N is the size of the basis. It can be
shown (Bray 1994, Bray and Stelbovics 1995) that for a sufficiently large basis size
N, pseudostates span a large portion of the Hilbert space. In particular, they can be
efficiently used to represent atomic states belonging to continuum. Experience shows
that a good convergence with respect to the basis size can be achieved for N & 50 for each
value of [. We used this value in the calculations presented below. After diagonalization
(3) is achieved, we do not need to use the complicated non-local operator I:Iatom, all
information about the Hamiltonian of the field-free atom is encapsulated in the set of
the pseudostates.

To construct the set of pseudostates satisfying Equation (3) we use either the
Laguerre basis, or set of the B-splines. Both sets of functions are defined in a box
of sufficiently large size Ryax (Rmax = 200 a.u. in the present calculation). The set
of B-splines is much more convenient to handle numerically for large angular momenta
(I > 10) which we have to consider if our goal is to study harmonics of high orders. We
used a set of B-splines of the order k = 7 with the knots located at the sequence of points

lying in [0, Rmax]. All the knots ¢; were simple ones except for the knots located at the
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origin and the outer boundary R = Rpax of the box. These knots had multiplicity k = 7.
The simple knots were distributed in (0, Rpax) according to the rule t;,1 = at; + 3. The
parameter a was close to 1, so that the resulting distribution of the knots was almost
equidistant. For each value of the angular momentum [ the first [ + 1 B-splines and the
last B-spline resulting from this sequence of knots were discarded. This ensures, that
any B-spline in the set decreases as r'*! (or faster) at the origin, and assumes zero value
at the outer boundary.

For systems with non-empty core, the FCHF atomic Hamiltonian ffatom has
low lying eigenstates corresponding to the core states which must be excluded
from consideration. We supplement, therefore, Equation (1) with the orthogonality
requirements (®;|¥) = 0, where |®;) is any core state.

The subspace V in which the solution of Equation (1) is sought, is thus a span of
all pseudostates, defined in Equation (3), which do not belong to the atomic core:

U(r,t) = > a;(t)f5(r). (4)

jécore

In the calculations we present below, the pseudostates with angular momenta [ < 60
were included in Equation (4). This implies that for a modestly strong electric fields
of the order of 0.01 a.u. corresponding to 3.5 x 10'> W/cm? intensity we may hope to
describe accurately formation of harmonics of the order of 60.

As noted above, the pseudostates (3) are computed within a box of the finite size.
Possible reflections of the wavepackets from the boundaries of the box may lead to the
appearance of the spurious harmonics in the spectrum. This effect may be present even
if, as in the results given below, excursion radius of electronic motion in the EM field is
small comparing to the size of the box (Krause et al 1992). To exclude this possibility,
we add to the Hamiltonian the complex absorbing potential —iW (r) which is chosen as
a smooth function, zero for » < 180 a.u. and continuously growing to a constant —iWj
with Wy = 2 a.u. outside this region.

With thus defined total Hamiltonian, equations (1) and (4) lead to a system of

differential equations for the coefficients a;(¢), which, in the matrix form, can be written
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as:
ia = (fIatom + FDf(t) cos Qt — zW) -a, (5)

where I:Iatom, D and W are correspondingly matrices of FCHF atomic Hamiltonian,
dipole operator, and absorbing potential computed in the basis introduced in Equation
(4). We find solution of this system of equations for the time interval (0,7}), T3 = 30T
using the Crank-Nicholson method.

The harmonics spectrum is calculated as prescribed by Krause et al (1992):

to 2

/ e~ “td(t) dt

t1

Here d(t) = (¥(t)|z|¥(t)) is expectation value of the dipole momentum, ¢1, t5 are chosen

1
ta — 11

d(w)]* = (6)

to be large enough to minimize the transient effects (we use typically last 10 cycles of

the pulse duration, i.e., t; = 207, t, = 307).
3. Results.

In all cases we consider below, the atom is prepared initially in the ground state. In
Figure 1 we present a harmonics spectrum obtained from the Rb atom subjected to the
EM field with parameters indicated in the figure caption. Here the harmonics intensity
is plotted versus the harmonics number N = w/Q, where Q is the frequency of the

driving EM field.
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Figure 1. Harmonics spectrum of Rb, peak strength of the EM field F' = 0.0027 a.u.,
Q = 0.162 eV, Neutor = 50 (left panel); F' = 0.0027 a.u, 2 = 0.3 eV, Neytor = 20

(right panel)
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In Figure 1, we see clearly the harmonics cutoffs at Neyorr = 50 and Neyor = 20 for

the field parameters corresponding to the left and right panels, respectively. Harmonics

spectra show little sensitivity to the interval of time which we use for calculating the

integral in Equation (6). If, instead of using the integration limits ¢; = 207, t; = 30T

we chose t; = 25Tty = 307, we would obtain a very similar spectrum shown on the

right panel of Figure 2. The harmonic intensities are well converged, especially for the

harmonics of the orders up to NV = 30.
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Figure 2. Harmonics spectrum of Rb, peak strength of the EM field F' = 0.0027 a.u.,
Q =0.162 eV; t; = 20T ,t2 = 30T (left panel), t; = 25T, ¢, = 30T (right panel)

Analogous calculations were performed for K and Li atoms. Results for various

field strengths and frequencies of the EM field are presented in Figure 3 and Figure 4.

These results show a typical behavior of the HHG spectra exhibiting the cutoffs at the

orders prescribed by the I, + 3.17U}, rule.
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Figure 3. Harmonics spectrum of K, peak strength of the EM field ' = 0.003 a.u.,
Q2 =0.2 eV, Neytosr =~ 40 (left panel); F = 0.0035 a.u, Q = 0.25 eV, Neytor = 30 (right

panel)
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Figure 4. Harmonics spectrum of Li, peak strength of the EM field F' = 0.005 a.u.,
Q = 0.25 eV, Neutot = 45 (left panel); F = 0.0025 a.u, = 0.16 eV, Neytor = 60
(right panel).

Using as an example the calculation for K with the field parameters from the left
panel of Figure 3, we shall discuss the role played by the Hamiltonian chosen for the
description of the atomic system. The prime motivation to use for this purpose the
Hatree-Fock Hamiltonian (including the polarization potential) is to represent accurately
a large number of excited atomic states. As can bee seen from Table 1, the Hatree-Fock
description gives considerably more accurate energy eigenvalues of the first lowest excited
levels as compared with the description without polarization potential or the description

relying on the Hatree-Slater potential.

Level NIST HF V,q =0 Hartree-Slater

potential
4p 1.61 1.62 1.41 1.34
5s 2.61 261 2.35 2.07
3d 2.67 2.62 2.43 2.05
op 3.06 3.07 2.77 2.49
4d 3.40 3.37 3.12 2.74
6s 3.40 3.45 3.15 2.83
4f 3.49 3.49 3.16 2.77

Table 1. The lowest excited states of potassium. The excitation energies (in eV)
are from the NIST data base (Sansonetti et al 2005). The calculated values are from
the Hartree-Fock method (third column), the Hartree-Fock without the polarization
potential (fourth column) and the local Hartree-Slater potential (fifth column).

This difference with which excited levels are represented in different models is
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translated into different HHG spectra. These spectra, for the calculations using the
HF description without polarization potential and the Hartree-Slater local potential are
shown in Figure 5. These spectra are to be compared with the spectrum shown on the
left panel of Figure 3 which was obtained using the Hartree-Fock Hamiltonian including

the polarization interaction.
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Figure 5. Harmonics spectrum of K, peak strength of the EM field F' = 0.003 a.u.,
Q = 0.2 eV; calculation without polarization potential (left panel); calculation using
Hartree-Slater potential (right panel).

One can see that account or neglect of the polarization potential produces a
relatively small change in the HHG spectrum, both for harmonics and background
intensities. Replacing the Hartree-Fock Hamiltonian by the Hartree-Slater one leads
to far more substantial changes in the HHG spectra. Harmonics in the latter case are
typically one or two orders of magnitude more intense. The reason of this difference
in the HHG spectra might be due to the considerable difference of the spectra of the
Hartree-Fock and Hartree-Slater Hamiltonians as seen from the data shown in Table 1).

Finally, to make sure that the presently employed box size Rn.x = 200 a.u. is
chosen adequately and no spurious effects due to the reflections of the wavepacket from
the box boundary are present, we show in Figure 6 the evolution of the spatial electronic
density with time for the EM field parameters corresponding to the left panel of Figure 4.
Profiles of the spatial densities indicate absence of the wavepackets traveling back to

the nucleus.



HHG spectra in complex atoms. 11

0.0001

8e-05 |-
2
'g Figure 6. Evolution of spatial electron
S 6e-05 - density for the Li atom in EM field with
c
o 2605 F = 0.005 a.u., Q = 0.25 eV at the initial
uij moment of time (red) solid line, ¢ = 10T

2605 (green) long dash, t = 20T (green) long dash,

y t = 307 (magenta) dots.
0 [ oot ) J
0 50 100 150 200

r(au.)

4. Conclusion.

As we noted in the Introduction, SAE is a well-established procedure allowing to treat
interaction of complex atoms or molecules with EM radiation, in particular, to describe
the HHG process in these systems. The usual requirement to the effective potential,
which mimics the effect of the atomic core, is realistic representation of the ground and
several excited states of the system under consideration. The Hartree-Slater potential
which is often used for this purpose neglects the exchange effects.

We described a computational procedure which relies on the Hartree-Fock potential,
including the non-local exchange interaction, This choice gives us a more detailed
description of the atomic system of interest. All the information about the potential is
contained in the set of the pseudostates defined according to Equation (3). Once this set
is constructed, we can solve the three-dimensional TDSE with moderate computational
effort. This circumstance is very useful if our goal is description of the generation of the
harmonics of high orders. In this case, the terms with high angular momenta are to be

retained in Equation (4).
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